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Abstract—Dynamic imaging with positron emission tomog- I. INTRODUCTION
raphy (PET) is widely used for the in vivo measurement of .. .
regional cerebral metabolic rate for glucose (rCMRGIc) with OSITRON emission tomography (PE_T) with? F]fluoro-
[*8 F]fluorodeoxy-D-glucose (FDG) and is used for the clinical deoxyb-glucose (FDG) has been widely used to study

evaluation of neurological disease. However, in addition to the regional brain glucose metabolism in normal subjects and
acquisition of dynamic images, continuous arterial blood sampling patients with a variety of neurological conditions. The

is the conventional method to obtain the tracer time-activity curve S .
in blood (or plasma) for the numeric estimation of rCMRGIc in three-compartment tracer kinetic model was originally de

mg glucose/100-g tissue/min. The insertion of arterial lines and the veloped by S°|.‘0|0ﬁ9t al. [11 to measure glgcose r_netabollc

subsequent collection and processing of multiple blood samplesrate in the albino rat and it was later validated in humans
are impractical for clinical PET studies because it is invasive, has [2]-[4]. A drawback of this approach is measurement of the
the remote, but real potential for producing limb ischemia, and jnpyt function for the compartment model. The input function

it exposes personnel to additional radiation and risks associated . : : :
with handling blood. In this paper. based on our previously is generally obtained by sampling blood at the radial artery

proposed method for extracting kinetic parameters from dynamic  ©f from an arterializeq vein .in a h?Ud [2]—[‘_1]- Arterial blood

PET images, we developed a modified version (post-estimation sampling is not practicable in a clinical environment because
method) to improve the numerical identifiability of the parameter it is invasive and has the potential for causing irreversible
estimates when we deal with data obtained from clinical studies. {jssye ischemia. Further, it may not be tolerated by the patient

We applied both methods to dynamic neurologic FDG PET studies . " . . o .
in three adults. We found that the input function and parameter if additional studies are required for longitudinal evaluation.

estimates obtained with our noninvasive methods agreed well with |t @S0 exposes personnel who perform the blood sampling
those estimated from thegold standardmethod of arterial blood to additional radiation and the risks associated with handling
sampling and that rCMRGIc estimates were highly correlated patient blood [5].

(r = 0.973). More importantly, no significant difference was  Recently, effort has been directed toward reducing or obvi-

found between rCMRGlIc estimated by our methods and the gold .. : . T
standard method (® > 0.16). We suggest that our proposed ating the need for arterial blood sampling. The arterialized—ve

noninvasive methods may offer an advance over existing methods. N0US (a-v) method involves heating the hand in a hot water bath
Index T _Arterial input func bral ol tab which then promotes shunting between the capillary and ve-
naex lerms rterial Input tuncuon, cerepral glucose metab- : : . .
olism, dynamic imaging, ['®F]fluorodeoxy-D-glucose, noninvasive nqus vaspular bed to_ avoid the d|scomf_ort and risks a§SOC|ated
measurement, positron emission tomography. with arterial cannulation [3]. However, this method requires pro-
longed hand warming to ensure adequate shunting, and itis very
dependent upon the site chosen for the placement of the venous
cannula and the rate of blood flow. The best results are usually
Manuscript received September, 1998; revised January, 2000. This Work\ﬂ]él,Ialneci from a Cannu'?‘ thaF IS placed Ina |arge vein on the
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TABLE |
BRAIN STRUCTURES ANDTISSUE TYPES USED FORROI ANALYSIS
Structure Abbreviation Structure Abbreviation
Basal ganglia BG Cerebellum CBL
Inferior temporal gyrus ITG Occipital association cortex OAC
Parietal lobe PA Superior temporal gyrus ST
Superior frontal SF Thalamus TH
Visual cortex VvC Cingulate gyrus CG
Grey matter* GM White matter* WM
Whole brain* WB Hemisphere (White)* HW
Lenticular nuclei* LN

