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A Study of the Lamarckian Evolution of Recurrent
Neural Networks
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Abstract—Many frustrating experiences have been encountered annealing [7] can overcome the above difficulties, but these al-
when the training of neural networks by local search methods gorithms may require a large number of iterations in order to
becomes stagnant at local optima. This calls for the development obtain an acceptable solution.

of more satisfactory search methods such as evolutionary search. , . .
However, training by evolutionary search can require a long com- Recurrent neural networks (RNN’s) have_closed paths in their
putation time. In certain situations, using Lamarckian evolution, topology that enable them to preserve their past states. There-
local search and evolutionary search can complement each other fore, RNN’s have the capability of dealing with spatiotemporal
to yield a better training algorithm. This paper demonstrates tasks that have been found to be difficult for feedforward net-
the potential of this evolutionary—learning synergy by applying \yorks [23]. Bianchiniet al. [6] observed that the cost function

it to train recurrent neural networks in an attempt to resolve ) )

a long-term dependency problem and the inverted pendulum of a feedforward networkfor any learning task is closely related
problem. This work also aims at investigating the interaction tO that of an equivalent RNN.As a result, any occurrence of
between local search and evolutionary search when they are local optima in the feedforward network can also be found in
combined. It is found that the combinations are particularly the equivalent RNN case. However, an RNN could have addi-
efficient when the local search is simple. In the case where no tional local optima that may not exist in the feedforward net-

teacher signal is available for the local search to learn the desired k. Theref Bi hinet al. [6 that | | opti
task directly, the paper proposes introducing a related local task WOK. Nereiore, bianchinet al. [6] argue that local optima

for the local search to learn, and finds that this approach is able to 0ccur more frequently in RNN's and that the training of RNN's
reduce the training time considerably. is more difficult. However, this difficulty could be overcome by

Index Terms—Evolutionary computation, Lamarckian evolu- combining the efforts of local search (learning) and evolutionary
tion, recurrent neural networks. search as they could complement each other.

There are two approaches to embedding learning in an evo-
lutionary search, namely Lamarckian evolution [1], [34] and
evolution based on the Baldwin effect [4], [29]. In this paper,

SING gradient-based local search methods to train neuveg focus on the former approach since we found that it outper-

networks has difficulties in: 1) escaping from local optim&rms the latter approach in our previous studies [16], F1\8je
when the search surface is rugged, 2) finding better solutioegnjecture that the inefficiency of the latter approach is due to
when the surface has many plateaus (gradient is zero, for & fact that too many weights in the networks can be changed
ample), and 3) deciding the search direction when gradient iy learning, and the changes can be substantial [18]. As a re-
formation is not readily available (lack of teacher signals, fault, it is difficult for the evolutionary operations to produce the
example). To alleviate the above deficiencies, Tang and Koehgignotypic changes that match the phenotypic changes due to
[28] proposed a global optimization algorithm that subdividdearning. Further evidence for supporting this argument can be
the search space into subregions, and the subregions not donnd in [17].
taining the global optimum are excluded from searching. How- Lamarckian evolution is based on the inheritance of acquired
ever, the complexity of the algorithm grows exponentially witlsharacteristics—an individual can pass the characteristics (ob-
the number of nodes in the networks. Another global optimiz&erved in the phenotype) acquired through lifetime learning to
tion algorithm [27] uses a user-defined trace function to leai$ offspring genetically (encoded in the genotype). As learning
the search away from local optima, but it is doubtful that a suitakes place in phenotype space, Lamarckian evolution requires
able trace can easily be found. Gradient-based algorithms watih inverse mapping from the phenotype space to the genotype
multistarts [12] can also be used, but the appropriate numberspace, which is impossible in biological systems. However,
restarts is difficult to derive priori, and the computation time when there is a simple relationship between the genotypes and
can be very long. It is widely believed that evolutionary seardhe phenotypes (as in our case of evolving RNN’s) such that the
(see [3], [10], [32], [37], and [38] for a review) and simulatediew phenotypes acquired through learning can be mapped onto

the corresponding genotypes, Lamarckian evolution is possible
and potentially beneficial.
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to the corresponding change in genotypes. The transformfdReal-Time Recurrent Learning (RTRL)

genotypes are used in subsequent reproduction. When the samg,q real-time recurrent learning (RTRL) algorithm [36] cal-

concept is applied to the training of neural networks, the iNbogY, ates the instantaneous error gradienti(t) by
weights (weights as a result of evolutionary operations) are
Oy (t)

replaced by the weights obtained through learning for further aJ(t)

evolutionary operations. Therefore, the acquired knowledge Ow;; - _Z(d’“(t) — vk(t)) Ow; @)
through learning is coded directly in the genotypes, resulting in b
a transfer of knowledge to the offspring. where.J(t) = 1/2(d..(t) — u(t))? is the instantaneous squared

