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Abstract

Redescribe aconvergence theory forevolutionary pattern search algorithms (EPS.4S) ona

broad class of unconstrained and linearlyconstrainedproblems. EPSAS adaptively modify the

step size of the mutation operator in response to the success of previous optimization steps.

The design of EPSAS is inspired by recent analysesof pattern search methods. Our analysis

significantly extends the previous convergence theory for EPSAS. Our analysis applies to a

broader class of EPS.AS,and it appliesto problemsthat are nonsmooth, have unbounded objec-

tive functions, and which are linearlyconstrained. Further,we describe a modest change to the

algorithmicframeworkof EPSASfor whicha non-probablisticconvergencetheory applies. These

analyses are also noteworthy because they are considerably simpler than previous analyses of

EPS.4S.
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‘ 1 Introduction { I

Evolutionary pattern search algorithms (EPSAS) are a class of real-valued evolutionary algorithms

(1)

(EAs) that can be applied to unconstrained minimization problems

min f(x)

subject to z G Rn

where f : Rn + R, as well as bound constrained problems

min f(x)

subject to XERn (2)

li<X~<U~, i=l,..., n

where li, ui c R, and li < ui. Like evolutionary programing (EP) [16] and evolutionary strategies

(ESS) [31], EPSAS are adaptive EAs that modify the mutation step length during optimization.

However, EPSAS have an absolute step length that is used to generate a finite set of offsets, while

EPs and ESS generate mutations by adding a continuous random variable that is scaled by a step

length parameter. Also, EPSAS use a global step length parameter instead of the per-individual

step length parameter commonly used by ESS and EPs.

Hart [22] describes EPSAS and proves a weak stationary-point convergence theory for these

methods for arbitrary unconstrained or bound-constrained cent inuously different iable objective

functions. This analysis of EPSAS can be characterized by the following properties:

Type of Adaptivity: EPSAS adapt the step length dynamically, and they do not limit the

range of adaptation.

Objective Function: The class of objective functions to which this analysis applies includes

smooth, nonconvex problems.

Convergence Analysis: The convergence analysis for EPSAS guarantees “convergence near

a stationary point.

Approximate ions: No approximations are used in this analysis. The mathematical formula-

tion of EPSAS exactly captures their empirical behavior.

Although none of these features distinguishes EPSAS from previous analyses by itself, this analysis

is particularly distin~ished by its ability to exactly Capturetheanalytic behavior of a class of
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adaptive EAs on a broad class df nonlinear problems. Thus we do not approximate the stochastic

process underlying EPSAS, as is commonly done in the study of self-adaptive EP and ESS.

Additionally, this analysis is distinguished by our focus on a stationary-point convergence theory.

Although stationary-point convergence is implied by some proofs of global convergence for EAs (e.g.

see Rudolph [30]), these proofs limit the adaptivity of the EA (e.g. limiting the mutation step scale

above a fixed threshold). Consequently, these analyses fail to describe the convergence behavior of

self-adaptive methods for EP and ESS that have proven quite successful in practice [3, 4, 15, 16].

Furthermore, analyses of self-adaptive EAs have focused on convex, unimodal problems, and thus

they provide limit insight into the convergence behavior of these EAs on the nonconvex, multimodal

problems to which they are commonly applied. Our motivation for developing EPSAS is to develop

a better understanding of the role of adaptivity of the mutation step length in real-coded EAs on

general classes of nonconvex multimodal problems.1

The main result of this paper is to describe a new convergence theory for EPSAS on problems

of the form

min f (z)
(3)

subjectto zEfl={z ~R”]lskE <u}.

where l,u c Rm IJ{+m} and A c Qmxn. Note that this class of problems encompasses both

problems (1) and (2). We use techniques recently developed by Audet and Dennis [2] for analyzing

pattern search methods to show how the convergence theory for EPSAS can be extended in several

directions. The new convergence theory provides a natural notion of convergence for nonsmoot h

problems, and the analysis allows for points where the objective function is infinite. These results

greatly extend the theoretical range of applicability for EPSAS. For example, the ability to optimize

problems with infinite objective functions enables the solution of problems for which the objective

function may fail to return a value at points in the feasible domain (e.g. this can happen in

engineering design applications which rely on numerical solution techniques that fail to converge

at certain design points [2, 13]).

Our analysis also extends the model of EPSAS in several ways. First, it allows members of the

initial population to lie in FLn. Our previous analysis imposed the somewhat artificial condition

that the initial points lie in Qn [22]. Second, the EPSAS that we analyze may change the set of

possible mutation offsets that they use. Finally, we describe modest changes to the basic design

1We use the term step lengthto describe the absolute step scale for methods like EPS.ISas wellas scalefactors

for randomvariables that are added to perform mutation in methods like ES and EP.
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of EPSAS that enable these EA’s to converge deterministically even though the algorithm remains

stochastic. These changes involve assumptions on the selection process and on how the mutation

offsets are applied to the best point in the population.