*denotes the ROIs used for modeling with SIME

the FDG model. Furthermore, all these approaches would sganning schedule for the dynamic FDG PET studies during
quire repeated measurements in a group of patients or voltime first 60 min was: ten 12-s scans, two 30-s scans, two
teers each time a new tracer or different infusion rate is usddmin scans, one 1.5-min scan, one 3.5-min scan, two 5-min
A technique that was not invasive, practical to implement, arsdans, one 10-min scan, and one 30-min scan. The acquired
accurate would have advantages for the routine measuremerRBf data were also decay corrected to the time of injection.
cerebral glucose metabolism in the clinic. The tomographic images were reconstructed using filtered
We recently proposed a modeling approach that estimates tfaek-projection with a Hann filter (cutoff frequeney 0.5 of
input function and determines the physiological parameters 8ie Nyquist frequency). Fifteen regions of interest (ROIs) of
multaneously from several tissue time-activity curves (TACs)regular shape and size were manually drawn over the PET
We evaluated this technique in computer simulations [9]. Howmages to obtain the tissue TACs for each subject. Table |
ever, this method has not yet been tested in clinical studies tiébulates the names and abbreviations of the brain structures
this paper, we report our preliminary data with this method iand tissue types selected for the ROIs. The ROIs selected for
dynamic neurologic FDG PET studies in three adults and pnmodeling with the proposed method were based on visual
pose a modified method (post-estimation method), which irdentification of their corresponding TACs [9].
proves the standard deviation (SD) of parameter estimates. We
also compare these two methods togjotd standardnethodin B FDG Model

which continuous arterial blood samples are taken. The differential equations that describe the FDG three-com-
partment model are expressed as follows [3], [4]:
Il. MATERIALS AND METHODS d
A. HUman Studies gtce( ) lcp( ) ( 2 + 3)66( )+ 4crn( ) ( )
Dynamic FDG PET studies were performed on three human d—cf,,(t) =k3ci(t) — kich,(t) 2
subjects. One had refractory epilepsy and two were normal (1) = & () + ¢, (#) 3)
volunteers. All studies were performed at the National PET/Cy- ‘ ¢ m

clotron Center, Taipei Veterans General Hos_pitz_;\I, Taiw_aWherec;(t), ¢ (t), andcr (t) represent FDG concentration in
R.O.C. The studies were approved by the Institution Reviee plasma, FDG concentration in the tissue, and FDG-6-phos-
Board. The PET scans were performed with a PC4096-15ViRate (FDG-6-P) concentration in the tissue, respectively. The
PET tomograph (GE/Scan-ditronix) that has eight rings amgte constants in the model drg(min—') for forward transport
provides 15 slices with axial and transaxial resolutions eff the FDG to tissuek; (min~!) for reverse transport of FDG
6.5-mm full width at half maximum (FWHM) in the centerfrom the tissue to plasmag (min~") for phosphorylation of
of the field of view (Foy). The §upjects fasted overnighkEDG to FDG-6-P in tissue ankt (min~!) for dephosphoryla-
before the study. A 15-min transmission scan was performggn of FDG-6-P to FDG in tissue. The actual tissue activity
using rotating rod sources 6fGe for attenuation correction measured by PET can be expressed as
prior to intravenous administration of approximately 370 MBq
FDG. The PET studies were performed for 2-h post injection. cr(t) = (1 - CBV) - ¢i(t) + CBV - ¢j(t) (4)
However, for the purpose .Of this study, on ly the first 60 min O\}cvherec“?'(t) is the total tissue activity, and CBV (mL/100 g or
data were used since this is a more practical and commonly qyw S . :
i ) ! . Yovol) is the fractional cerebral blood volume, which accounts
ployed protocol in other PET centers. During the first 60 mi LT :
. r the vascular contribution in the tissue ROI [10], [11]. The
18 arterial blood samples were collected every 15-s from U- . ) ;
: S - regional cerebral metabolic rate for glucose (rCMRGIc) is cal-
to 2-min post injection; every 30-s from 2 to 3.5 min; and atulated according to the following equation [3], [4]:
7, 10, 15, 20, 30, and 60 min. The samples were immediatecly 9 geq e
placed on ice and the plasma was subsequently separated for kik; Cgle Cglc

the determination of FDG and glucose concentrations. The rCMRGle = k5 + k5 LC =K LC ©®)
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Fig. 1. Comparison of the conventional kinetic approach and the proposed noninvasive method. The conventional approach requires to utilizasmeCs in p
and tissue. On the other hand, the proposed method requires the tissue TACs in two or more regions.

