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Abstract-- This paper presents a large-scale application of 
multi-agent, evolutionary modelling to the proposed new 
electricity trading arrangements (NETA) in the UK. This is a 
detailed, plant-by-plant model with an active specification of 
the demand side of the market. NETA involves a bilateral 
forwards market followed by a balancing mechanism, and 
then an imbalance settlement process. This agent-based 
simulation model was able to provide pricing and strategic 
insights, ahead of NETA’s actual introduction. 
 
Index Terms-- Agent-based simulation, evolutionary 
economics, electricity markets, imperfect competition, market 
design. 
 

I. INTRODUCTION 
 
Conventional economic modelling approaches have shown 
only a limited ability to develop insights into the strategic 
behaviour of firms competing in new, restructured markets, 
such as electricity. These new electricity markets, which 
have emerged around the world since the early 1990s, tend 
to be characterised by an oligopoly of generators, very little 
demand-side elasticity in the short term, and complex, 
 administered market mechanisms which are designed to 
facilitate both financial trading and physical, real-time 
system balancing. It is not surprising therefore that 
theoretical economic analysis tends to oversimplify, over 
aggregate and represent stylised versions of these markets. 
For example, analytical evaluation of the supply function 
equilibria for these markets has either assumed that the 
supply functions are continuous [1], whereas in practice 
generating units are offered in discrete blocks, or that the 
industry ownership consists of symmetric equally sized 
firms [2], or both [3]. From a different auction theory 
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perspective, von der Fehr and Harbord [4] recognised that 
there is a need to model discretely, but for tractability their 
analysis was still restricted to a duopoly. Rothkopf [5] 
observes that the daily repetition of these auctions means 
that all players are involved in repeated games, rather than 
single auctions, and therefore it is to be expected that the 
continuous process of daily experimentation and learning 
by all of the firms will lead to multiple, transient equilibria 
in practice. 
 
It is precisely these features of the problem which suggest 
that agent-based computational methods could perform a 
useful role. The development of a detailed simulation 
platform representing the agents, the markets and the 
market clearing mechanisms, together with reinforcement 
learning to facilitate profit-seeking behaviour by the agents, 
can, in principle, provide a computational framework to 
overcome the limitations of the analytical approaches. 
Furthermore, Roth and Erev [6, 7] have recognised that the 
intermediate behaviour of a dynamic game maybe more 
important than its asymptotic properties. They have shown 
that reinforcement-learning models outperform the 
equilibrium predictions in certain games. In the broader 
context of management research, the strategy and 
organisational behaviour literature [8] has also started to 
model organisations as adaptive systems that learn with 
experience, by trial and error through exploiting and 
exploring their environments. 
 
However, in practice there have been very few large-scale 
applications to industry behaviour. It is still, therefore, an 
open question how well agent-based simulation can provide 
useful insight at the firm level in such a complex market as 
electricity, not only with respect to the specification of 
appropriate learning, but also in terms of analysing the 
multi-agent, multiple equilibria output from the simulations. 
In this paper we describe one such application of agent-
based simulation to explore the economic implications of 
the proposed changes to the UK electricity market, and 
thereby provide a timely case-study in using evolutionary 
computation in practice. 
 
This study was actually motivated early in 2000 by a major 
UK electricity company who was seriously concerned about 
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the impending radical reforms of the electricity market, 
which were scheduled to be introduced in November 2000. 
The New Electricity Trading Arrangements (NETA) would 
replace the mandatory, daily uniform price auction (the 
“Pool”), which had operated to provide a competitive 
wholesale market since 1990. The new market would 
mainly be based upon continuous bilateral trading up to 
“gate closure” at 3.5 hours ahead of real-time. Following 
gate closure, the system operator would operate a kind of 
balancing market, the design of which was deliberately 
intended to financially reward flexible plant and discourage 
players on both the generation and demand-side of the 
market from being out of balance. The risks involved in this 
new system appeared therefore to be considerable and any 
model-based insights would have to capture subtle details 
of the inter-relationship of the bilateral trading to the 
balancing market and the relative plant economics that 
would ensue. With no realistic analogies from electricity 
markets elsewhere, and only some limited simulations from 
an experimental role-playing game [9], agent-based 
simulation appeared to offer a real possibility to develop 
detailed insights into the potential market ahead of its 
introduction (which actually happened in March 2001). 
 