In the next section we describe EPSAS, and we review the probabilistic weak stationary-point

convergence theory in Hart [22]. The next section generalizes this probabilistic convergence theory.

Finally, we describe EPSAS for which a nonprobabilistic convergence theory applies.

2 Evolutionary Pattern Search Algorithms

Consider the pseudo code in Figure 1. This is a modest generalization of the class of EPSAS

considered by Hart [22]. The algorithmic structure of EPSAS is formulated so that these EAs can

be cast as stochastic pattern search methods [22], a class of randomized derivative-free optimizers

for which a weak stationary-point convergence theory has been proven. Although there are many

possible ways to define EAs in this manner, the EPSAS defined in Figure 1 come closest to capturing

the basic algorithmic framework of canonical EAs like genetic algorithms (GAs) [19], EP and ESS.

An EPSA is initialized with an initial step length A. and with points in Q. A finite set of

matrices, S, are chosen so that for all S ~ S the columns of S form a positive basis [9]. The

column vectors in S, {sl, . . . . s~~ }, represent the mutation offsets that are applied to a point in

an EPSA’S population, and the array q is used to indicate whether or not a given offset vector

has been applied. An EPSA is allowed to select a new set of mutation offsets after an improving

mutation is generated from the best point in the population or after all mutation offsets off of

the best point, zj, have been sampled. However, for bound-constrained (and linearly constrained)

problems additional restrictions are placed upon the choice of S when the population approaches

a constraint boundary (see Section 4).

The calls to the selection, crossover and compose functions are exactly the same as a generic

EA (e.g. see the generic EA described by Hart [22]). The selection function stochastically se-

lects a subset of points horn the previous population with a bias towards more optimal points.

the crossover operator combines two points in ~ to generate a new trial point, and the comp-

ose function combines the points from the previous population and the new points generated

via crossover and mutation to form the next population. The mutation step involves the random

selection of a step in 5’, an evaluation of whether a mutation in that direction (scaled by At) is

feasible, and an update to ti if it is feasible. This is equivalent to the types of steps made by an EP
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(1) Given AO ~ R>O

(2) S= {SI,..., Sk}, Si G Qnxm’, where the columns of Si form a positive basis

(3) Select an initial population XO = {Z!,..., Zi}, x? C Q

(4) z:= argmin{j(x~),... ,.f(~~)}

(5) Select 3 ES; let q = {O}m?

(6) Repeat t = 0,1,...

(7) X’= selection(X~)

(8) Fori=l:IV

(9) If (unif () < x) then @ = crossover(z~i~t(~j, ~uint(~))

:10) Else Q = ?tuint(N)

:11) Fori=l:IV

:12) If (unifo < p) then

:13) j = uint(m~)

:14) If (ii+ At . ~j is feasible)

:15) If (&i == z;) qj = 1

:16) ~z=~i+At.~j

:17) Else qj = 1

:18) X~+l = compose(X~, X)

:19) Zj+l = argmin{f(z~+l), . . . . j(z~._l)}

:20) If (f(zf+l) < ~(zj))

:21) If (ZS E ~ s.t. Z;+l = Z; + S) At+l = At * Ot

22) Select S c S; let q = {O}mF

23) ElseIf (/q]== rw)

24) Select 3 E S; let q = {O}m3

25) &+l = AtAt

26) Else

27) At+l = At

28) Until some stopping criterion is satisfied

Figure 1: Pseudo Code for EPSAS
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‘ or ES, but with mutation applied with probability p and with the restriction that the probability

distribution of possible mutation steps is finite. Finally, the function uint (i) generates an integer

in {1, . . . . i} uniformly at random.

The update to the step length, At, is much like pattern search methods. If an improving point

is generated in the current iteration, then & may be increasedif ~~+1WaSgenerated bY a mutation

from z: (and q is reset). If all mutation offsets of ~j have been examined, then

q is reset. Otherwise At+l = At.

2.1 Convergence Theory

Various conditions are placed upon EPSAS to prove our convergence results.

are placed upon the selection and compose functions to ensure that (a) the

At is shrunk and

Mild restrictions

best point in the

population is selected with probability of at least n > 0 in each iteration and (b) the best point

from the previous population and the newly generated points, Xt U X, is always included in Xt+l.

The crossover function is also restricted to generate a point such that crossover (z, y) E {ZI, Y1} x

{z~,g~}x... x {~n, Yn}, which is consistent with standard coordinate-wise crossover operators (e.g.

two-point crossover). Further, note that other approaches can be used to apply crossover (e.g. two

parents are used to generate two children), as long as the crossover method used generates points

composed from the coordinate values of the parents; this excludes intermediate crossover methods

used with ESS, for example. Let @ = ~ U d?, where 10[ = v < m, # E Q for all @ c 0, # ~ 1 for all

@ ~ ~ and # <1 otherwise. We require that ~t c ~ and At c Q. Thus (?t are expansion factors for

At and At are contraction factors.