This paper proposes and compares different approaclesr at time step, v, (¢) anddy (¢) are, respectively, the actual
to embedding Lamarckian learning in a special type of eveutput and the desired output of output néds time ste, and
lutionary search method, referred to as the cellular genetig; is the weight connecting nodeto node:. The sensitivity
algorithm (GA). The resulting hybrid algorithms were applieddy;(¢)/0w;;) is obtained by the recursion
to train RNN’s. The performance of these networks has been
evaluated through a sequence recognition problem and a newy; (¢t + 1) y Ay, (t)
rocontrol problem. The results show that the hybrid algorithms 9w, = fi(sk(t)) {Zﬂ'(t)é’“i - Zw’“q wi; } @
are not only able to reduce training time, but also are able to e
improve solution quality significantly. The paper also providegith (Oyn(0)/0w;;) = 0, wherez(t) is either the signal ap-
detailed analyses on the interaction between the local seapied to input node: at time stept or the actual output of pro-
and evolutionary search. These analyzes help to explain Wiessing nodé at time stegt, s, (t) is the net input to processing
the hybrid algorithms achieve better performance. nodek: si(t +1) = >, wi;2;(t), f;.() is the derivative of the

The rest of this paper is organized as follows. The cellular ggigmoidal functionfs( ), andéy; is the Kronecker delta.
netic algorithm is described in Section II. In Section l1l, the local The RTRL algorithm is a gradient-based algorithm in which
search methods used in our experiments are explained. Perfrof the weights are changed at every time step in a direc-
mance evaluation and analysis of these evolutionary—learniigh opposite to the instantaneous error gradient. It is computa-
synergy approaches in the sequence recognition problem &o@lally intensive because it has a computational complexity of
the neurocontrol problem are provided in Sections 1V and ‘@(7#) for each time step, whereis the number of processing
The implications of these experiments are summarized and digdes.
cussed in Section VI.

B. Delta Rule

The running time of the RTRL algorithm scales poorly with
the network size. In order to reduce computational complexity,

Cellular GA's [8], [9], [31] are a special form of GA in which We propose to update only the weights that connect to the
the population of chromosomes are organized as a toroidal, t/@tput nodes. Specifically, we only compute the gradient
dimensional square grid, with each grid point representing(@/(t)/0w;;) in (1) whenever node is an output node.
chromosome. In cellular GA's, reproduction can only occur bdherefore, (2) is simplified to
tween neighboring chromosomes. This local reproduction has, y
the effect of reducing selection pressure to achieve more expl %ygt +1) = { 51(3’ (#))25(8), \(/)\{c?]ee?\jv:iean output node
ration of the search space [20]. Therefore, cellular GA's have 7% ’ ' 3)

been used in our experiments in order to reduce the risk of 9¢lis s equivalent to the delta rule for feedforward networks.

ting stuck in local optima, especially when Lamarckian learning, o dynamics of the network remain unchanged; however, the

is embedded [1]. In this study, each weight in an RNN is ey jae5 of weights are based on a feedforward architecture. The

coded as a gene of a chromosome in the form of a floating-popHiinsophy behind this approach is to lower the computational

number. A chromosome, in which the number of genes is eqyal,iexity by eliminating the ter (O (£ /Ow:) in
to the number of weights, represents an RNN. The simple refa P y oy g nEq wha(944(8)/Oiy)

tionship between the phenotype and the genotype makes Lamat-
ckian learning possible. Fig. 1 illustrates the procedure of tige | imitations of Local Search
cellular GA used in our experiments.

Il. CELLULAR GENETIC ALGORITHM

If gradient-based algorithms are able to train RNN'’s, there
will be little incentive to use evolutionary search methods. How-
ever, there are situations in which gradient-based algorithms
have difficulties in finding an appropriate neural network. The

Local methods search for better solutions in the neighborhoprbblems used in our experiments are typical examples. The first
of the current solution. Most of them rely on the availability obne is a sequence recognition problem where gradient-based al-
gradient information to find better solutions. Their major dranwgorithms frequently become stuck in undesirable regions in the
back is that they are easily trapped in local optima. Despite thisarch space. The second is a neurocontrol problem, where gra-
drawback, they have been applied widely to train RNN'’s. Tymlient-based algorithms are not appropriate because teacher sig-
ical examples include the real-time recurrent learning algorithnals are not available. The cellular GA was found to be suc-
[36] and the backpropagation-through-time algorithm [30]. cessful in finding an acceptable solution to these two problems.

I1l. L OCAL SEARCH



KU et al: LAMARCKIAN EVOLUTION OF RNN'S 33

procedure cellularGA

Ch : a chromosome at position (z,yx) in the grid
Cnew ¢ @ newly produced chromosome

l . length of random walk

M . total number of chromosomes in the population

wfj : weights w;; of the network corresponding to ¢

flex)  fitness of ¢

7 : the set of indexes representing the input nodes (including the bias)
U : the set of indexes representing the processing nodes
begin

Initialize a population of M chromosomes ¢, and evaluate the corresponding
fitness f(cy) where k =1,2,..., M
// Generate a new chromosome for each reproduction cycle
repeat
Randomly select ¢q at (zg, yo) in the grid
// Choose parent c, along a random walk originating from (g, o)
Create a random walk set {c; at (z1,v1),¢2 at (za2,y2),..., ¢ at (z,y)} such that
|zper —2g] < 1and |yrp —wel <1, k=0,1,2,...,1-1
Select ¢, such that f(c,) is the best along the random walk
// Choose parent ¢, along another random walk originating from (zg,yo)
Create a random walk set {c} at (z},y]),ch at (zh,95),-..,¢} at (z},y;)} such that
[2hyy ~ 2l <land |y, —y /<1 k=1,2,....{—1and
|7y — zol < 1 and |y} —yol <1
Select ¢ such that f(e,) is the best along the random walk