whereCglc is the glucose concentration in plasma, drfidis and to reduce the uncertainties in parameter estimates [13], [14].
the lumped constant that embodies the difference between FDBe mathematical expression for this model without the delay
and glucose in transportation and phosphorylation [3], [4]. THactor is given by

macro-parametek (= ki k5 /(ki+k%)) is proportional to rCM-

RGIc and to the uptake of FDG. In this paper, [CMRGIc (or,  p(t) = (A1t — Ay — Ag)e™* + Ape™! 4 Age™'  (6)

equivalently,K) is one of the main parameters used to evaluate . . . . .
thqe accurac):/y o)f our proposed metfwod. whereA; (in xCi/mL/min), A;, andA; (in . Ci/mL) are the co-

efficients of the modeli;, Ao and\s (in min™*) are the eigen-
C. Conventional Kinetic Method values of the model. These parameters are determined by least

. N . uares fitting the blood samples in the conventional kinetic
In the conventional kinetic approach, the rate constants in %th od and SIME

kinetic model are determined by nonlinear least squares (NLL In the input function, the last exponential described by the pa-

fitting to the tissue TAC [4]. The mod_el di_ﬂ‘erential equgtion§ameters43 andA; in (6) dominates the tail of the blood curve.
(2) and (3) are solved and a convolution integral equation thaf, 1,5 shown in our computer simulation study that using two

represents the.tig,sge TAC is formulated [3], [4]. NLLS.iS t.he’?:lte venous samples as tapriori knowledge for the input func-
employed.to minimize the errors between the convolution 'mﬁ' n can markedly improve the identifiability and reliability of
gral equation and the observed PET measurements. Note thaidfje - [9]. In this paper, a similar strategy was adopted. How-

formulation of the convolution integral equation requires knOWLZver instead of fixingls and s to certain assumed values, as
edgle of the nput fr‘]’”C“OZ(P' Wh'Chb:S odbtamedl by continu- we did in our simulation [9], two venous blood samples (30- and
ously measuring the arterial or a-v blood samples. 60-min postinjection) were taken to determidg and As.

Having defined the last exponential of the input function and
the ROIs whose TACs were used for modeling, NLLS was used

We have previously reported [9] the identifiability, reliability,jy SIME to determine the input function and the IRF parameters
and Monte Carlo simulations of our proposed method and ordy minimizing the following cost function:

a brief summary of the method is presented here. Multiple tissue
TACSs can be obtained by defining different ROIs on the dynamic N M 2
PET images (shown in Fig. 1). These TACs are the convolutidi?) = Z Z [(é;(t) @ hi(t)) © 5(t - t;) —er, (tgﬂ
of the input function with the physiological impulse response i=lj=1
functions (IRFs) corresponding to the ROIs. The input function -
and the IRF parameters may thus be estimated simultaneously + Z Wk
from two or more tissue TACs. We refer to this method as si-
multaneous estimation (SIME). where/ is the total number of ROIs incorporated into the model
The input function and physiological parameters of the IRFiting procedure, A/ is the number of frames for each tissue
were derived by the conventional kinetic approach and SIME.BAC, h;(¢) is the IRF of theith ROl with microparameters
input function model for bolus administration of FDG [12] wag:{ — k% and CBV,f denotes the vector of parameters to be es-
used in SIME to describe the (estimated) arterial input functigimated and it is formed by concatenating several sets of rate