In additon to these restrictions, which apply to all EPSAS that we consider in this paper,

our previous analysis made the following assumptions. First, S contains a single rational matrix.

Further, z: E Qn, i = 1,..., ~, and Ao 6 Q’”. Let ~ = Tn/T~, Tn, Td E N, and 7. > rd. We

restrict the contraction factor for At to ~ = {-r&o}, where K. E Z<O, and ~ = {1, @l, . . . . @},

where Ki E Z>O.

Given these conditions on the design of EPSAS, the main results in Hart [22] are Theo-

rems 1 and 2, which prove a stationary-point convergence for unconstrained and bound constrained

stochastic pattern search respect ively. The subsequent analysis in the paper

can be cast as stochastic pattern search algorithms. Let Lo(y) = {z E Q \

6
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L(y) = ~Rn (g).Further, let r

pi(t) =

and consider the projection of x E Rn onto the feasible region of problem (2),

Q(x) = fpz(zz)ei,
i=l

where ei is the ith standard coordinate vector. Note that x is a stationary point of (2) if and only

if q(z) = Q(z – g(z)) – z = O, where g(z) k the gradient of j at x (e.g., see [6, 8]). In the bound

constrained theory, the quantity q(z) plays the role of the gradient g(z), providing a cent inuous

measure of how close z is to a constrained stationary point. If g(z) = O such that the constraints

are not active, then clearly q(x) = Q(z – g(z)) – z = Q(z) – z = O. Otherwise, q(~) is a continuous

function that is zero at a point where g(~)i S O if xi = ui, g(~)i 20 if Zi = ~i and g(~)i = O if

li < xi < Ui. Thus q(z) = O ensures that x is a constrained stationary point.

Theorem 1 ([22], Theorem 1) Let Q = R“ and let L(zo) be compact. 1/ f : R’ + R is

continuously differentiable on an open neighborhood of L(zO ), then for the sequence of iterates {Xk }

produced by an EPSA,

Theorem 2 ([22], Theorem 2) Let !2 be a bound-constrained feasible domain, and let L~ (ZO) be

compact. If f : R~ + R is continuously differentiable on an open neighborhood of Lo (ZO). then for

the sequence of iterates {xk } produced by an EPSA,

( )P limnlfllq(z~)ll = o = 1.

This convergence guarantee is weak, since it only implies that the gradient is sampled infinitely

often near a stationary point. Thus it is possible that lim supk+m I]g(zk) II > 0 (e.g. see the

example in Audet [1] for a simple pattern search method). However, the sequence of iterates

generated by a pattern search method is monotone nonincreasing and bounded below on a compact
A

set, so limk+m j(z~) = f for some fixed value. Note that this is a “globa~ convergence analysis

since it guarantees convergence to a stationary point from any starting point. This terminology

is unfortunate in that convergence to a global minimizer of the function is not implied. However,

“locally convergent” is reserved for another use for nonlinear optimization (e.g.. see [10]).
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‘ 3 Unconstrained Analysis

This section describes how our previous analysis of EPSAS can be both generalized and simplified

to solve problem (3) for unconstrained problems (where A is the identity matrix, 1 = {–co}m and

u = {m}m). Our analysis is based on the recent work of Audet and Dennis [2], which reconsiders

the convergence theory of generalized pattern search methods. Following Audet and Dennis, our

analysis allows EPSAS to be applied to functions with weaker continuity assumptions, and they

can also be applied to problems where the objective function is undefined for some points in the

feasible domain.

The following analysis differs significantly from our previous analysis [22] in that we do not prove

a convergence theory for stochastic pattern search methods and then explicitly show that EPSAS

can be cast as stochastic pattern search. Instead, we provide a direct analysis of EPSAS. We believe

that this direct analysis will more clearly illustrate the mathematical structure of EPSAS that is

being exploited to provide a proof of convergence. Further, it is increasingly tedious to demonstrate

the equivalence of EPSAS and pattern search methods as we consider more generalized versions of

EPSAS.

3.1 Overview

Consider {z; }, the sequence of the best points found so far for each iteration of an EPSA. Note

that z; is a member of the t-th population because of the restrictions imposed on EPSAS. Our

convergence analysis makes the standard assumption that all points sampled by the EPSA lie in

a compact set [2]. A reasonable sufficient condition for this to hold is that LR~ (y) is compact.

However, our analysis does not make this assumption because we allow discontinuities and even

~(x) = m for some x, so _LR~(y) may not be closed. However, we could assume that the set is

bounded or precompact [17].