Previously, Bower and Bunn [10, 11], applied agent-based 
simulation to look at one aspect of the auction design 
involved in NETA, namely the switch from uniform to 
discriminatory pricing. Their model did not capture the 
interaction between the bilateral trading and the balancing 
market, nor did it incorporate any sophistication in the 
agents’ learning abilities. The simulation platform 
developed here is a much more detailed representation of 
how NETA was designed to function: 
1. It actively models the demand side (suppliers). 
2. It models the interactions between two different 

markets, the bilateral market and the balancing 
mechanism, and also the settlement process. 

3. It takes into accounts the daily dynamic constraints, 
and it assumes different marginal costs for each 
generation technology. 

 

II. SPECIFICATION OF THE NETA SIMULATION 
PLATFORM 

A. An overview of NETA 
 
The conceptualised agents in this model represent 
generators (ie generation companies possibly owning 
several plants with different generation technologies), 
suppliers (ie the agents purchasing from wholesale market 
in order to “supply” end-use customers) and the system 
operator (SO). In the following sections we describe how 
we have modelled the bilateral trading, the Balancing 
Mechanism (BM), the Settlement Process (SP), and the 
strategic behaviour of suppliers and generators. The basic 
structure of the model followed [12, 13], and [9], although 
the details of the BM reflect later revisions [14, 15]. 
 

NETA is based upon unadministered bilateral trading 
between generators, suppliers, traders and customers, which 
takes place in the forward markets before gate closure. At 
the introduction of NETA, four organisations had set up 
Power Exchanges to facilitate this, although it is clear that 
market forces will cause liquidity to gravitate to one or two 
of them. The BM works as a market where the SO buys and 
sells increments (incs) or decrements (decs) of electricity in 
order to balance the system as a whole. However, 
individual generators and suppliers may be out of balance. 
During the SP, the SO will compare the contract positions 
(quantities contracted), plus whatever is bought or sold in 
the BM, with the actual position (quantities generated or 
consumed) for each one of the suppliers and generators 
(plant by plant) to calculate the Imbalances. The Imbalance 
may be a spillage (if a plant is generating more than it has 
contracted, or if a supplier is consuming less than it has 
contracted) or a top-up (if a plant is generating less than it 
has contracted, or if a supplier is consuming more than it 
has contracted). For both types of imbalances there is a 
price: if an agent is spilling it will receive as payment for 
the electricity generated the System Sell Price (SSP); if an 
agent is topping-up, it will pay the System Buy Price (SBP). 
The spread between the two prices is intended to provide a 
penalty for being out of balance: the SSP (SBP) is expected 
to be considerably lower (higher) than the prices in the 
forward markets. 
 
Let us define the following variables: , total quantity 
of demand at time t; , total quantity of demand at 
time t in the bilateral markets; , total quantity of top-
up at time t; ,

tQD

tQPX

tQTP

tQBBM  total quantity bought in the BM at 
time t; , total quantity of generation at time t; , 
total quantity of spillage at time t;  total quantity 
sold in the BM at time t; then the two markets together are 
described by the following identities: 

tQG tQS

tQSBM

 
Demand Identity 
 

tttt QBBMQTPQPXQD ++= ; 
 
Generation Identity 
 

tttt QSBMQSQPXQG ++= . 
 
The task of the SO is to buy or sell in the BM enough 
electricity to ensure that the system is always in balance:  
 

tttt QSQTPQBBMQSBM −=− . 
 
The day ahead and within day balancing schedules are as 
follows, [15], pp. 160. 
 
The SO day ahead balancing process: 
1. By 09:00 publishes the day ahead demand forecast. 
2. By 11:00 receives the Initial Physical Notifications 

(IPNs). 
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3. Calculates the available national plant margin or 
shortfall. 

4. Verifies system security given demand predictions, the 
submitted IPNs and planned transmission outage. 

5. By 12:00 issues the total system plant margin data to 
the market for the day ahead. 

6. Forecast constraint costs based on the estimated Final 
Physical Notifications (FPNs) and bid (offer) prices 
and volumes. 