D. Noninvasive Approach
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constant parametef&?, k3, k3, ki, CBV]" in different ROIs 150 — T

with the parameter vectdid;, A;, Ao, A2, Az, A3]" of the [ Arteric! blood curve
input function,5(¢ — /) is a Dirac delta function shifted in time I Recoveres Plovs corve
by ¢ units, @ is the convolution integral operataf,(¢) is the
estimated arterial input functio;(tk) is the FDG concentra-
tion in plasma measured attimgk =1, 2, ..., m), misthe
number of venous blood samples taken late in the course of t 2
study, andwy, is chosen to be 100 so that the samples from tt 3
blood [i.e.¢;(t)] are given more weight, as they are usually 3 5o ‘
less noisy (thus, more reliable) than PET measurements. In @
of the studiesg; (¢1) were measured by counting the radioac
tivity concentrations in the venous blood samples£ 2) taken

at 30- and 60-min postinjection in an Nal well counter that wa ol . . ‘ o
cross-calibrated to the PET scanner. 0 20 40 60

Time (min)

100 7

(kBg/ml)

E. Post-Estimation Technique Fig. 2. Comparison of the measured arterial input function with the recovered

. . . input function for one subject. The recovered blood curve was obtained from
Although precise parameter estimates can be obtained thgRyitaneously fitting three ROI TACs at a time.

retically with SIME, raw PET data are often extremely noisy

due to issues such as photon attenuation, scatter, etc. The re-

sult is that the information matrix becomes poorly conditione@it to compare the estimates of rCMRGIc obtained from both

and the subsequent estimation of the SDs of the parameter &thods for the ten ROIs tabulated in Table | for all subjects.

mates are poor. In addition, input/output scaling can also restftired student's test was performed on the 30 (three subjects

in large SDs in the parameters because sensitivities of the inguf€n ROIS) TCMRGIc estimates to test the hypothesis that rCM-
and output are not of the same order, which can produce n Ic estimates obtained from the invasive and SIMEP methods

rank deficiency in the information matrix. The dimensions arf@#® Nt significantly different, anét < 0.05 was chosen as the
the nonlinearity of parameter space can also affect the infornfignificance level. _ .

tion matrix to a certain extent. In this situation, SIME may not FO the tissue TACs that were used in SIME, we mainly
be able to provide acceptable estimates of the SDs, though ffked at the parameter estimates and the SDs in the IRFs
values of the parameter estimates are accurate. Thus, we HRf@ined with the invasive method, SIME, and SIMEP, respec-
introduced a technique that is applied after SIME, for situatiofi¥ely to evaluate the identifiability and the reliability of SIME
where the parameter estimates have large SDs or coeffici to verify that more reliable results can be obtained W|th
of variation (CVs). We refer to this method as simultaneous esIMEP. The SDs for the rate constants were the asymptotic
timation with post-estimation (SIMEP), which is based on th@DS, Which were given by the square roots of the diagonal
assumption that the input function obtained by SIME can gloflements of the asymptotic variance—covariance matrix (inverse
ally minimize the errors between all of the measured data affthe Fisher Information matrix) of NLLS, while the precision

the predicted tissue TACs by (7) in the least squares sense. PhECMRGIc was calculated by error propagation of the rate

parameters in the IRFs can then be estimated separately by uSgstants.

the estimated input function and the individual tissue TACs as

input—output pairs. The SDs of the parameters can be greatly Ill. RESULTS
improved due to the reduction in dimensionality of parametey Recovery of the Input Functions

space. . . . .
P Fig. 2 shows the measured and recovered input functions in

one of the studies. The recovered blood curve was derived by
minimizing the cost function with the tissue TACs obtained

The recovered (or estimated) input function obtained frofrom three ROIs [grey matter (GM), white matter (WM), and
SIME was compared to the measured arterial input function wihole brain (WB)]. It can be seen that there was very good
sually to see if there was any discrepancy. The areas under dlgeeement between the recovered and measured arterial blood
measured and recovered input functions (AUCs) for the tinoeirves. The difference between the two curves at the peak was
from 0 to 2 min (where the peak occurs), for the time from 2 tonly 2.5%. It was also found that the time at which the two input
10 min (rapid washout), for the time from 10 to 30 min (slowunctions reach their peaks was almost identical. Similar results
washout), and for the time from 30 to 60 min (constant cleawere obtained for all studies where the number of ROIs was
ance), were computed using the trapezoidal method and cammre than two. However, in some cases, the peak estimation
pared. Compartmental model fitting with the use of the measeuld be higher for the recovered input function. An example
sured arterial blood samples as the input function @d stan- is shown in Fig. 3, where the result was obtained from another
dardmethod) and with the use of the input function recovered subject studied. The tissue TACs were also obtained from three
SIME (i.e., SIMEP) were then performed on the ten ROIs, whidROls (GM, WM, and WB). It is, however, important to note
were not used in SIME and the corresponding rCMRGiIc in eatiiiat the measured arterial input function may not necessarily
ROI was then estimated. Linear regression analysis was cartedvery accurate due to measurement noise.