Our analysis of EPSAS focuses on the convergence properties of the sequence {z;}. The points

generated as mutation offsets of the points in this sequence can be viewed as the core trial steps of

a simple pattern search method. The values of all other points generated by the EPSA are relevant

in our analysis only to the extent that they may generate a point that is the better than Z:; these

points are akin to the search steps considered in the generalize pattern search method of Audet

and Dennis [2].

Since {z; } lie in a compact set, there exist convergence subsequences of this sequence. We say
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.
that a convergent subse’quence’{z~ }~=~ (for some set of indeces K) is a refining subsequence if

Aki >A~,+, forallkiC~andlim~e~A~=O” We focus on convergent subsequences for EPSAS

since the conditions required to ensure that the entire sequence converges are rather restrictive

(e.g. see Torczon [33]), which makes it difficult to define EPSAS that reflect the common elements

of canonical EAs. The following proposition shows that there exists a refining subsequence for the

sequence of best points found by an EPSA with probability one.

Proposition 1 There exists a refining subsequence of {x;} with probability one.

The following theorem describes limit points of refining subsequences for general nonsmooth

functions. A natural generalization of the notion of a gradient for nonsmooth functions is the

generalized directional derivative [7]. The generalized directional derivative of ~ at z in the direction

s is

f(v+~s) - f(~)f“(z; s) = limsup ~ .
y+z,q.o

Note that if ~“(r; s) > 0, then ~ is increasing in the direction s. Thus a local minimum of a

nonsmooth function is defined by a point where f“ (z; s’) >0 for all s’ c R~ and where there exists

a direction s such that f“(z; s) = O.

Theorem 3 Let 2 be the limit of a refining subsequence {x~}k~K. If j is Lipshitz in the neighbor-

hood of 2 then there exists S ~ S such that for all s ~ S, f“(x; s) >0 if xi + A@ is feasible jor

infinitely many k ~ K.

For unconstrained problems, this theorem shows that there is a positive basis S ~ S that defines

directions for which the generalized directional derivatives of .f are positive. This is perhaps the

strongest possible result for EP SAS on general nonsmooth problems. If the refining subsequence

converges to a nondifferentiable point, then it may be possible for ~“ (x; es) ~ O for every direction

s in a given basis and for all c > 0 (e.g. see Torczon [32]). For constrained problems, this result

indicates that the interesting search steps are those that conform to the boundary of the feasibile

domain (see Section 4).

The next theorem extends the previous result when f is strictly differentiable at a limit point

2. A point z is strictly differentiable if ~ f (z) exists and V f (z)Tw = li~+z,f~o f(u+t:)-f(!) for all

w eRn [7].

Theorem 4 Let ~ = R“, and let & be the limit of a

neighborhood of 2 and f is strictly differentiable at t,

9
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.
Given that EPSAS have refining subsequences with probability one, it follows that EPSAS

converge to these limit points with probability one. This convergence theory generalties the result

in Theorem 1 in several respects. First, note that if j is continuously differentiable at z then

f is Lipshitz intheneighborhood ofz and~ isstrictly differentiable at z [7]. Consequently,

Theorems 3 and 4 make weaker assumptions than Theorem 1. Further, our focus on the limit points

of EPSAS describes their convergence behavior locally, and hence it is applicable to functions for

which continuity properties vary across the search domain.

3.2 Convergence Proofs

In this section we prove the results of the previous section. Recall our assumption that the points

sam”pled by an EPSA lie in a compact set. We begin by showing that there is a subsequence of

iterations for which the step lengths go to zero. This proof requires the following two lemmas.

Lemma 1 ([2], Lemma 3.1) The step length & is bounded above by a positive constant inde-

pendent oft.

Let X={x13i1,..., in C{l, n}s, t}s.t. z=e~z~,+.. . + e~z~n}, where x? is the i-th member

of the initial population of the EPSA and e~ is the i-th unit vector. The set X represents the

set of points that can be generated by coordinate-wise recombination of the initial population.

Note that we can write At = Ao#~ ..-$$, where r: E Z~O

i,max
Tt Ti. and note that & = r~/~~ where ~~tr~ E= m~j=l,...,t ~;

~ ~1, max
T~=(T~) t . . . (r:)~:’m=,

Now let S consist of the set of search directions defined by all

/

and#i cQ. Fori=l . . . ..v. let

Z’”. Thus we can define

S E S, and consider

{

A.
fl!!~= X+--- Z, SIZE X, Z, CZ”’”

SES’ }

(4)

The set Alt defines a union of meshes, one for every z c X, that are composed by the lattices

spanned by the directions in S’. The following lemma shows that the points in the t-th iteration

of an EPSA, Xt, lie in Mt.

Lemma 2 For all t, Xt c Mt.

Proof. Clearly X. c X c Mo. By induction we assume that Xt c Mt. Consider z E Xt_l.

