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Binary Morphological Shape-Based Interpolation
Applied to 3-D Tooth Reconstruction

Adrian G. Borş*, Member, IEEE, Lefteris Kechagias, and Ioannis Pitas, Senior Member, IEEE

Abstract—In this paper, we propose an interpolation algorithm
using a mathematical morphology morphing approach. The aim
of this algorithm is to reconstruct the -dimensional object from
a group of ( 1)-dimensional sets representing sections of that
object. The morphing transformation modifies pairs of consecutive
sets such that they approach in shape and size. The interpolated
set is achieved when the two consecutive sets are made idempotent
by the morphing transformation. We prove the convergence of the
morphological morphing. The entire object is modeled by succes-
sively interpolating a certain number of intermediary sets between
each two consecutive given sets. We apply the interpolation algo-
rithm for three-dimensional tooth reconstruction.

Index Terms—Mathematical morphology, morphing,
shape-based interpolation.

I. INTRODUCTION

I
N MANY tasks, we have to extract object information from

a group of sparse sets. Particularly, in medical applications,

parts of human body are represented by an image sequence of

parallel slices. These slices can be acquired by magnetic reso-

nance imaging (MRI), computer tomography (CT), or by me-

chanical slicing and digitization. Most often, the distance be-

tween adjacent image elements within a slice is smaller than the

distance between adjacent image elements in two neighboring

slices. In such situations, it is necessary to interpolate additional

slices in order to obtain an accurate description of the object for

volume visualization and processing [1]. There are two main

categories of interpolation techniques for reconstructing objects

from sparse sets: grey-level and shape-based interpolation.

Grey-level interpolation methods employ nearest-neighbor,

splines, linear [2], or polynomial interpolation. Other algorithms

employ feature matching [3] or homogeneity similarity [4] for

determining the direction of interpolation.

Shape-based interpolation algorithms are usually employed

on binary images. These interpolation methods consider shape

features extracted from the object sets. A distance function from

each pixel to the object boundary is considered for interpolation

in [5]. In [6], an interpolation–extrapolation algorithm is intro-
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duced which has similarities with that from [5]. Other exten-

sions of the algorithm described in [5] are proposed in [7] and

[8]. Among six different algorithms, the one based on a chamfer

distance and using a modified cubic spline was found to provide

the best results in [7]. An interpolation algorithm which uses the

elastic matching algorithm, spline theory, and surface consis-

tency is considered in [9]. Shape-based interpolation methods

have been shown to outperform other interpolation methods in

[10]. A mixed gray-level and shape-based method is used for

interpolation in [11]. Each slice is represented as a surface by

a “lifting” procedure. The intermediary slices are obtained by

interpolating the resulting surfaces and converting the interpo-

lated surface back to an image by a “collapsing” operation.

Mathematical morphology provides a good theoretical frame-

work for shape modeling and interpolation [12], [13]. Erosion

and dilation are basic morphologic transformation operations.

In [14], each slice is eroded until its number of pixels becomes

half of the sum of its initial number of pixels and those of the

next slice. Morphing based on a distance transform is used for

slice interpolation in [15]. Interpolated sets in [16] are generated

from a succession of skeletons derived from the matching of

two neighboring set skeletons. The skeleton by influence zone

(SKIZ) transform employs dilations of the intersection and of

the complementary of the union of two neighboring sets [17].

In this paper, we propose a new binary morphological mor-

phing approach for interpolation. The morphing transforms two

neighboring sets by combinations of dilations and erosions. The

transformation is iteratively performed in such a way that the re-

sulting sets become more similar to each other with respect to

both shape and dimension. We define a distance measure for

assessing the difference between the original and the morphed

shape. The interpolated set corresponds to the idempotency of

the two morphed sets after a certain number of iterations. Idem-

potency is achieved when the difference of the morphed sets is

zero. The morphing transformation is applied repeatedly on the

new stack of interpolated sets until an appropriate object shape

is achieved. We employ the morphological morphing approach

for reconstructing three-dimensional (3-D) teeth from digitized

slices.

This paper is organized as follows. Section II describes the

morphological morphing transformation and Section III the in-

terpolation algorithm. In Section IV, we provide some experi-

mental results. The conclusions of this study are drawn in Sec-

tion V.