F. Data Analysis
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150 ' ' ‘ ‘ ‘ ! ‘ ' TABLE I
r Arteriol biood curve 1 COMPARISON OF THEAREAS UNDER THE MEASURED AND RECOVEREDINPUT
X Recovered blood curve 1 FUNCTIONS (AUCs) FOR DIFFERENT TIME INTERVALS OF THE EXPERIMENT.
1 VALUES APPEARING INBOLD CORRESPOND TO THEAUCS COVERED BY THE
= 1 MEASURED ARTERIAL BLOOD CURVES IN THE SUBJECTS
> 100 m
2 \ i No. of AUC at different time intervals
-*3 NL 1 Subject | ROIs | 0-2 min 2-10 min 10-30 min 30-60 min
3 | 1 — 101.934 186.040 237.013 188.756
(‘é 2 117.075  188.060 282.713 213.499
o 3 144.443  188.823 241.919 190.967
4 92.596  189.550 238.612 190.213
5 101.183  190.253 231.339 189.219

[
|

114.101 203.028 300.459 270.618
136.062  230.050 308.530 278.353
136.417  222.424 300.966 276.642
141.672  223.816 296.257 274.805
135.581  219.572 298.818 275.906
3 — 122.156 240.408 341.510 320.235

Time (min)

Fig. 3. Comparison of the measured arterial input function with the recover:
input function for another subject studied. Again, the recovered blood cur
was obtained from simultaneously fitting three ROl TACs at a time. Howeve
the peak estimation was not as good as the one shown in Fig. 2.

T o 2N

o 2 131.465 244.662  346.714 320.383
Tal_ole Il compares the AUCS of the _measure_d arterlql inp 3 102,592  230.047  346.184 390.437
functions and the rgcovere(_j mput functions at different time ir 4 110410 240534 349.918 390,620
tervals of the experiment with different number of ROIs used i
5 116.864  237.716  348.399 320.527
SIME. It can be seen that the areas covered by the measurec
terial input functions and the recovered input functions for the
period beyond 0—2 min were in very good agreement, despi 120 T 150
the possible underestimation or overestimation within 0-2 mi i ®  fners blood curve
where peak occurs, due to underestimation or overestimatic *OOE o Creyatter Comentions) E
of the peaks. In general, the recovered input functions reser = | Fiteed Crey NMator (SE) =
bled their true measurements very well. Moreover, the abilit & 8ot o7 lted Grey Maver (SWER) g
of SIME to recover the input function was generally improvec < l e e apsntenel) .
with increasing number of ROIs, as seen in Table I, providei > °C[s | =~ — - fitted inite votter (SMEP) ] =
that the tissue TACs used for modeling in SIME are distinct. f IRy 420 fo)
g 4o PO e 1 2
B. Estimation of the Physiological Parameters i 203 7 i — EN
Apart from the recovery of the arterial input function from V ]
the measured tissue TACs, the estimation of the physiologic 0

parameters and the rate constants are also of primary conce
Fig. 4 plots the measured tissue data (at mid-scan time) and the
fitted curves by SIME, SIMEP, and the conventional kinetic (irFig. 4. Arterial blood samples, recovered input function, and predicted tissue
vasive) method, respectively. The results shown for SIME wefFaCs cor_respondingto GM and WM, respectively._The recovered in_putfunction
. - . was obtained by SIME using the TACs of the two tissue types mentioned above.