This point is either (1) in Xt and hence x E Aft ~ Mt+l, or (2) it was formed from crossover or
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mutation or both. In this case we have

x = 6C[Az~ + (1 – A)z;] + c$mA&

where (a) JC,& E {O, 1} and & + ~m > 1, (b) ~ 6 s’> (c) A = diag(al, . . . ,a~),ai c {o> 1}, (d) 1 is

the identity matrix, and (e) z:, x; C Xt. It follows that there exists x., xb, Z: and Z: such that

Note that ?t+l = pt~t, where pt G {1, 71,..., ~~}. Let B. = JC[AZ. + (1 – A)zb] and Bs =

Jc[AZ~ + (1 – A)Z~]. Thus we have

The following corollary shows that the intersection of the compact set containing the points

generated by the EPSA and Mt is finite.

Corollary 1 Let 0’ be the compact set that contains the points generated by the EPSA, l_J& .Xt.

Then !2’ n Mt is jinite.

Proof. Recall that for all s G S we have s c Qn. Let C be the greatest common divisor of the

elements ofs for all s E S’. Thus there exists ZS G Zn such that s = z~/C’. We can rewrite Mt as

follows:

{ }

$~z.z. [x Ex, z. Ez”’” .Mt= x+_
sat

Since Q’ is compact it is also bounded. Thus the projection of Q’ onto the i-th coordinate axis is

a closed interval. Now every value in the i-dimension of points in W n Mt can be represented as

xi + *w for some w E Z. Since these values are bounded above and below, there are a finite

number of distinct values for w that are feasible. Thus the projection of Q’ n Mt onto the i-th

dimension is finite. It follows that Q’ (1 Aft is finite since this is true for every dimension. ■

Corollary 1 along with Lemmas 1 and 2 are used to prove the following proposition, which

ensures that the step length parameter converges to zero if the EPSA either finds improving steps

or contracts the step length infinitely often.
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‘ Proposition 2 If the points $anapled by an EPSA lie in a compact set and the conditions in

steps (20) or (23) are trwe infinitely often, then lim inft+m At = O.

Proof. Suppose that O < Ami. S At for all t. The hypothesis that Amin s At for all -tmeans

that the sequence {+? “”” &~} is bounded away from zero. We also know from Lemma 1 that the

sequence {At} is bounded above. Thus the sequence {~~ “.” $7} is bounded above, from which it

follows that the sequence {d: . . . ~Y } is a finite set. Equivalently, the sequences {r:} are bounded

above and below. Let r~= = maxo~t~~ r: and define

Then we can define a generalized mesh Mm using Tm in Equation (4) in place of Tt. Now ?t s 7=,

so Mt G Mm, It follows that Xt c Mm for all t. The analysis from Corollary 1 applies equally

well to Mm, so we know that the intersection of Q’ and MM is finite. Thus there must exist a

point 2 for which Zt = 2 for infinitely many t. However, this is a contradiction since we cannot

revisit a point in Mm infinitely many times. We accept a new mutation step st from x: if and only

if f(zj) > j(z~ + st), so there exists N such that for all t z N, zt = it. However, if this is true

then we are guaranteed that the condition in step (23) is true infinitely often, which implies that

At ~ .0. This gives a contradiction to our assumption that At 2 Amin >0. ■

The following lemma ensures that with probability one an EPSA will either find an improving

step or it will sample all of the mutation offsets from Z;. This result is equivalent to our analysis in

Hart [22] which shows that each iteration of a stochastic pattern search algorithm terminates with

probability one.

Lemma 3 ([22], Lemma 2) Let Z be the set of sequences of iterations {z;} for an EPSA for

which the conditions in steps (20) or (.23) are true infinitely often. Then P(Z) = 1.

Proposition 1 follows directly from Lemma 3 and Proposition 2. We now prove Theorems 3

and 4. Our analysis here is similar in spirit to the proofs of Lemma 3.4 and Theorem 3.5 in Audet

and Dennis [2].

Proof. [Theorem 3] Let S c $ be a positive spanning set

in the refining subsequence; there must be such a set since S

that is used infinitely many times

is finite. Let K’ ~ K denote the

subsequence where s is used. Since the iterations K’ belong to a refining subsequence, it follows
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‘ that for each s c S and k E K’; either z; + A~s is infeasible or the step s has been unsuccessfully

applied to z;.

Consider a steps c s that can be feasibly applied for infinitely many iterations. From Clarke [7],

we have by definition that

Note that ~ is Lipshitz near i, so ~ must be finite near 2. Since s can be feasibly applied infinitely

many times, infinitely many terms of the right quotient sequence are defined. A1l Of these terms

are nonnegative because the steps are unsuccessful, so it follows that ~“(x; s) 20. ■

Proof. [Theorem4] From Theorem 3 we know that there exists S 6 S such that ~“(i; s) z O

for all s E S. For all w s R“ we can write w as a nonnegative linear combination of elements of

S, from which it follows that v~(t)~w >0. The same construction for –w shows that we have

– v f(i)Tw >0, so ~f(i)~w = o. ■

4 Constrained Analysis

This section describes how the previous analysis of EPSAS can be extended to solve problem (3)

for general linearly constrained problems. The central difference of this analysis are restrictions

that guarantee that the search directions reflect the geometry of the constraint boundary when the

EPSA converges to points near the boundary. These restrictions are needed to ensure that good

search directions are available for the mutation operator near the boundary.