// Apply crossover to ¢, and ¢, to produce ¢peq
forallield,j€lUUT do
new | W with a probability of 0.5
Wiy w { ws  with a probability of 0.5
endloop
// Apply mutation to cpe, by randomly selecting a processing node in the network, and each
// weight connected to the input part of the node is changed by exponentially distributed mutation

Randomly select ¢ € U
for all j e/ UZ do
Wi + 6 with a probability of 0.5
Wi =6 with a probability of 0.5
// 6 is a positive number randomly generated from an exponential
// distribution with density function of the forme™%, z >0
endloop

Cnew ,_
wipe =

// Replace cg by cpey if the latter has better fitness
Evaluate f(chew)
if f(cnew) < f(CO) then ¢y := cpew

until termination condition reached

endproc cellularGA

Fig. 1. Procedure of the cellular GA.

Further improvement in training speed and solution quality canThe performance of these applications depends mainly on
also be obtained by embedding local search in the cellular G&hether or not the long-term dependencies can be represented
accurately; however, extracting these dependencies from data
is not an easy task. While recurrent neural networks provide a
IV. THE LONG-TERM DEPENDENCYPROBLEM promising solution to this problem, previous research [5] has
shown that the commonly used gradient descent algorithms have
Many sequence recognition tasks such as speech recognitdifiiculty in learning the long-term dependencies. To overcome
handwriting recognition, and grammatical inference involvihis difficulty, we propose to combine the cellular GA's and local
long-term dependencies—the output depends on inputs thaarch for training RNN's.
occurred a long time ago. The sequences involved in these taskEhe long-term dependency problem is defined as follows. It
are characterized typically by different time scales. In terms f required to learn a temporal relationship from a sequence of
short time scales, they can be characterized by the dynansgmbols such that the output at time- £ depends on the in-
that generate the sequences, while in terms of long time scafag#s from timet to time¢ + & — 1. The input sequences contain
they may have syntactic and semantic structures. For examghanbols drawn from a symbol set, and each symbol is repre-
speech recognition involves the processing of short-temented by a binary number. There are only two possible input
speech signals, as well as the processing of phonemic featuwweguences{z, a1, as, as, ..., ax} and{y, a1, az,as,...,ar}.
spanning a much longer interval. In grammatical inferencéhe first symbol in an input sequence can be either y, but
[19], a single word at the beginning of a sentence may affect ttie nextt input symbols are fixed. When the first input symbol
grammatical correctness or alter the meaning of the sentencis. z at timet, the output at time + & is z’; when the first input
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TABLE |
EXAMPLE OF INPUT AND OUTPUT SEQUENCES FOR THELONG-TERM DEPENDENCY PROBLEM

time

step t—1 t t+1 t+42 t+3 t+4 t+5 t+6 t+7 t+8 t+9 t+10 | t4+11
input

symbol T a1 a? as aq as Yy ay az a3 aq as
input

pattern 001 010 011 100 101 110 000 010 011 100 101 110
output

symbol .. a1 as a3 ag as z’ a1 a3 a3 a4 as v
output

pattern o 01000 | 01100 | 10000 | 10100 | 11000 | 00010 | 01000 | 01100 | 10000 | 10100 | 11000 | 00001

Note: For the output patterns, the last two bits determine whether the output symbol after five time stegrgjis

symbol isy at timet, the output at timeé + % is /. For other was trained by the RTRL algorithm or the delta rule for one
time intervals, the output predicts the next input. Table | shovepoch, where an epoch is a complete presentation of all training
an example of input and output sequences witdgual to 5. patterns. The learning rate was set to 0.9 for both algorithms.
In this study, an RNN with three input nodes (a three-bit bi- The results based on 200 simulation runs are plotted in Fig. 2.
nary coding was used) and 12 processing nodes (five of th&hen the delta rule is embedded in the cellular GA, the av-
were used as the output nodes) was used to learn the long-terage MSE’s attained after 4 min of simulations are smaller
dependency problem with equal to 5. Therefore, there are ahan that of the pure cellular GA. This indicates that the evo-
total of 12 x 12 + 12 x (3 + 1) = 192 weights required to lution of RNN’s is improved by the application of the delta
be optimized. The population size of the cellular GA is 100ule. On the other hand, Fig. 2 shows clearly that embedding
and each random walk has four steps. The fitness of a chrontite RTRL algorithm degrades the performance rather than im-
some is determined by the network error function, which is throves it. However, the CGA—RTRL hybrid algorithm achieves
mean-squared error (MSE) between the actual outputs and éimeaverage MSE of 0.0136 (with a variance of 0.0010) after
desired outputs for the whole training set. In this case, the betB000 generations, which is lowgs < 0.01) than that of the
the input sequence is recognized, the smaller is the MSE Ipewe cellular GA? This suggests that combining RTRL and the

tween the actual outputs and the desired outputs. cellular GA has merits, provided that computation time is not
an issue. Although RTRL may provide some benefit, the corre-

A. Applying Local Search or Cellular GA's Alone sponding increase in computation time may not provide a suffi-
cient payoff.