obtained from fitting two ROIs (GM and WM) according tOThe fitted curves for the tissue TACs were obtained with the conventional kinetic
the cost function [see (7)]. It can be seen that the fitted curv@sthod using the arterial blood samples as the input function, with the recovered
were in good agreement with the measured data. Furthermdpeut function obtained with SIME and SIMEP, respectively
the TACs predicted by the parameters obtained from SIME and
SIMEP are almost identical, indicating that the main differendbere was a poor estimation of SDs by SIME for some of the
between SIME and SIMEP is in the parameter variances ratip@arameters in the IRFs, e.gcf and CBV. In addition, the
than the values themselves. Similar results were also found éstimated SDs obtained with SIME for the parameters may be
all subjects with different number of ROIs included in the fittingyery large [(standard deviatiof(parameter estimate)} 1, or
procedure of SIME. equivalently, percent C\-> 100%], as shown in the figures,

Figs. 5 and 6 plot the parameter estimates and the Sibswhich some of the error bars are extended beyond the
(denoted by error bars) obtained with SIME, SIMEP, and theaximum values of the graphs. When SIMEP is applied to
invasive method for the IRFs corresponding to the tissue typiese data, the values and SDs of the estimated parameters are
of GM and WM, respectively, in one of the subjects. As showgenerally improved as compared to those estimated by SIME
in the figures, we can obtain quite good estimates of tCMRG#nd are comparable to those obtained with the conventional
for GM and WM when compared to those estimated frokinetic method.
the conventional kinetic method, even when only two ROIs Table Il shows the comparison of CVs (in percentage) for
are used in the model fitting procedure with SIME. HoweverCMRGIc estimates in ten ROIs, obtained with the measured

Tirne (min)
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Fig. 5. Parameter estimates obtained with SIME, SIMEP, and the conventional kinetic method in Gi(x¢eh—!). (b) &5 (min~1). (¢) k5 (min~1). (d)
k; (min~1). (e) CBV (mL/100 g). (f) *CMRGIc (mg/min/100 mL). In (a)—(f), error bars represent the SDs of the parameter estimates.

arterial blood samples as the input function and the recovemeht’st test. We found that the estimates obtained with the inva-
input function obtained with SIME (using three ROIs) for thaive and the proposed method (SIMEP with the input function
three human subjects. The identifiability of the estimates obbtained with SIME using three ROIs as an example) were not
tained with the measured arterial input functions and the recaignificantly different (¢ = 0.16, two-tailed test). Similar re-
ered input functions are almost the same. Linear regression asalts were also found for all subjects with the number of ROIs
ysis was carried out to compare rCMRGIc estimates obtaingatluded in the fitting procedure of SIME greater than two.

from our methods and from the invasive method. The results are

shown in Fig. 7 where the estimates of CMRGIc obtained with IV. DISCUSSION

the gold standardmethod were plotted versus those obtained Qur results show that the proposed methods are able to re-
with SIME (using three ROIs) for different ROIs tabulated irtover the input function from dynamic PET image data and to
Table | (excluding those used in SIME) for all subjects. It caprovide good parameter estimates when compared to the con-
be seen that *CMRGlc can be estimated reliably with the usew@ntional kinetic method. The reliability of estimating physio-
the recovered input functions (SIME, three ROIs). The slope fgical parameters was improved by our SIMEP method 2f

the regression line for CMRGIc was close to one (1.009) amDIs were used. Fewer ROIs8) still provided an accurate es-
the intercept was nearly equal to zero (0.007), and there wanation of rCMRGIc, despite the differences betwédgnand

very high correlation between the estimates obtained with bd@iBV estimates and the large variability in the rate constants.
methods £ = 0.973, P < 0.0001). The agreement between Accurate quantification of tCMRGiIc is directly related to the
the rCMRGlIc estimates was further examined using paired sprecise definition of the input function. The shape of the input
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Fig. 6. Parameter estimates obtained with SIME, SIMEP, and the conventional kinetic method in V(@ —1). (b) k3 (min="). (c) k5 (min~1). (d)
k; (min—'). (e) CBV (mL/100 g). (f) CMRGIc (mg/min/100 mL). In (a)—(f), error bars represent the SDs of the parameter estimates.