7. If necessary calls the most economic Balancing 
Services contracts to ensure the system security.  

8. During the following 11:00 hours, receives updates of 
the Physical Notifications (PNs). 

9. By 16:00 publishes the revised national plant margin 
and zonal margin. 

 
The SO within day balancing process: 
1. Publish half hourly averaged demand forecasts for a 

defined period, until gate closure. 
2. As participants become aware of changes to their 

physical position they will advise the SO. 
3. At defined times the zonal and national margins will be 

reassessed and provided to the market. 
4. Undertake security analysis and reassess the 

requirements of Balancing Services contracts. 
5. At gate closure the PNs will become FPNs and the SO 

will have received bids (offers) of the prices and 
volumes from the participants in the BM. 

6. During the BM the SO will balance the system taking 
into account: technical constraints; dynamic operating 
characteristics of generation and demand balancing 
services and uncertainty in demand. 

 

B. Modeling NETA 
 
Multi-agent simulations can have various design objectives, 
eg to replicate the time series properties of a real market 
[16] or to search for consensus [17], our model was 
primarily designed to search for possible market equilibria, 
given all the parameters defining the agents and the market 
structure. 
 
Modelling the balancing process is not a straightforward 
task and demands some simplifications to be adopted in 
order to make the problem tractable. These simplifications 
are much less restrictive than the ones usually presented in 
the literature: 
1. The transmission system was not modelled. This 

implies that the model does not capture regional 
imbalances or transmission constraints.  

2. We model only a typical day, taking into account some 
plant dynamics. The model is aimed at analysing the 
process of finding the equilibrium solution for the 
specific daily profile simulated. 

3. We have simplified the continuous nature of trading in 
NETA, and represented both the forward market and 
the BM as two, sequential, one-shot markets. This 
implies that the flows of information are much simpler 

than reality: the players only submit their offer (bids) to 
the bilateral market knowing the SO’s demand 
forecasts, and submit their offers (bids) to the BM 
knowing the expected position of the system. 

4. Finally our model assumes independence between 
generators and suppliers, although vertical integration 
is a reality in the industry. We adopt this simplification 
since the Regulator imposes a condition that all the 
trading between the suppliers and generators belonging 
to the same company has to be subject to separate 
imbalance accounts. 

 
In formulating the market models, the “natural” approach 
would seem to be the Continuous Double Auction (CDA), 
[18, 19], but its implementation with computer agents has 
several problems. It requires direct communication and 
negotiation between agents; it demands the development of 
a multi-criteria algorithm when the quantity is variable, and 
the computational time could be an issue in a large model 
such as ours1. Hence, we used the Single Call Market 
(SCM) developed by Cason and Friedman [20], but we 
have adapted it to reflect the NETA trading principles, with 
the agents paying the price bid or receiving the price 
offered, instead of paying (receiving) the clearing price. It 
should be noted that the same type of auction was also 
adopted by [4], where they refer to it as a sealed-bid 
multiple-unit auction. Nicolaisen, Petrov and Tesfatsion, 
[21], adopted an auction very similar to ours with the main 
difference being that their agents pay (receive) the midpoint 
of the bid-ask spread. By adopting a SCM we also avoid 
explicitly modelling beliefs about opponents, eg [22]. 
 
Another challenging task was to model the suppliers and 
generators. We intended to build bounded rational agents 
that learn about their environment and improve their 
behaviour with experience, avoiding the perfect foresight 
paradigm. But at the same time, following Marcet and 
Nicollini [23]2, the agents’ behaviour should not be too 
non-rational (we have to impose some lower bounds on the 
agents’ level of rationality). The internal consistency 
requirement is the most demanding one, and we had to 
make sure that the agents do not choose completely 
unreasonable actions, even in the early stages of the 
learning process.  
 

                                                           
1 In the experiments presented in this paper we have 
simulated 200 trading days. In each trading day there are 24 
auctions for each hour in the bilateral market, and 24 
auctions for the BM (one for each hour). 
2 They define three concepts that maybe used to establish 
lower bounds of rationality. In asymptotic rationality, the 
agents’ behaviour will asymptotically converge to the 
optimum. In epsilon-delta rationality, agents may have 
some resistance to change, and may be satisfied within a 
solution close enough to the optimal behaviour. With 
internal consistency, agents’ behaviour has to have some 
lower rational bounds in the short-run, i.e. agents try to do 
the best they can over a limited horizon. 
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Another problem facing the agents is the crossing of 
information. The agents take actions in two different 
markets, the Power Exchange (PX) and the BM, and 
receive feedback from these two markets. In order to 
facilitate the association between an action and its results 
the feedback process should be as close to the action as 
possible. In order to accommodate this requirement the 
agents have Operational Objectives. Keeping in mind that 
the final goals of the agent are the Strategic Objectives, we 
need to make sure that there is an interrelation between 
these two objectives and, to ensure this link, we define 
Operational Rules. 
 