A set of control experiments has been performed to train

the RNN'’s by local search alone. The limitation of using the. Interaction Between Evolutionary Search and Local Search
gradient-based algorithms (RTRL and delta rule) to solveT

FheF_Iong-terrT detﬂensﬂesné:’y problemllskl de;noEstrtageg Scle l?’evolutionary search and local search can reduce the overall
N F19. 2, where the S were guickly stuck at 9.9¢, an aining time and improve the solution quality. In order to un-

ho improvement could be obtained by further training. Th'&ﬁrstand how evolutionary search and local search interact with

suggests that there are difficult regions (around an MSE 2hd complement each other, another set of experiments was per-
0.08) in the search space where the gradient-based algoritl} P ' P P

! . Thed. Here, in each simulation run, we measured the fitness
are likely to be trapped, and that applying these local sear:

thods al allv the delta rule) is not able to ol Mmprovement frequency as a result of the application of local
methods alone (especially the delta rule) is not able to solve arch. The average MSE'’s of the chromosomes in the popula-
long-term dependency problem.

ti I ded. Thef btained by dividi
On the other hand, Fig. 2 shows that the cellular GA is mo o were aiso recorde © requency was oblainec by avicing

ffie number of times that a chromosome was improved as a re-
capable of solving the problem. The average MSE attained aﬂi} P

he above experiments show that an appropriate combination

it of learning by the total number of times that learning was
4 min of simulation (i.e., 20 000 generations) is 0.0303, whic g%y g

. ) plied within a fixed period.
is lower than that of the local search methods. Further improv Fig. 3 plots the fithess improvement frequency as a function
ment to the cellular GA might be achieved when local search(ﬁ;

bedded. In the followi . ts. diff A h generations in a typical simulation run where local search was
embeddec. in the Toflowing experiments, di eren’approac SBpIiedatevery20generations.Atthebeginningoftheevolution,
to embedding Lamarckian learning in cellular GA

S areé CoMp e MSE’s of the population are relatively large, suggesting that
pared and analyzed. they are far away from the optima. During this period (before
3000 generations), the fitness improvement frequency is close
B. Low Frequency of Learning to 1 and the average MSE’s decrease rapidly. This suggests that

One approach to combining local search and cellular GA's #8€ local search is able to complement the evolutionary search.
to apply the local search at regular generation intervals. In thisFig. 3 also shows that, between 5000 and 6000 generations,
experiment, a chromosome was randomly chosen for learningh frequency drops to low values, and the average MSE's are in

every 20 genera’Fions, Whille the reproduction process remaines; is aiso lower than that of the CGA-delta rule hybrid algorithm, but the
unchanged. During learning, the chosen RNN (chromosonference is not significantp > 0.05).
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MSE (based on the average of 200 simulations of the long-term dependency problem) of the best network found by the cellular GA and itgittytmsd algo

where local search (RTRL or delta rule) was applied at every 20 generations (i.e., low-frequency learning). The average MSE’s after 4 min ofeanchtiegio
variances (inside parentheses) are also shown. The performance of gradient-based algorithms alone is also illustrated. All difference®istatisicalyr

significant p < 0.01, calculated by Studentistests).
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the range 0.08-0.09. Experiments in Section IV-A have demon-
strated that there are difficult regions in the search space cor-
responding to an MSE of 0.08 where local search is incapable
of finding better solutions. Therefore, the fitness improvement
frequency during this period becomes very low. However, Fig.
3 shows that the frequency starts to increase after 6000 genera-
tions. One reason for this phenomenon is that the evolutionary
search helps the networks to move out of the difficult regions. In
other words, evolutionary search is able to complement the local
search. Beyond 12 000 generations, it becomes increasingly dif-
ficult to reduce the MSE’s by applying local search because
most of the networks are already very close to the optimal so-
lution. Therefore, the frequency decreases as the average MSE
approaches zero.

D. Lifetime Learning

Learning is expensive because it takes time. Therefore,
learning was applied at a regular generation interval in the
previous experiments. However, when the computational com-
plexity of the local search methods is low, it might be beneficial
if learning were applied more frequently. In this section, we
consider the case where learning is applied to the newly born
offspring at every generation. We refer to this approach as
“lifetime learning.”

Fig. 4 shows that lifetime learning is not appropriate for the
CGA-RTRL hybrid algorithm as it results in very poor perfor-
mance. This agrees with the result obtained in Section I1V-B: the

Fig. 3. Graphs showing the variations of fitness improvement frequency (ifRTRL algorithm is so computationally intensive that the gain
typical simulation run) as a result of embedding (a) RTRL and (b) delta rule ghtained from Iearning cannot compensate for the loss in com-

the cellular GA. Local search was applied at every 20 generations. The avera PI . . On th her hand f . Vi
MSE's of the chromosomes in the population (instead of the best individual) d/&itation time. On the other hand, performance Is greatly im-

also plotted. proved when lifetime learning is applied to the CGA-delta-rule
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Fig. 4. MSE (based on the average of 200 simulations of the long-term dependency problem) of the best network found by the lifetime learning aproach wh
local search (RTRL or delta rule) was applied to the offspring generated at every generation. The average MSE's after 4 min of simulation arehd¢bsir vari
(inside parentheses) are also shown. All differences in means are statistically signjfieait {1, calculated by Studentistests).