II. MORPHOLOGICAL MORPHING

Let us consider that we are provided with two sets repre-

senting two shapes, denoted by and , in an -dimensional

0278-0062/02$17.00 © 2002 IEEE
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space denoted as . Shape morphing is a technique for con-

structing a sequence of sets showing a gradual transition be-

tween the two given shapes. In the following, we describe a mor-

phological morphing transformation.

The simplest morphological operations are the dilation and

erosion [12]. These operations correspond to the Minkowski set

addition and subtraction. The dilation of a set by using the

structuring element is given by

(1)

where denotes dilation and represents a structuring ele-

ment centered onto an element of the set . The erosion of a set

by using the structuring element is given by

(2)

where denotes erosion. The most commonly used structuring

element is the elementary ball of dimension . The dilation with

the elementary ball expands the given set with a uniform layer

of elements while the erosion operator takes out such a layer

from the given set.

The basic mathematical morphology operations defined

above can be used to derive complex processing operations

[12], [13]. Let and be the elements of the sets

and . Let be an alignment transform that aligns

with , such that we have . The

alignment operation is done according to an -dimen-

sional hyperplane [axis for two-dimensional (2-D) sets] using

matching of corresponding features or a centering operation.

We define the complement (background) of the set by

. After alignment, each element will have

a corresponding element which may be a member of the

other set , or may be part of its background .

In [5], algorithms that use distance transforms for morphing

interpolated sets by adding or removing layers of elementary

units have been proposed. In [17], the SKIZ was used for

set and function interpolation. The interpolated set in [17] is

obtained by means of successive dilations of the sets

and , until idempotency is achieved. However,

such an approach does not correspond to a natural morphing of

one set into the other one.

The morphing transformation proposed in this paper ensures

a smooth transition from one shape set to the other one by means

of several sets whose shapes change gradually. First, our trans-

formation influences the elements located on the boundary of

the set

(3)

where denotes the neighborhood of the element , having

the same size and shape as the structuring element . In our

morphing operation, the elements of a boundary set are

changed differently according to their correspondences on the

other given set [18], [19]. These changes are defined in terms

of mathematical morphology basic operations such as dilations

(1) and erosions (2). We can identify three possible correspon-

dence cases for the elements of the two aligned sets. One situ-

ation occurs when the border region of one set corresponds to

the interior of the other set. In this case, we apply the morpho-

logical operation of dilation to the border elements

If

then perform
(4)

where is the structuring element applied on the set and

is the boundary of set . A second case occurs when the border

region of one set corresponds to the background of the other set.

In this situation, we have erosions of the boundary elements

If

then perform
(5)

No modifications are performed when both corresponding ele-

ments are members of their sets boundary

If

then perform no change
(6)

The last situation corresponds to regions where the two sets co-

incide locally and no change is necessary, while (4) and (5) cor-

respond to morphing transformations.

By including all these local changes, we define the following

morphing transformation applied on the set depending onto

the set and on the structuring element

(7)

A similar morphing operation is defined onto the set de-

pending on the set and on the structuring element

(8)

According to these transformations, the intersection of the two

sets is always retained by the morphing operations

(4)–(6). One set will be eroded in those regions which corre-

spond to the background of the other set while it will dilate

in regions which correspond to the interior of the other set.

The proposed morphing operation creates a new set which is

a subset of .

In the proposed morphing algorithm, a particular situation

occurs when the erosion of the first set includes the dilation of

the second set

(9)

We can easily observe that, in this case, (7) and (8) simplify to

(10)

(11)

This situation is illustrated for 2-D sets in Fig. 1(a). On the other

hand, we have the case when both and contain subsets

which are not included in the other set, i.e.,

. In this case, the operations defined by (7) and (8)

are illustrated in Fig. 1(b).



102 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 21, NO. 2, FEBRUARY 2002

(a) (b)

Fig. 1. Exemplification of mathematical morphology morphing. The result
produced by (8) is represented with dashed lines while the result produced by
(7) is represented with dot-dashed lines. Arrows denote dilation and erosion
directions; (a) (P 	B ) � (Q�B ); (b) P �Q 6= andQ� P 6= .

The result of the morphing operation applied on either set is

a new set. These morphed sets are closer to each other in shape

structure and size. In order to measure their similarity, we define

a shape distance. Let us consider a structuring element as

a ball of radius . Such a structuring element can be obtained

from an elementary ball (ball of unit radius) after successive

dilations using the elementary ball as the structuring element.

