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A Note on the Convergence of Asynchronous
Greedy Algorithm with Relaxation in
a Multiclass Queueing Environment

Wai Ki Ching, Associate Member, IEEE

Abstract—In this letter, we consider the convergence of asyn-
chronous greedy algorithm with relaxation for the Nash equi-
librium in a noncooperative multiclass queuing environment.
The process of asynchronous greedy algorithm is equivalent
to the iteration of Jacobi method in solving a linear system.
However, it has been proved that the algorithm converges only for
some particular range of queuing parameters. Here we propose
the asynchronous greedy algorithm with relaxation, which is in
principle equivalent to solving a linear system by Jacobi method
with relaxation. We propose also some relaxation parameters such
that our algorithm converges very fast.

Index Terms—Asynchronous greedy algorithm, Jacobi method,
Nash equilibrium.

I. INTRODUCTION

I N THIS letter, we consider the convergence of asyn-
chronous greedy algorithm with relaxation for the Nash

equilibrium point in a noncooperative multiclass queuing
environment [9]. The problem arises in multiclass telecommu-
nication systems (see, for instance, [2], [3], [9]). The multiclass
telecommunication system has independent and
noncooperative Poisson streams of packets with arrival rates

, respectively. They are served by a single
exponential server with service rate. To optimize the traffic
flow, one may consider the maximization of the throughput
or the minimization of the average delay and blocked calls
or even a combination of all above. Here each classof the
packets has a performance objective in the maximization of its
power, which is defined as the weighted ratio of the throughput
over the average delay that the traffic experiences in the queue
(see, for instance, [3]). The performance objective of the class

is then given by where the

parameters are defined as follows:
1) is the resulting throughput of the class;
2) is the average delay;
3) is the positive weighting factor.
TheNash equilibrium pointis defined as the point where no

user would unilaterally deviate and any deviation would result
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in worsening of its performance objective, see [9]. For more
detail about the Nash equilibrium, see [5]–[7].

Under the assumption that no cooperation is allowed and
the users are symmetric in the information they acquire, then
each user would try to reach a point so that its performance
is optimal in the sense that any unilateral derivation from that
point would render it worse. Then this point is called the Nash
equilibrium point. It turns out that the Nash equilibrium point
is the solution of the following linear equation: ,
where

...
...

...

...

(1)

Here each weighting factor is positive. It has been shown
in [2] the Nash equilibrium point is given by

for

We are interested in obtaining fast and convergent algorithm
for the communication system to attain this equilibrium point.

The Nash equilibrium point can be attained by using the
synchronous greedy algorithm, see [9]. The algorithm is equiv-
alent to the procedure of solving the linear system (1) by the
Gauss–Seidel method in principle. In real network environ-
ment, to implement the synchronous greedy algorithm, each
user needs to know his cost function and the service rate and
the throughput of other users. Thus in each time, each user
has to compute its update and wait until the other users have
finished their updates. Therefore, seeking an asynchronous
algorithm is natural. Here, the asynchronous greedy algorithm
is considered, which is equivalent to the procedures of solving
the linear system (1) by the Jacobi method. Unfortunately,
it has been proved that the asynchronous greedy algorithm
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converges if and only if (see [9])

To cope with this limitation, we consider the asynchronous
greedy algorithm with relaxation, which is equivalent to solv-
ing the linear system (1) by the Jacobi (JOR) method with
relaxation. By choosing suitable relaxation, we prove that our
JOR algorithm converges. The relaxed Jacobi iteration matrix
is then given by

(2)

where is the identity matrix and . We note
that the relaxed asynchronous greedy algorithm converges if
and only if the JOR method converges. The sufficient condition
for the JOR to converge is that the spectral radius of

is strictly less than 1, see [1] for instance.
The remainder of the paper is organized as follows. In

Section II, we give some upper bounds for the spectral radius
of the matrix . We give the optimal relaxation parameter
which minimizes the bounds and prove that the JOR method
converges under the relaxation parameter.

II. SPECTRAL RADIUS BOUNDS AND

OPTIMAL RELAXATION PARAMETER

In this section, we give some upper bounds for the spectral
radius of the matrix [cf. (2)]. We give the optimal relaxation
parameter which minimizes the spectral bounds and prove
that the JOR method converges under the proposed relaxation
parameter. For simplicity and ease of presentation, we let

for (3)

and, therefore, we have

...
...

.. .
...

...
...

...
...

. . .
...

(4)

We first give a lemma concerning the eigenvalues of the matrix
.
Lemma 1: The matrix is similar to a symmetric matrix

and hence all the eigenvalues of are real.
Proof: Let

then is a symmetric matrix and

...

... (5)

Hence Lemma 1 is proved.
The JOR method converges if the spectral radius of

is strictly less than one [1]. We remark that the smaller the
value of , the faster the convergence rate of the JOR

Fig. 1. Graph off(!) and g(!).

Fig. 2. Graph ofMax ff(!); g(!)g.

method. We first consider the case when all theare equal.
The following theorem gives the optimal relaxation parameter

which minimizes for this case.
Theorem 1: If , then the optimal

relaxation parameter which minimizes is given by

and the optimal spectral radius is

Proof: From (5), we see that the eigenvalues are given by

and

In the following we give the graphs of ,
, and .

Therefore, we have

By straightforward computation or the graphs above, we see
that the optimal relaxation parameter which minimizes
is

and the optimal spectral radius is given by

Notice that and therefore . Thus we have
the following corollary.
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Corollary 1: If and the relaxation
parameter is chosen as in Theorem 1, then the JOR method
converges independent of the initial states.

Let us consider the general situation that all the weighting
factors are not necessary identical. We first define the
following notations:

(cf. 3). Before we give an upper bound and a lower bound for
the eigenvalues of , we need the following lemma.

Lemma 2 (Weyl’s Theorem):Let and be two
real symmetric matrices and let the eigenvalues ,
and be arranged in increasing order. Then for each

we have

Proof: See [4].
Theorem 2: All the eigenvalues of lie in the interval

Proof: Since is similar to , the two matrices
and have same spectrum (eigenvalues). Notice that

...
...

where is a diagonal matrix and is rank one matrix. Thus
both of them are symmetric matrices. Clearly the eigenvalues
of are

Thus the maximum and minimum eigenvalues of are
and , respectively. Moreover,

the eigenvalues of are and
Hence the maximum and minimum eigenvalues of are

and 0, respectively. We apply the Weyl’s Theorem
(Lemma 2) to . Let and . Then by
letting and we get the upper and lower bounds
of the eigenvalues of , respectively. Thus we have all the
eigenvalues of lie in the interval

Hence our claim is proved.
Thus we have

We seek for relaxation parameter which minimizes the upper
bound for . By considering the graph of , one
can have the following corollary.

Corollary 2: The relaxation parameter which minimizes
is given by

We see that when the relaxation parameter is given by,
all the eigenvalues of lie in the interval . Hence

and the JOR method converges. In general,
even if we have no information of the parameters and

, we may choose the following relaxation parameter
. From Theorem 2, we have the following corollary.

Corollary 3: If the relaxation parameter is chosen to be
, then all the eigenvalues of lie in the

interval

Hence the JOR method converges under the relaxation param-
eter .
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