hybrid algorithm, and the average MSE attained after 4 minvehere/, is the cart position is the cart velocityd is the angle
only 18% of that attained by the pure cellular GA. of the pendulumé is the angular velocity of the pendulum,,

The computational complexity of the delta rule is low becauss the mass of the pendulum (0.1 kg),is the total mass of the
the RNN is considered as a feedforward network when the ersystem (1.1 kg){ is the length of the pendulum (0.5 ), is
gradient is computed. However, the delta rule is so simple thhe force applied, andis the acceleration of gravity (9.8 né)s
the error gradient obtained by this algorithm may be inaccu-The system dynamics were approximated using the Euler
rate. As a result, the fitness of a chromosome could deterioratethod (i.e.8(t + 1) = 6(t) + 76(t)) with a time step of
after the application of the delta rule. Despite this deficiency,= 0.02 s. The system is considered to be out of balance when
the low computational complexity of the delta rule can shortehe pendulum falls beyond 12rom the vertical position or the
the overall training time when lifetime learning is embedded icart runs beyond +2.4 m from the center.
the cellular GA. Among all of the hybrid algorithms, combining Previous approaches [2], [22], [33] to tackling the inverted
the cellular GA and the delta rule achieves the lowest MSE fopandulum problem employed a feedforward neural network
given CPU time. The benefit of this approach is further demonsingh, b, 8, and# as inputs, and the output was interpreted
strated in the next section where RNN's are applied to solve thas the force applied to the cart. While the trained networks are
inverted pendulum problem. able to balance the pendulum, four input variables are required
to represent the system status. In real applications, practitioners
may find difficulty in acquiring system information such as the
cartvelocity and the angular velocity. Therefore, itisimportantto

A pendulum of fixed length is hinged at the top of a cart whichbtain a neurocontroller with as few input variables as possible.
is free to travel along a horizontal track with fixed length. It is This problem can be tackled, as in [35], by using an RNN
required to balance the pendulum in a vertical plane and to kespvhich » and @ are the only inputs. In our experiments, an
the cart within the track boundaries. The dynamics of the systd®iN with two inputs and six processing nodes (one of them
are governed by a system of differential equations: also serves as an output node), as shown in Fig. 5(a), was used to

balance the pendulumAt each time ste andh were applied

as inputs to the RNN. If the output were less (larger) than 0.5, the
(4) cartwas pushed to the left (right) by a forcelofV. A cellular

GA, with a population size of 100 and a random walk of four

steps, was used to train the RNN’s. The fithess of an RNN is

defined as the number of time steps for which the system is still

V. THE INVERTED PENDULUM PROBLEM

mgsin  — cos O(F + m,,16? sin §)
(4/3)yml

é:

_ 2
myl cos? 0

and

F +myl(6? sin 6 — f cos 6)
m

h= (5)

4Note that there are a total 6fx 6 + 6 x (2 + 1) = 54 weights required
to be optimized.
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—— weights found by
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evolution & delta rule

control
force
cart position pendulum angle cart position  pendulum angle velocily v
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Fig. 5. RNN'’s for balancing the inverted pendulum. The output node(s) represent(s): (a) the control force, (b) the control force, predictecitgagnetlo
predicted angular velocity, and (c) the control force and predicted angular velocity. Note that all weights were trained by evolutionary seamgh olbttiem
were also trained by local search. These special weights are labeled in the figures.

balanced. The system was started from a random angle in the global task and the local task in the inverted pendulum
range of +12 and a random cart position in the range of +2.roblem is examined in the next section.
m. The idea of using a different task for the local search to solve
was first introduced by Nolfet al. [24]. In their experiments,
feedforward neural networks were evolved for food hunting (the
In the long-term dependency problem, the evolutionaglobal task), and the fitness of a feedforward network was deter-
search has been used to find an RNN that matches the actoaied by the amount of food gathered during its life span. Nolfi
output with the desired output at every time step. This goal hekal. found that the food-hunting ability will be improved if the
been the same in the local search methods (RTRL and dd&adforward networks are also trained by backpropagation [26]
rule). Therefore, both the evolutionary search and the lodal predict the location of the nearest food. The rationale of in-
search aim at finding a solution for the same global task, i.e.,tt@ducing a different task (e.g., predicting the food location) for
match the actual network outputs with the desired outputs. lbcal search to solve is illustrated in Fig. 6. Finding a neural net-
the inverted pendulum problem, however, no teacher signal (&erk for a specific task can be considered as searching for the
cept for the failure signal at the end indicating that the systepptimum of a fitness function. If the fitness function of a local
is out of balance) and no local search method are availabletask is similar to that of the global task, moving a solution to-
solve the global task (i.e., balancing the pendulum) directiard the optimal regions of the local task may assist the search
Therefore, a simple combination of evolutionary search affier the optimal solution of the global task.
local search as in the previous approaches cannot solve thiMotivated by the work of Nolfiet al, we adopt a similar
problem. In this work, we propose to overcome this difficultgtrategy for the inverted pendulum problem, i.e., introducing a
by allowing the local search to solve a different but “relatedbcal task to predic: andé (cf. predicting the food location
local task, i.e., to predict the cart velocityand the angular in [24]) in order to help solve the global task of balancing the
velocity 4 at the next time step. A local task is considered tsystem (cf. food hunting in [24]). The neural network used in the
be “related” to a global task if a completely resolved local taskxperiment is shown in Fig. 5(b), where two processing nodes
helps to accomplish the global task. The relationship betweare used to predict the velocities. Although velocity information

A. Learning a Related Local Task
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duced when local search is applied to learn the prediction of
fimess landscapo of cart velocity and angular velocity. In order to understand why
learning a local task can help improve the evolution process,
further experiments were performed.