Let us define a shape distance between the original set and the

morphed set as given by the size of the structuring element .

We conventionally assume a positive and a negative direction

of morphing. After morphing the sets and with the same

structuring element , the distance of the morphed sets to

their originating sets is

(12)

where the negative distance has been conventionally assigned.

In the general case, this shape distance is not symmetrical

(13)

For isotropic interpolation, we use identical structuring ele-

ments, , when morphing the two sets. In this

case, each morphed set is equi-distant to its original set. The

distance defined in (12) does not depend on the number of

elements (pixels in a discretized 2-D space) eroded or added,

but on the structural differences between the two shapes that

are morphed and on the structuring element size. In the case

when the elementary ball is used as structuring element, the

shape distance between the original set and its morphing is one.

III. GEOMETRICALLY CONSTRAINED INTERPOLATION

The morphing operation defined by (7) and (8) is applied it-

eratively onto the sets resulted from the previous morphings.

The succession of morphing operations creates new sets de-

rived from the two initial extremes. With each iteration these

sets are closer in shape and size to each other. Three-dimen-

sional natural exemplifications of this morphological morphing

approach can be found in tree rings and in crystal layer struc-

tures. By employing an alignment operation , we can ensure

that . The morphing interpolation is based on the

following theorem.

Theorem 1: Always we can generate an intermediary set be-

tween two sets and , satisfying , by iterating the

set transformations defined in (7) and (8) onto their previous it-

eration output sets, until idempotency.

Proof: In order to prove the morphing interpolation con-

vergence to idempotency, let us consider a set , representing

the operation for the two given sets

(14)

We assume that the local morphing termination condition (6)

does not occur at the next morphing iteration, which implies

that

(15)

In this case, we observe that by considering (7) and (8) and by

grouping the resulting set components we obtain

(16)

where for the sake of simplification we dropped out the depen-

dency on the elementary structuring element from the expres-

sion of the morphing transformation. The morphing rules out-

lined in (4)–(6) are employed in the successive morphing opera-

tions. We can observe that erosion applies everywhere on the set

, excepting for the points which fulfill the condition (6). Such

points are not eroded. There is a clear interdependence between

the set defined in (14) and the morphological shape distance

defined in (12). While with each iteration the set is eroded

as it is shown by (16), the distance between the resulting sets,

morphed from and , decreases correspondingly

(17)

where we have considered an elementary structuring element.

Let us denote the morphing at iteration , initiated from the

sets and , by and , respectively. As we

have seen above, the morphing transformation corresponds to

the conditional erosion of the set . According to the relation-

ship (17), at each iteration the distance between the morphed

sets decreases. Equation (6) represents a local stopping con-

dition which is likely to extend with each iteration to a larger

amount of elements from the boundary of the morphed sets. We

can observe that this happens simultaneously with the shrinkage

of the set which eventually becomes a closed contour. The in-

terpolation termination condition corresponds to the case when

we fulfill the morphing termination condition of (6) for all the

boundary points of the two morphed sets. In this situation, the

two morphed sets become idempotent. Let us assume that this
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(a) (b)

(c) (d)

Fig. 2. Shape-based interpolation of two sets. (a) fFirst set. (b) Second set. (c)
Difference set. (d) Resulting interpolated set.

happens after iterations. Idempotency after iterations is

shown by a zero distance between the resulting morphed sets

(18)

Let us denote by the set obtained at the idempotency of the

morphing transformation

(19)

This set has similarities to both initial sets and . The set

is equidistant, according to the distance measure defined in (12)

to the original sets

(20)

The existence of a set which is equidistant to the initial sets and

which corresponds to the case when the set becomes a contour

proves the convergence of the morphing Theorem 1.

These results can be easily extended to discrete sets. Elements

in such sets consists of hypervoxels in an -dimensional space

(pixels for 2-D sets). In order to exemplify this result, we con-

sider the 2-D sets from Fig. 2(a) and (b). The initial difference

set is shown in Fig. 2(c). After five iterations (

5) using the structuring element from Fig. 3, we get the inter-

polated set , displayed in Fig. 2(d). In this case, the distance

between the interpolated set and the original sets is

(21)

which is equal to the number of morphing transformations per-

formed by each of these sets until idempotency. The morphing in

this example required mostly rectangular to circular shape trans-

formations. We can observe that, despite certain discretization

errors, the morphing transformations resulted in a good interpo-

Fig. 3. Elementary ball structuring element.

lation result. The interpolated set has similarities to both initial

sets, shown in Fig. 2(a) and (b).