The approach that we take here is similar to the approach described by Michalewicz and At-

tia [26, 27] to the extent that EPSAS adapt their mutation operator based on the properties of

the constraint boundary. However, EPSAS may generate infeasible points that are simply rejected;

infeasible points are never evaluated. This method is similar to rejection methods commonly used

with EP and ESS for bound constraints. One important difference is that because EPSAS use a

finite number of mutation offsets, they are guaranteed to shrink the step-length parameter after

generating a finite number of infeasible mutation steps,

to coordinate-wise crossover, the crossover operator is

a general linearly constrained domain, so its utility for
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Figure 2: Illustration of the cones T~ (z, e) and lV~(z, e) for the constraints are v S O, z + v S O,

the point z = (O,–1) and ~ = 1.25.

The geometry of the constraint boundary can be described using the following definitions of

generalized tangent and normal cones. For all c >0 and z E !2, let V(Z, e) be the normals to the

faces of the boundary that are within distance c of Z. The generalized normal cone. No (z, e). is

the cone generated by the vectors in V(z, e). That is,

{

I\’(z.,)/

}
Nc?(z, E) = ~ I~ = ~ Azvz,Ai 2 O,vzeV(X,6).

i=l

The generalized tangent cone is To (z, e) = {v E R“ IVw E NQ(z, e), V*W < O}. Figure 2 illustrates

the cones near a two-dimensional boundary. To accommodatethe geometry of the constraint bound-

ary, we use a mapping St : Q ~ S, for e >0, to select a matrix that defines mutation offsets for a

given point. Given e >0, we say that S, is an e-conforming mapping if for all z E Q some subset

of columns of Se(x) generates Tn (z, e).

For example, consider the point z in Figure 2. The two vectors that generate To (z, c) are

(– 1, O)T and (1, –1)*. An e-conforming mapping is free to select any matrix S G S that contains

these columns. The additional column in S is simply required to form a positive basis for R“. For

example, the vector (1, 1) suffices.

By using an e-conforming mapping, we guarantee that the set of mutation directions used by

an EPSA contains directions that generate points in a feasible direction. Thus if a point is not a

constrained stationary point, then we can reduce the step length to find a descent direction. Further,
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when the point is not near the boundary, then the set of mutation directions are simply a positive

basis, so our convergence result for the unconstrained case applies. The following proposition is an

immediate corollary of Theorem 3.

Proposition 3 Given e >0, let t be the limit of a refining subsequence for an EPSA that selects ~

with an e-conforming mapping, Se, at X?. If f is Lipschitz near ~ then f“(i; s) >0 for all directions

s G S,(2) that generate T~ (2, ~).

Note that this proposition simply requires that the mutation offsets about the best point in

the population be adapted to ensure convergence. This has the advantage of minimizing the

changes made to the generic EA framework

However, in Section 6 we discuss whether

population-based search method like EAs.

to enable convergence for linearly constrained problems.

this method of formulation EPSAS is well-suited for a

Recall that a constrained stationary point i for problem (3) is a KKT point [18], so for linear

inequalities it sufficies to have V~(i)Tw z O for all w c To (2, O), and – v ~(~) E NQ(2, O). The

following proposition describes our main convergence result for EPSAS on problem (3).

Theorem 5 Given E >0, let 2 be the limit of a refining subsequence for an

with an e-conforming mapping, SE, at x:. There exists e“ > 0 such that if e’

differentiable at 2, then 2 is a KKT point.

EPSA that selects ~,

> e and f is strictly

Proof. If& is in the interior of !2, then the e-conforming mapping selects positive spanning sets

for any c >0. Thus our result follows from Theorem 4 and the definition of a KKT point.

Otherwise, note that since there are a finite number of faces of Q there exists E*>0 such that

Z’o(~, e) = Tn(z, O) for all e“ > e >0 and all z on the boundary of !il. From Proposition 3 we know

that ~ f (2)Ts ~ O for all s c S6(2) that generate T~ (2, e). Now every w ~ Tn(2, O) = Tn(z. e) is

a nonnegative linear combination of these vectors, so ~ f (i)~w z O. But (– v f (~)~) w s O. so

– ~ f(i) E NQ?(2,0). ■

4.1 Construction of Patterns

The general framework used by this convergence theory begs the question of whether it is possible

to practically define an e-conforming mapping that can be used by EPSAS. Fortunately, Lewis and

Torczon [24] describe a construction for pattern search methods that can be used to determine a
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positive basis that genemtes Tti(z, e). The description of this construction is beyond the scope of

our presentation here, though we note that ttis method of constructing a positive basis makes the

assumption that for all z on the boundary of Q V (z, c) is comprised of a linearly independent

set of vectors. Thus at any point on the boundary the entire set of active constraints must be

tight, which implies that the set of linear constraints is nondegenerate. Further, note that the

construction described by Lewis and Torczon [24] provides a method for estimating e“ throughout

the course of.optimization. The value of 6* depends upon the linear constraints, so it is important

to determine this value for each problem.