TABLE 1lI
COMPARISON OF THECOEFFICIENTS OFVARIATION (IN PERCENTAGE) FORFCMRGIc ESTIMATES IN TEN ROIs, GBTAINED WITH THE MEASUREDARTERIAL BLOOD
SAMPLES AS THEINPUT FUNCTION AND THE RECOVEREDINPUT FUNCTION OBTAINED WITH SIME (USING THREE ROIS) FOR THE THREE HUMAN SUBJECTS

PET Study Input BG CBL ITG OAC PA ST SF TH VC CG
Subject 1  Measured 12.93 12.64 19.11 874 587 16.75 12.69 11.59 7.64 14.17

Recovered 12.04 11.59 16.75 831 6.16 15.04 1219 11.55 7.78 13.00

Subject 2 Measured 846 9.28 19.68 1292 1455 19.33 9.96 13.35 14.39 1824

Recovered 7.21 9.71 19.08 13.23 13.50 1852 9.20 12.54 13.15 19.76

Subject 3 Measured 855 6.63 26.04 13.82 746 1337 590 16.69 9.20 15.24

Recovered 807 620 21.76 13.13 6.85 1491 6.35 1728 9.16 14.19

function with its initial shape rising edge followed by a rapiaf fit. In this case, it is better to use the areas covered by the
decline means that the difference between the measured da&asured and the recovered input functions for comparison. In
and fitted curves could be quite large, although the actual fittirgir study, we found that the areas under the estimated and mea-
is extremely good. Therefore, direct comparisons of the diffesured blood curves (AUCs) at different time intervals were gen-
ence between the measured and fitted curves in the early tierally in very good agreement. However, the AUCs for the time
may not be the most appropriate means to show the goodniessrval of 0—2 min were underestimated or overestimated oc-
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12] ’ ' ' ] studies were defined and the degree of difference was identified
L o 1 a priori. We found that SIME was not able to provide reliable
- y 1 parameter estimates if ROls whose associated TACs have sim-
o® . ] ilar kinetics were used in the fitting procedure due to lack of in-
o 1 dependence of measurements. In this case, where there is diffi-
/ T culty in selecting ROIs of different kinetic behavior, some other
& 1 statistical techniques, such as cluster analysis, may be helpful
ok . to automatically identify a finite number of TACs of different
. 1 kinetic characteristics present in the raw PET data. We are cur-
p | rently exploring such an approach.
a 1 The accuracy of parameter estimation did not improve no-
W7 ‘ [ | ticeably when more than three ROIs were used. Indeed, in some
4 6 8 10 12 cases, the results obtained using more than three ROIs were
rCMRGle,., (mg/min/100mi) poorer than those obtained using three ROIls. We believe this
Fig. 7. Regression results of the rCMRGIc estimated using the measu}g.dpecaqse: 1) the ad_dltlonal r'neas.urements do not prov!dg ad-
arterial blood samples as the input functigolfl standard but invasive) and  ditional independent information since the ROIs have similar
tne ferclovefed iT)PUtt;Uf}cﬁi;ﬂo(;ggm;da\;vgﬁsstlh'\gi s(zrﬂggeghrfgiﬂ ';g:i) fsczaﬂk‘inetics and 2) the computational complexity and dimensions
;ﬁre%(?su::aﬂegtzl:iafleglobd samples as the input funciocMRGlc;,y ), WhliJIe g Efthe e_rror Sur_face’ which define the pa_rameter §et, Increase
the vertical axis is the one using the recovered input function obtained witdith an increasing number of ROIs. The increase in computa-
SIME (rCMRGlesive). In this figure, the solid line represents the line oftional complexity and dimensionality of the error surface may
e e Ao T S A oy, "9 *HB possess a linear relationship with the increased amount ofin-
formation provided by the additional ROIs. Thus, there appears
casionally, due to the underestimation or overestimation of thebe an optimum number of ROIs, which should be sufficient
peaks (around 15-30-s postinjection). In spite of this discrelg- provide new information beyond which the estimation task
ancy, the recovered input functions were in very good agreeméecomes overdetermined. We found that the optimal number of
with the measured arterial blood samples. ROls used for parameter estimation is three, which is in agree-
Our results suggest that if the PET data are very noisy, SIMeent with our results from computer simulation [9]. However,
may not be able to provide acceptable estimates of CVs (or Sk optimal number of ROIs used in the parameter estimation
for the parameter estimates. The poor estimates may be cauy@gedure may be different for different individuals. Tissue het-