All the above assumptions and derivations rely on the fact

that we have identical structuring elements for morphing both

sets and . In this case, the resulting interpolated set is at

equal distance to the given two sets according to (20). However,

in certain situations, we may want to interpolate a set, which

is at smaller distance to one or another of the given two sets,

by using a priori knowledge. We can either use a larger struc-

turing element for eroding/dilating the set which should be less

similar to the interpolated set, or repeat the morphing for an ad-

ditional number of times on that set using the same structuring

element. In the case when considering discrete sets, these two

approaches can provide slightly different results due to the dis-

cretization and approximation of the spherical structuring ele-

ment on a discrete grid. Let us assume that we would like an

interpolated set whose shape distance ratio to the initial sets is

given by

(22)

where we assume a structuring element for morphing and

for morphing . The ratio between the radii and

of two hyper-spherical structuring elements, is given by

(23)

Let us consider an ordered group of sets ,

representing cross-sections of a certain object, where rep-

resents the total number of sets. The morphing procedure pre-

sented above interpolates a new group of sets between each two

consecutive sets. In the general case, each new set is equi-dis-

tant to the original neighboring sets. The initial and the inter-

polated sets will form a new group of sets which can be used

for a better visualization of the given 3-D object. We repeat the

same procedure on the new pairs of consecutive sets for mod-

eling the entire object to a finer detail. After repetitions, the

number of interpolated sets generated between two initial sets

is . Evidently, there is an upper limit in the number of

distinctly interpolated sets generated between two given con-

secutive sets. For initial sets we obtain

interpolated sets. The number of sets to be inserted depends on

the relationship between the slice spacing and set element size.

In the case of unequally spaced cross-section sets, a different

number of sets must be interpolated between each two consec-

utive slices. Another way to deal with unequally spaced inter-

polation would be to generate all the possible intermediary sets
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Fig. 4. Diagram describing the interpolation algorithm using morphing of consecutive set pairs.

Fig. 5. Set of tooth slices in resin.

and to choose certain sets, according to their desired intraset dis-

tance. In this case, the number of interpolated sets is smaller than

. The intermediate sets, denoted by

for , represent an interpolation between

the two initial sets and . Grey-level interpolation can be

performed together with the shape interpolation [18]. The pro-

cedure of interpolation by successive morphing is exemplified

in Fig. 4.

IV. SIMULATION RESULTS

We have used the proposed morphological morphing interpo-

lation algorithm for reconstructing the external and internal 3-D

morphology of several teeth. Such an application is of interest

in endodontology for representing tooth morphological struc-

ture [20]. The examples used in the experiments described in

this paper represent normal tooth shapes that are reported in the

dental literature. We reconstructed several tooth shapes using

the proposed interpolation algorithm. Three examples are pre-

sented in this paper: an incisor (single root tooth); a premolar

(two-root tooth); and a molar (three-root tooth). These teeth

have been mechanically sliced and digitized. A set of incisor

slices in resin is displayed in Fig. 5. The tooth borders as well

as the root canal in each slice are segmented and the resulting

slices are aligned using a semi-automatic procedure. Aligned

slices are displayed in Fig. 6(a), for the incisor, in Fig. 6(b),

for the premolar and in Fig. 6(c) for the molar, respectively.

We have used the morphological interpolation algorithm de-

scribed in Sections II and III in order to reconstruct the teeth

from the given initial set of slices. In the case of the incisor,

the morphing algorithm is applied iteratively four times. Thus

we eventually produce 337 slices from

only 22 original slices. A set of interpolated frames from the in-

cisor sequence is displayed in Fig. 7. We can observe from this
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(a)

(b)

(c)

Fig. 6. Segmented and aligned tooth slice sets. (a) Incisor. (b) Premolar (two roots). (c) Molar (three roots).

figure that both canal and outer tooth surface are being smoothly

changed from one slice to the next one. A grey-level interpola-

tion algorithm [18] was used together with the proposed shape-

based interpolation algorithm. This result shows a smooth tran-

sition even between slices having large geometrical variations

in shape. Three-dimensional reconstructions from two different

viewing angles are shown in Fig. 8(a) and (b) for the incisor, in

Fig. 8(c) and (d) for the premolar, and in Fig. 8(e) and (f) for the

molar, respectively. These volumes are reconstructed from the

initial slices shown in Fig. 6. In all these figures, we can observe

that the 3-D volumes are well reconstructed. The interpolation

of the premolar and of the molar image sequences show the ca-

pability of morphing between slices with disconnected sets and

those having compact sets. The morphology of the reconstructed

teeth is quite accurate despite the fact that a large number of

slices has been interpolated.