1) Perfect Performance in the Local Task Helps Evolu-
tion: In this section, the relationship between the local task
;_\mess ndscapeof (predicting velocities) and the global task (balancing the pen-
* the local task dulum) is examined. This is achieved by determining whether

fitness

learning |

/x § 7 or not the evolution time for finding a solution for the global
[ - §
F

L {
V‘ﬁl

task can be reduced when the local task is assumed to be
completely resolved. The architecture of the RNN’s remains
unchanged, as shown in Fig. 5(b); however, no weights were
allowed to be changed by the local search, and the outputs of
the two processing nodes were forceditandé at every time
step. Therefore, all RNN'’s appear to have an innate ability to
predict the velocities precisely. In the experiment, evolutionary

search alone (without learning) was used to train the RNN’s

Fig. 6. Diagram depicting the hypothetical relationship (based on “l?singh h.6. andé as inputs.
arguments of Nolfet al.[24] and Pariskt al. [25]) between a global task and bl . ,h hat the ab ) | laorith
a “related” local task. The former is optimized by evolutionary search, while Table Il shows that the above experimental setup (Algorithm

the latter is optimized by local search. There is an overlap between the optimi#) results in very short training tinfeas compared to evolu-
regions of these tasks. The local search (learning) progressively brings

he . .
solution of the local task closer to its optimum. This may assist the evolutionaﬁ"?nary search alone (Algorlthm I)' This result suggests that the
search in finding the optimal solution of the global task. completely resolved local task helps solve the global task. This

also indicates that the local task is not arbitrary; rather it is “re-

is required during training, it is not required after training, antited” to the global task. The experiments in Section V-B-3 fur-
the trained RNN’s only require two inputs to balance the systefher demonstrate that the way in which a local task and a global

Due to the success of the lifetime learning approach in tksk are “related” could affect the evolution process that solves
long-term dependency problem, it was used in the inverted péfe global task.
dulum problem. The delta rule was used as the local searct?) Good Performers in the Local Task Helps Evolutidn:
method. The RNN generated at the end of each reproductifg Previous experiment, all RNN's have an innate ability to
cycle was applied to balance the pendulum, and during the fifgpdel the dynamics of the pendulum system. However, errors
1000 time steps,the delta rule was applied to learn the loca#annot be avoided when the ability has not been completely ac-
task. After that, no more local search was applied. The numistired. Here, we demonstrate that even though the RNN’s have
of steps for which the pendulum was balanced was used as f9é learned the local task completely, those with good perfor-
fitness value for subsequent reproductions. This process wasfénce (as a result of learning rather than innate ability) in the
peated for every generation. Table Il lists the training time réacal task are also likely to achieve good performance in the
quired to evolve an RNN to keep the system balance for 120 c@@bal task. In the experiment, the performance (measured in
time steps. It shows that allowing the RNN's to predicand terms of the MSE’s between the actual and predicted velocities)
6 can reduce the training time (compare Algorithms | and Vi solving the local task by the application of local search was
Table Il also shows that, although the training time and tHgcorded. The performance (measured in terms of the number
number of generations required to balance the pendulum @ésteps for which the pendulum is still balanced) of the global
pend on the training algorithms, they exhibit a large variatiofask was also recorded. The results are illustrated in Fig. 7 (the
This is because some starting conditions [f))) = 12° and <-lines). It shows that the performance of both local and global
h(0) = 2.4 m] could lead to a training time much longer than thé&asks is poor in the first 1000 generations. However, after 1000
average training time. Therefore, we use a nonparametric stagignerations, the performance of the global task starts to im-
tical test (Wilcoxon—Mann—Whitney) [15] which is applicableProve, and the MSE’s reduce to a low level, indicating that
to data with continuous distributions. The tests suggest that the networks have learned the system dynamics to some extent.
difference in average training time and average number of gdrd- 7 also shows that the RNN's that are good at balancing the

Phenotype space

optimal region for the local task optimal region for the global task

Genotype space

genotype before
genotype after learning
learning

operations

erations in Table Il are significarip < 0.01). pendulum are also good at predicting the velocities. This sug-
gests that there is an overlap, as hypothesized in Fig. 6, between
B. Empirical Analysis the optimal regions of the local task and the global task in the

According to the above results, we conclude that the tirﬁ%verted pendulum problem.

taken to find an RNN to balance the inverted pendulum is re-SAigorithm 11l was created for analytical purposes. Although its training time

is very short, it has little practical value as it assumes that every offspring has
5The system may be out of balance before reaching the 1000th time stepan innate ability to resolve the local task.
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TABLE I
TRAINING TIME AND NUMBER OF GENERATIONS (WITHOUT CONSIDERING THE TIME SPENT ON LEARNING) REQUIRED TO EVOLVE
AN RNN TO BALANCE THE PENDULUM FOR UP T0120 000 TME STEPS

Training time (sec) No. of generations
Training Algorithm Local Task | Innate Ability | Average [ Std. Dev. | Average [ Std. Dev.
(I) pure CGA Nil Nil 301 317 5307 3022
(IT) pure CGA Nil 6 112 100 1064 562
(III) pure CGA Nil h&?¥o 31 27 627 406
(V) CGA + learning 6 Nil 366 262 3965 1973
(V) CGA + learning h &6 Nil 140 143 2448 1723
(VI) CGA + reverse-learning || h & 6 Nil 1133 1688 9156 6770

Note: Results are based on 100 simulations running on a Pentium-Pro 200 MHz processor. All differences in means are statis-
tically significant p < 0.01) according to the Wilcoxon—-Mann-Whitney test.