by using an unstable information matrix to calculate the SD eéfogeneity may be another reason for the estimation results de-
the parameters, different orders of sensitivity functions of thieriorating as more ROIs are added. It has been reported that
output with respect to the input function model parameters, ndpiased parameter estimates are obtained when a homogeneous
linearity of the parameter space, and the dimension of the figsue kinetic model (e.g., our selected model) is applied to het-
rameter space, which is very large, as well as inherent noisegii®geneous tissue kinetics [15], [16].
the raw data. In this case, SIMEP should be applied to calcu-When compared to the work of Takikawsal.[7] and Eberl
late the parameter SDs, whereby the estimated input functietnal. [8], our method has the advantage that the kinetic model
and the individual tissue TACs are used to perform paramefarameters; — k5 and CBV and the input function can be esti-
estimation separately. We have demonstrated that this providegted simultaneously with the same number of blood samples.
parameter estimates and SDs, which are in good agreement witladdition, both Takikawat al. and Eberlet al. used the au-
those given by the conventional kinetic method. toradiographic method to quantify rCMRGlc, and this approach
Similar to the conventional compartmental model fittingssumes certain values for the kinetic model parameters, which
approach, we found that the poorest parameter estimates ragy lead to errors in estimating rCMRGiIc [3], [4], [17]. An-
obtained fork} and CBV. This occurs particularly in low-ac-other potential advantage of our approach is that it can be ap-
tivity regions such as WM, where there was considerabjdied to other tracers, provided that the input function model
underestimation ot} and overestimation of CBV. Neverthe-can be demonstrated to be sufficiently general.
less, rCMRGIc can still be estimated very reliably with the The ideal situation would be if blood sampling could be elim-
proposed methods, even when poor estimates were obtaiireded totally. However, at least one, and ideally two blood sam-
for individual microparameters (rate constants) and the peples are required to determine plasma glucose concentration for
of the input function was not estimated accurately. This the calculation of rCMRGIc [4]. We also found that the two
because the value of the macro-paraméfaronverges rapidly late venous blood samples generally improved the performance
and it is insensitive to the exact fitting results/dgf — £ [4]. of our method. Thus, it is likely that some blood samples will
Furthermore, although it is sensitive to the total AUC coverealways be required for the calculation of rCMRGIc with FDG
by the input function, it is relatively insensitive to the pealPET. Importantly, venous blood sampling is much better toler-
height of the input function and, therefore, the error of thated by patients, as it avoids the potential complications of ar-
rCMRGIc estimates was not significant [13]. terial cannulation, fewer blood samples need to be taken, and
Itis expected that the parameter-estimation results should bHeere is reduced radiation exposure to the staff who perform the
come more reliable if the kinetics of the TACs of the selectddET scans. Our results have encouraged us to proceed to full
regions are sufficiently different. The ROIs used in each of tlefinical validation of the technique.

rCMRGlegwe {mg/min/100ml)
.
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V. CONCLUSIONS [12]

In this paper, we validated a technique that we proposed pre-
viously for noninvasive quantification of neurologic dynamic [13]
FDG PET studies in humans. The method uses two late venous
blood samples, which is minimally invasive and also markedly
reduces radiation exposure to staff. We also proposed and vali4
dated a post-estimation technique, which can be applied to im-
prove estimation of parameter variance (or numerical identifi-
ability) when the raw PET data are noisy. Our results demon(t5]
strated that the input function can be recovered accurately from
two or more ROIs and no significant difference was found be-
tween rCMRGIc estimated by our methods and the gold stan-
dard method of arterial blood sampling. The proposed methoo%el
are expected to be applicable to other tracers used in a wide
range of kinetic PET studies.
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