We have compared the mathematical morphological interpo-

lation algorithm with a linear interpolation algorithm. The linear

interpolation algorithm calculates line segments between pixels

on object contours of the two slices, in both horizontal and ver-

tical directions. The midpoints of these segments are considered

as the interpolated slice contour by this algorithm. We have ap-

plied the linear interpolation algorithm on the incisor sequence

displayed in Fig. 6(a). We employ a measure for assessing the

performance provided by various interpolation algorithms in the

following way. Let , and be three original tooth

slices and be the result of interpolating and . Let

denote set cardinality. The ratio

representing the percentage of wrongly estimated pixels can be

used as a performance measure. In Table I, we provide the re-

sults for reconstructing three different slices from the incisor

group of sets as well as the average result for reconstructing any

intermediary slice from the given pair of sets , for

any , where is the number of initial sets. In

order to assess the difference between original slices, we pro-

vide the normalized slice difference between the two slices used

for interpolation. The case when using the tenth and the twelfth

slices for estimating the eleventh slice is displayed in Fig. 9. The

three consecutive slices are shown in Fig. 9(a)–(c), respectively.

The interpolated slice by morphological morphing approach is
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Fig. 7. Set of interpolated slices for an incisor.

(a) (c) (e)

(b) (d) (f)

Fig. 8. Three-dimensional views of different reconstructed teeth. (a), (b) Incisor, (c), (d) Premolar. (e), (f) Molar.

displayed in Fig. 9(d), while in Fig. 9(f) we show the result pro-

vided by the linear interpolation approach. The difference be-

tween the interpolated and the original set are shown in Fig. 9(e)

for the morphological morphing interpolation and in Fig. 9(g)

for the linear interpolation. We can observe that the interpo-

lated slice by morphing is more similar to the original slice than

that interpolated by linear interpolation. The 3-D molar recon-

structed by linear interpolation is displayed in Fig. 10(a), while

in Fig. 10(b) we show the same molar reconstructed by mor-

phological morphing as described in this paper. For comparison
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(a) (b) (c)

(d) (e)

(f) (g)

Fig. 9. Slices interpolated by morphological morphing and by linear interpolation from the tenth and twelfth slices of the incisor sequence compared with the
real eleventh slice. (a) Tenth slice. (b) Eleventh slice. (c) Twelfth slice. (d) Morphological morphing. (e) Difference set. (f) Linear interpolation. (g) Difference set.

purposes both these volumes are visualized from the same view

angle. We can observe that the shape of the molar is better re-

constructed by the morphological morphing algorithm than by

linear interpolation. These graphical results together with nu-

merical results from Table I show that the proposed morpho-

logical morphing interpolation algorithm provides good experi-

mental results in the case of 3-D tooth reconstruction from dig-

itized slices.

V. CONCLUSION

In this paper, we propose a morphological morphing algo-

rithm. We consider a group of sets representing sampled object

cross sections at various depths. The proposed interpolation al-

gorithm relies on a morphing transformation of each of two sets

into the other one. The interpolated set is obtained for the idem-

potency of the morphed sets from neighboring slices under the

proposed morphological transformation. This set has similari-

ties in shape and size with both initial neighboring slices sets.

The algorithm is iteratively repeated, by considering new pairs

of neighboring slices, until generating an appropriate number of

interpolated sets. After describing the algorithm we provide ex-

perimental results of its application for reconstructing the shape

of various teeth from slices. The purpose of this algorithm is to

create a database of various types of teeth. Such tooth volumes

can be used for a virtual tooth drilling simulator in preclinical

dentistry student training.
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(a) (b)

Fig. 10. Reconstruction of a 3-D molar by (a) linear interpolation and (b) morphological morphing.

TABLE I
OBJECTIVE COMPARISON MEASURE BETWEEN MORPHOLOGICAL MORPHING

AND LINEAR INTERPOLATION WHEN RECONSTRUCTING AN INCISOR
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