1) The Suppliers 
 
Each Supplier is characterised by the following pre-
specified Parameters: Market share, Balancing Mechanism 
Exposure (contract cover), Retail Price, Prediction Error, 
Search Propensity. 
 
Market Share refers to the retail market, in terms of the 
relative quantity of electricity sold. Balancing Mechanism 
Exposure reflects the percentage of forecast demand it 
intends to purchase in the PX. The Retail price is not a 
crucial variable; since this model is aimed at short-term 
analysis, it just allows the suppliers to be modelled as profit 
maximising. Prediction Error reflects, as mean average 
prediction error, the capability of the agent to predict its 
own demand. Search Propensity is an integer ranging from 
1 to 10, which defines a heuristic controlling how the 
agents search for the best payoff and transform past 
experience into future policies. A low Search Propensity 
parameter will create stable policies that change slowly 
with experience, whereas a high parameter will create 
reactive policies that tend to follow short run experience). 
 
Each supplier has the following Instruments: 
1. Mark-up in the PX (learned by the agent). This is 

relative to the PX price (PXP) in the previous day. 
2. Mark-up in the BM (learned by the agent). This is 

relative to the PXP, in the same day. 
 

Each supplier has two Strategic Objectives: 
1. To maximise total daily profits, given the market 

structure, and given its market share. 
2. To minimise the difference between its objective for 

the BM exposure and the actual BM exposure. 
 
The two Operational Objectives are to maximise daily 
profits in the PX and in the BM, respectively. They enable 
each agent to associate the outcomes (such as prices, 
quantities, and profits) to each Instrument used, and to the 
Strategic Objectives. 
 
Suppliers also have an Operational Rule, based upon 
adaptive expectations, namely, never to bid (offer) more 
(less) in the BM than the previous day’s SBP (SSP), since 
those are the expected Imbalance prices3. 
                                                           

                                                                                                

3 This operational rule, also adopted for the generators, 

 
2) The Generators 

 
Each generator is characterised by the following 
Parameters: Plants, Cycles, Capacity, Availability, 
Balancing Mechanism Exposure (contract cover), Search 
Propensity. 
 
Plants owned by each generator are specified at the 
generating set level. Plants of the same type are assumed to 
have similar marginal costs, start-up costs and no-load 
costs. The agent’s decision-making does not take into 
account explicitly the start-up and no-load costs although it 
will implicitly learn to do so. Thus, each agent has an 
objective for the position of each plant in the load duration 
curve (we identify for each plant, the maximum number of 
cycles per day that it can operate) and the plant’s profit it 
will be penalised if it does not meet that objective. This is a 
reasonable way of incorporating some consideration of 
dynamic plant constraints. Thus we define the parameter 
Cycles for each type of plant, eg Table 1. 
 

--- Insert Table 1 About Here --- 
 
Thus, base-load plants, with high start-ups or inflexible 
technology need to run continuously and specify zero or 
just one cycle. Flexible plant with low start-up cost can 
have a higher number of cycles. The installed Capacity is 
assumed to be available with a probability specified by its 
Availability parameter, which reflects outage rates for each 
plant. Balancing Mechanism Exposure and Search 
Propensity are the same as for the suppliers.  
 
Each generator has the same Instruments as the suppliers, 
namely it learns to Mark-up in the PX from the previous 
day and to Mark-up in the BM from the PX outcome, and 
its Strategic Objectives are: 
1. To maximise daily profits, given the market structure. 
2. To minimise the difference between its objective and 

the actual Balancing Mechanism Exposure, for each 
plant. 

 
The two Operational Objectives are to maximise the daily 
profits in the PX and in the BM, respectively, for each 
plant.  
 