4.2 The Bound-Constrained Case

We now consider the special case where the linear constraints simply define bound constraints (i.e.

A is a diagonal matrix). Theorem 5 clearly generalizes our previous result in Theorem 2. In the

case of bound constraints, we know a priori the possible generators of To(z) e) and lV~(z, e). For

any x E O and e >0, the cone IVQ(z, e) is generated by some subset of the coordinate vectors +ei.

Thus we can simply use the positive basis that contains all coordinate vectors. This choice includes

generators for all possible To (z, e), so it is e-conforming for all c >0 and for all i.

Further, note that Theorem 5 is applicable when some of the search dimensions are uncon-

strained: li, ui = +~, i E {l, . . . ,n}. As Lewis and Torczon [24] note, we can make a more

parsimonious choice of a spanning set in this case. Let Zil, . . . . Zi, be the variables with either a

lower or upper bound. Then the positive spanning set includes +ezl, . . . , +eir as well as a positive

basis for {v \VTZ =

n – r + 1 elements.

function evaluations

4.3 Generation

O,z = ~~=1 ~je~j, Aj E R}; the positive basis for this set can have as few as

This spanning set is also independent of t,-and it requires at most n + r + 1

to perform a contraction of the step length parameter.

of Initial Points

Our analysis of EPSAS for general linearly constrained problems assumes that the initial population

consists of feasible points in the polyhedron defined by inequality constraints. Following the com-

mon design of EAs, it is desirable to generate points uniformly at random within 0. Unfortunately,

it is likely that an efficient process for generating this distribution is not possible since the problem

of computing the exact volume of a polytope (a bounded polyhedron) is #P-complete [12]. For

example, one obvious method for generating points in Q with a uniform distribution is to uniformly

generate points in a box (for a polytope) or half-plane (for a polyhedron) and reject points that do
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,

not lie in Q. However, if is easy to construct problems for which the fraction of the region that lies

in fi is arbitrarily small, so the efficiency of this approach is poor.

Methods for generating points uniformly on polytopes are discussed by Devroye [11], Leydold

and Hormann [25], and Rubin [28, 29]. The complexity of these methods is at least polynomial

in the dimension and the number of vertices of the polytope defined by the linear inequalities.

Since the number of points that are needed to setup an EPSA is typically quite small, the methods

described by Rubin [29] and Leydold and H6rmann [25] seem most appropriate. Rubin describes

a random walk on a polytope that asymptotically samples the feasible domain uniformly. Leydold

and Hormann describe a sweep-plane method that recursively sweeps a plane through the polytope

until the plane has swept through a fixed percentage of the volume, which is chosen at random.

Although these approaches avoid an expensive setup phase, they still may take a long time

for high dimensional problems or for polytopes with many vertices. consequently, we believe that

it is worth considering methods that can quickly generate points from a nonuniform distribution

that is not too biased. For example, we have developed a randomized version of the phase one

algorithm that is commonly used to find a feasible point in linear programming algorithms (e.g.

see Gill, Murray and Wright [18], Section 5.7). Our randomized approach generates a point in an

enclosing box (half-plane) for the polytope (polyhedron). Then the randomized phase one algorithm

iteratively choses a violated constraint and moves the point to make it feasible (while maintaining

the feasibility of all feasible constraints). This process is very fast, though its empirical utility

remains to be demonstrated.

5 Deterministic Analysis

Our analysis in the previous sections ensures convergence to interesting limit points with probability

one. However, a stochastic convergence guarantee is not necessary simply because oft he fundamen-

tally stochastic nature of the EPSAS defined in Figure 1. Although this definition of EPSAS comes

closest to capturing the basic algorithmic framework of generic EAs, with only modest restrictions

we can ensure deterministic convergence of {z:} to the same class of limit points. Consider the

following assumption on the properties of an EPSA.

Assumption 1 Consider an EPSA for which

1. The selection function always includes the point z; in ~
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.
2.

3.

The crossover function is applied to generate N. < N new individuals

A mutation step si ~ ~ is applied to the point x; (without crossover), where the steps in ~

are sampled in a fixed order (which may be randomlg chosen).