120000 T ' ‘ ' The results in Fig. 7 (the lines) indicate that, when the MSE’s
100000 | COA + loaming < ] are high (maintained by “reverse Ie.a.rning”), finding a so!ution
o CGA reverso oo for the global task becomes very difficult. Table Il (Algorithm
£ 80000 VI) shows that applying reverse learning leads to a very long
fz training time as compared to other hybrid algorithms. These re-
7 80000} sults suggest that improving the performance of the local task
5 40000 | by local search is beneficial to the evolution of RNN'’s.
§ We must stress that good performance in a related local task
20000 | ; does not necessarily mean that the performance in the global
//// task is also good. More specifically, a network that can predict
03 000 2000 3000 2000 000 the velocities of the pendulum precisely does not imply that it
number of generations is able to balance the pendulum. We have illustrated in Section
(a) V-B-1 that RNN’s with an innate ability to predict velocities
06 M ' have to be fine tuned by evolutionary search before they can
0s | 7 balance the system. On the contrary, a network that is able to
< CGA + reverse-leaming —~— balance the system does not imply that it can predict the veloci-
g o4 \ CGA+leaming | ties perfectly. For example, Algorithm VI of Table Il illustrates
% \ that it is possible for networks with high MSE’s in velocity pre-
% 03 I diction, maintained by gradient ascent, to balance the system,
: ozl \R | although it takes a much longer time and needs many more gen-
4 \\ erations to achieve this goal.
04+ ] 3) Preferable Local Tasksin the previous experiments, the
local task is to learn the system dynamics by predicting the an-
0, 1000 2000 3000 2000 5000 gular and cart velocities. It would be interesting to investigate
number of generations how the interaction between the local and global tasks affects
(b) the evolution process.

. . The experiments in Section V-B-1 show that having an innate
Fig. 7. Graphs showing: (a) the average performance of the global tas

(number of steps for which the pendulum is still balanced), and (b) the avera@é”ity to model the dynamics of the whole system can improve

performance of the local task (MSE in velocity prediction) achieved by thghe evolution process. The improvement is likely to be small if
chromosomes in the population. Learning (predictingnd ¢) and reverse | tofth t d . | locity. f |
learning (maximizing the error in velocity prediction) are performed b?nypar of the system dynamics (angular velocity, for example)

applying the delta rule. The results are based on the average of 100 simulatiggknown to the RNN's. This argument is supported by the ex-
perimental results in Table I, where evolutionary search with an
In order to further validate that improving the performance afinate ability to predict the angular velocity only (Algorithm I1)
the local task can really accelerate the evolution of RNN’s, ataekes a longer time as compared to the one with an innate ability
other experiment was performed. In the experiment, the perfoo-predict both velocities (Algorithm IIl). Therefore, the task of
mance of the local task was degenerated, rather than improvyaedicting only the angular velocity is considered as being re-
by the local search. More specifically, the weights were adjustided loosely to the global task.
by “reverse learning,” where they were changed in a directionHere, the loosely related local task was learned by local
that maximizes MSE, i.e., using gradient ascent to maximisearch. As shown in Fig. 5(c), one of the processing nodes
MSE'’s instead of using gradient descent to minimize MSE’svas assigned to predict the angular velocity; therefore, the
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time spent on learning was shortened. Table Il shows thaith binary rather than floating-point weights. As the parity
when the local task is changed from predicting both velocitiggoblem used in [11] is simple enough to be solved by local
(Algorithm V) to predicting the angular velocity (Algorithm search alone, good results were expected when it was combined
IV), the overall time taken becomes longer, even though tléth evolutionary search. In contrast, we have shown in Section
time spent on learning is shortenedhis suggests that, whenlIV-A that applying the delta rule alone is not able to solve the
the local task is loosely related to the global task, the abilitpng-term dependency problem, and that the problem is solved
to evolve solutions for the global task might be reduced. ¥Whenever the delta rule is embedded in evolutionary search.
the local task is “unrelated” to the global task, it is likely thaf\lthough improvement in evolutionary search was observed in
no improvement can be obtained, and it may deteriorate tf#], the author did not consider the time spent on learning. Our
evolution process in the worst case. One can easily find a locasults, however, clearly demonstrate the benefit of embedding
task, forcing the output of a processing node to be a constdotal search in evolutionary search, even if the learning time is
for example, that cannot improve the evolution of solutions faaken into account.

the global task. Therefore, we suggest that one should choose Bor the inverted pendulum problem, local search aims at

local task that is closely related to the global task. producing better predictions, while evolutionary search aims at
balancing the system. We found that learning the local task is
VI. DISCUSSION ANDCONCLUSION able to improve the evolution of solutions for the global task.