In order to avoid inconsistent behaviour during the learning 
process, we impose some lower bounds of rationality 
through Operational Rules:  
1. Portfolio Management: A plant with higher or equal 

number of cycles will never undercut the offers of 
another plant with equal or less number of cycles. 

 
establishes lower bounds for rationality. One of the agents’ 
strategic objectives is BM exposure. Agents want to have a 
low BM exposure because of high BM price and volume 
uncertainty. If suppliers (generators) choose to pay 
(receive) a higher (lower) price in the PX than in the BM 
their behaviour would be irrational since this behaviour 
would contradict there BM exposure objective. 
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2. Noninterruption: Plants that have to run continuously 
or plants with one cycle may run without profit in 
certain hours of the day. 

3. No Loss-leading: Plants with one cycle do not run 
without profit at the beginning or at the end of the day. 
They prefer not to run at all if the price is to low. 

4. Peak Premia: Peak plant never offer prices below 
marginal cost. 

 
Together with two extra Operational Rules for the BM: 
1. Adaptive Expectation: Never bid (offer) above (below) 

the previous SBP (SSP). 
2. Avoidable Cost: Never pay more than the marginal cost 

for “speculative” decs. 
 

3) Simulating the Market Mechanisms 
 
The model is organised into trading days, or iterations, and 
runs in a day-ahead mode for a set of 24 hours periods. A 
trading day starts with the agents buying (selling) electricity 
in the PX. In the PX, the suppliers try to buy, at a price as 
low as possible, the amount of electricity needed to fulfil 
their contract cover objectives. The generators will try to 
sell at a price as high as possible, given their portfolio, and 
given the amount of electricity they want to save to sell in 
the BM. At gate closure, each agent will know exactly how 
much it has sold, or bought, and provides the SO with its 
Final Physical Notification (FPN)4. 
 
Then the trading in the BM begins. The SO’s total demand 
forecasts are common knowledge in the industry, period by 
period (and we have assumed for these experiments that the 
forecasts are accurate). Nevertheless each one of the 
suppliers will have some uncertainty predicting its own 
demand. Thus, using their FPNs and its demand forecast, 
the SO calculates the total system surplus, or shortfall, for 
each period in the day ahead. Given this total System 
Position, the SO will accept either increments (incs) or 
decrements (decs) in the BM. The trades in the BM are 
done between the SO and each one of the generators and 
suppliers offering (bidding) the incs or decs into the BM. 
We assume that the SO will, first of all, in the interests of 
efficiency, clear all possible arbitrage opportunities (ARBt). 
Then 
 

tttttt QTPQSARBFPNsQDExcess +−−−= . 
 
If  the SO will be accepting extra-incs 
(extra-decs), above the arbitrage level ARB

( )00 <>tExcess
t, from 

generators (only5).  

                                                           

                                                                                                

4 Good behaviour assumption: in this model we assume that 
agents always communicate the true FPNs and that they 
always deliver what was contracted in the PX and in the 
BM.  
5 It should be noted that a supplier without load 
management will not be influencing the net position of the 
system, and so its bids in the BM are only to cover its own 
uncertainty to avoid the imbalance charges. The bids 

 
After all trading in the BM has occurred, and the SO has 
bought or sold whatever energy was needed to balance the 
system, the imbalances of each generator and supplier are 
calculated. The imbalance prices and costs are computed. If 
the SO accepts incs, the SBP will be defined as the 
weighted-average of the offers accepted in the BM. 
Otherwise, if the SO accepts decs, the SSP will be defined 
as the weighted-average of the bids accepted in the BM. 
Hence, in our model, at each hour, only one imbalance 
price will be defined (SBP or SSP). Thus, if an agent is long 
(short) when the system is short (long) there will be no 
imbalance price defined for its case. We adopted a rule 
which the SO has indicated it may have to use if there are 
insufficient bids (offers)6, which is to take the average of 
past SBP (SSP) values for that particular hour, for the SBP 
(SSP) not defined. 
 

III. THE LEARNING ALGORITHM 
 
Although there are several agent-based concepts coming 
from the field of multi-agent systems [24], almost all 
assume that an agent must communicate or be physically 
separated from the environment. The agents used in our 
model have no communication capabilities. The agents are 
conceptual identities representing “economic agents” in the 
market, having capacity to “receive” information, learn 
from the interactions and act on the simulated environment. 
They are autonomous agents7.  
 