This assumption ensures that in every iteration a different mutation step from the point x: is

generated. Note that the updates to At fundamentally depend upon the success or failure of these

mutation steps. Thus this assumption ensures that every iteration of an EPSA makes progress in

the optimization, both by avoiding mutation steps that have already been evaluated and by ensuring

that these mutation steps occur all the time. The following proposition follows immediately

this assumption.

Proposition 4 If the sequence {z;} is generated by an EPSA that satisfies Assumption 1,

there exists

Proof.

considered.

a refining subsequence of {z:}.

If Assumption 1 is satisfied, then in every iteration a unique mutation offset of

Thus the conditions in steps (20) or (23) are true infinitely often. It follows

Proposition 2 that lim inft+m At = O, so there exists a refining subsequence of {z;}.

from

then

x; is

from

■

We argue that Assumption 1 imposes relatively weak restrictions on an EPSA. It is easy to

satisfy Assumption 1.1 using any common selection mechanism that is applied using stocha.stic-

universal-selection [5]. Further, crossover operators are commonly applied in EAs with probability

less than one, so Assumption 1.2 is not particularly restrictive.

Satisfying Assumption 1.3 requires a modest algorithmic change. An index array for ~ needs

to be constructed and randomly shuffled, which requires O(n) work. Given this shuffled array,

the mutation steps for z: are iteratively selected by simply taking the next value in the array.

Furthermore, if by chance two or more points in the population equal Z:, they can evaluate distinct

mutation steps and accelerate the convergence of the EPSA.

6 Discussion

This paper adapts Audet and Dennis’ [2] recent observations on the requirements for convergence

in pattern search algorithms to significantly extend and simplify our previous convergence analysis

of EPSAS. We have weakened the cent inuity assumptions made on the objective function. and
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- we have presented a convergen~e theory that allows for different continuity properties in different

neighborhoods of the search domain. Our convergence analysis encompasses our previous analy-

sis for unconstrained and bound constrained problems, and it provides a general framework for

extending it to general linearly constrained problems.

This analysis is significant because it exactly characterizes the convergence

adaptive EA on a broad class of nonconvex objective functions. Consequently,

properties of an

this convergence

theory provides a rigorous justification for the use of adaptive EAs in a wide range of problems.

Although other adaptive methods may be used for other classes of EAs, we expect that this analysis

will help illustrate the type of adaptation that is needed to ensure robust convergence. For example,

the adaptation of the mutation offsets near a constraint boundary reflects fundamental issues that

will need to be tackled by any EA.

The principle challenge that remains unresolved in this work is the design of effective EPSAS

for linearly constrained problems. We have noted that Lewis and Torczon [24] provide an algorithm

that can be used to select mutation offsets for EPSAS on linearly constrained problems. However,

this framework needs to be evaluated and refined for use within the context of EPSAS.

A fundamental weakness of our formulation of linearly constrained EPSAS is that the mutation

offsets are only tailored to the local geometry about the point z;. This ignores the fact that the

geometry is likely to be very different near other points in the population, thereby limiting the

overall effectiveness of a population-based method like EPSAS. We believe that this framework

for defining EPSAS can be extended to define EPSAS that locally adapt the geometry of mutation

offsets while retaining the general convergence theory. Unfortunately, this will certainly complicate

the design of EPSAS, removing them further from the design of canonical EAs.

Two other algorithmic details will probably also need to be addressed to make EPSAS practical

for linearly constrained problems. First, it is often quite desirable to move to a constraint boundary

when the search approaches the boundary of the feasible domain (e.g. see [26]). Unfortunately,

the search method employed by EPSAS does not allow this type of a move, and the set of feasible

points generated by an EPSA will not generally contain points on the boundary of 0.

The second algorithmic issue is the design of effective recombination operators. As we noted

earlier, the utility of coordinate-wise crossover operators is questionable for linearly constrained

problems. It is easy to construct a problem for which a crossover operator will only generate

feasible points if the two initial points are very close in the search domain. However, recombination

operators are generally viewed as methods for generating “global” steps that combine subsolutions
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from different parts of the search domain. To acheive this functionality, new crossover operators

wiUneed to redeveloped for EPSAsthat mimic blending crossover operators (e.g. see [14,31]).

Finally, we note that experiments will be needed to evaluate the impact of the restrictions im-

posed by Assumption 1. An argument for not satisfying these assumptions is that EAs are really

best suited for global optimization, and hence it is appropriate to employ mechanisms that only

weakly encourage convergence to a local optima. For example, we have previously demonstrated

the empirical utility of EPSAS on standard global optimization test problems and on a real-worM

application [20, 21, 23]. Although EPSAS performed about as well as other EAs on these appli-

cations (and sometimes much better), encouraging convergence to local optima might limit their

ability to perform a global search. It should be noted, however, that the rate of convergence of EP-

SAS is likely to be very poor for large-scale problems, so the mechanisms required by Assumption 1

will likely be necessary in this case.
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