Local search methods are usually fast, but they have difficu.YI\!h'k,e Nolfi et al. [2_4] ob.servgd this phen.omenon, they did nqt
ties in avoiding local optima. Evolutionary search methods ha\98n3|der the I.earnlng time involved. ,It is therefore uncertain
the capability to escape from local optima, but their computgl-hEther t,h? |mpr0vement yva}s achleved. at the expense of
tion time could be long. We have found that it is possible fdpnger training time. Only limited comparisons between the

these search methods to complement each other, and to y%%formance of the global task and the local task were provided

a better training algorithm for RNN's. In the long-term depeH-n [24], in particular, not much information regarding the

dency problem and the inverted pendulum problem, embedd#‘%rformance (?fhthe I(i]cal task durlpg the cours;e of e\(olutlcr)]n
the delta rule in the form of lifetime learning is able to speed dﬁas glven.hV\lllt ou't t esle cc:mpakrlsons' and in oLmatlor;, t €
and improve the accuracy of the training process. reasons why learning a local task can improve the evolution

When evolutionary search is combined with local search, tREOCESS remain unclear. Would it be the case that learning a

computational complexity of the local search determines the dsgal task, or any arbitrary tasks, is a kind of mutation that

timal frequency at which it should be applied. When the conlncreases the exploration of the search space, which in turn

plexity is low, it is possible to apply local search at every genellr_nproves the evolution process? Our comparisons betweeq the
rformance of the global task and that of the local task during

ation, leading to the lifetime learning approach. Another fact®f

that affects the frequency of applying local search is the evolttff-e course of evolution, as shown in Fig. 7, provide a clearer

tionary search’s ability to eliminate the regions not containin_"@nSWer ;o;ms quest;}on. er Show tha’; t:e TVOthlonkprocﬁSS 'Z
the global optimum. Hart [12] found that the frequency shouff’Proved because the performance of the local tas (achieve

be reduced when the fitness distribution of the population rBY Lamarckian learning) is gogd. .
liably indicates the possible locations of the global optimum: We have also found that the interaction between the local task

otherwise, little benefit can be obtained from local search. and the global task can affect the evolution process. We suggest

Between the two local search methods that we have invé@gt when the two tasks are related, especially when there is an

tigated, the delta rule is the simplest, although it is not ab?é/erlap between the regions of optimal solution for the local task

to find a good solution on its own. However, its low compu‘:’md for the global task, learning the local task is able to improve

tational complexity makes it suitable for being embedded in tﬁlae evolution of SOIUt'on_S‘ for th_e global task. We have shown

cellular GA. We have demonstrated that good performance ctgr‘?t’ when the local task is not d|rect!y related to the global task,
be achieved by embedding it in evolutionary search, suggestﬁq& localtask has asmal_ler _contrlbuuon_to the evolutlon_procegs.
that local search methods need not be sophisticated in Ordeﬂ'garefore, one of the criteria for choosing a local task is that it

obtain the benefit of combining evolutionary search and Iocﬁﬁ]ou'd be rgla_ted tq the global ta;k, where the term "related”
search. Other researchers [11], [21] also demonstrate that Ipeans th",’lt itis easier to accomplish the global task when the
combination of “simple” local search and evolutionary sear Rcal one is resolved.

canyield better performance as compared to evolutionary searclg)ther reports [13], [14] demonstrate that the performance of

alone. However, the local search method adopted in [11] Hadarget task can be improved even if an arbitrary task rather

limitations, as it is only applicable to simple Boolean networkg1an the target task is leamed. We have not found any evidence

in our experiments to support this argument. Neither have we
“Comparing Algorithms IV and |, the former requires a smaller number dbund evidence to disprove this claim. In fact, one of our ex-

generations, but takes a longer training time. This is because the reduction.n . . . -
the number of generations cannot compensate for the additional time spen g{lmems shows that learning an unsuitable local task deterio

learning. rates the evolution process, and one can easily find a local task
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that cannot improve the evolution process. It has also been rgt9] T. Lin, B. G. Horne, P. Tio, and C. L. Giles, “Learning long-term de-

f . i pendencies in NARX recurrent neural networkdgEE Trans. Neural
marked in [14] that only under very restrictive cgndltlons (e.q., Networksvol. 7, no. 6, pp. 13291338, 1996,
real-valued genotypes, a small amount of learning), can a befpo] B. Manderick and P. Spiessens, “Fine-grained parallel genetic algo-

efit be obtained by learning an arbitrary task. Therefore, for__ rithms,” inProc. 3rd Int. Conf. Genetic Algorithn1989, pp. 428-433.
V. Maniezzo, “Genetic evolution of the topology and weight distribution

) o . _ 21]
practical purposes, it is unlikely to obtain any improvement b)} of neural networks,1EEE Trans. Neural Networksol. 5, no. 1, pp.

learning an “unrelated” task. 39-53, 1994. ) _ N _ ,
[22] D. E. Moriarty and R. Miikkulainen, “Efficient reinforcement learning

through symbiotic evolution,Mach. Learn, vol. 22, pp. 11-32, 1996.
[23] M. C. Mozer, “A focus backpropagation algorithm for temporal pattern
recognition,”Complex Systvol. 3, pp. 349-381, 1989.
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