The agents in this model learn on-line (given the 
information set, an agent modifies its actions in order to 
maximise its own profit). A “natural” way to model the 
learning process, in a way that “captures” human and 
organisational learning process, is reinforcement learning, 
[6-8]. In the artificial intelligence community this technique 
has been used for a long time to make computer 
programmes that can learn to play games [25-27]. 

A. Defining the mark-ups 
 
The learning problem is defined as follows: each player has 
a tuple of instruments <mk_px_b (mk_px_o), mk_bm_b 
(mk_bm_o)>, where mk_px_b (mk_px_o) is the ratio 
between the price bid (offered) in the PX and the PXP in 

 
(offers) of these players will only be accepted if there is an 
arbitrage opportunity. 
6 In practice this will not occur as frequently as in the 
model. The dynamic nature of buying and selling by the SO 
throughout the 3.5 hour BM window, and the locational 
nature of buying and selling to balance the system at the 
nodal level, means that the SO will be more active than our 
model reflects. 
7 An autonomous agent is a system situated within a part of 
an environment that senses that environment and acts on it, 
over time, in pursuit of its own agenda and so as to affect 
what it senses in the future, [24]. 
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the previous day. The mk_bm_b (mk_bm_o) is the ratio 
between the price bid (offered) in the BM and the PXP in 
the same day (the agents already have information on the 
PXP when they bid or offer in the BM). The attraction of 
this model is its simplicity: the agents only learn a ratio for 
the whole day, the margin revision in the PX or BM is the 
same for each different hour of the day. This avoids the 
adoption of different learning behaviour for the different 
levels of demand, [4]. Another strong point about this 
learning algorithm is the assumption that the information 
set only includes the prices in the previous day. Given the 
present state of the world the agent only tries to improve its 
position given the knowledge accumulated in the past, 
assuming that the present contains all the relevant 
information (ie the Markov property). 
 
Let t represent an iteration (K is the maximum number of 
iterations), t=1,…,K, and i represent the time of the day, 
i=1,…, 24. Let also  ( ) represent the price bid, 
at iteration t and hour i, in the PX (BM), and  
( ) represent the price offered, at iteration t and 
hour i, in the PX (BM). Then: 

itPB itPBbm

itPO

itPObm

 

titti bpxmkPXPPB __.1−=  

tit opxmkPXPPOti __.1−=  

titti bbmmkPXPPBbm __.=  

titti obmmkPXPPObm __.= . 
 
Each agent learns a different policy for each one of the 4 
mark-ups. This is a very important point about this learning 
algorithm. Agents do not learn how to choose prices they 
learn how to choose the mark-ups on the previous day 
prices: the result is a model where prices are unbounded. 
 
The learning process is the same for each one of the four 
mark-ups. Each one of the mark-ups was partitioned into 10 
discrete intervals. In the experiments described in this 
paper, the ratio between the price bid (offered) assumes 
different ranges for suppliers and generators in different 
markets. 
 
Suppliers learn different mark-ups for the PX and the BM 
(one for incs and another one for decs)8: 
1. Bids in the PX from 0.95 to 1.2. This allows for 

decreases and increases in the price offered. 
2. Incs in the BM from (-0.2) to 3. This allows for incs 

with negative prices. 
3. Decs in the BM from (-0.2) to 3. This allows for decs 

with negative prices. 
 
                                                           

                                                          

8 The intervals are constructed in a fairly ad-hoc way. They 
were defined in order to allow enough freedom in the 
possible choices (allowing for increases and decreases in 
offers and bids, or infinitely negative or infinitely positive 
bids or offers).  

Generators also learn different mark-ups for the PX and the 
BM (one for incs and another one for decs): 
1. Offers in the PX from (-0.15) to 1.15. This allows for 

decreases and increases in the price offered. Ot also 
allows the generators to buy in the PX (by offering a 
negative price). 

2. Incs in the BM from 0.6 to 3. This allows for incs 
higher or lower than the PX price.  

3. Decs in the BM from (-0.25) to 1.1. This allows for 
decs with negative prices. 

The larger range defined for the generators allows them to 
bid above or below the clearing price, and allows some 
plants to receive a negative price, in order to make sure 
some low cycle plant runs through short price troughs. 
 

B. Learning a Policy 
 
At each instance, the agent calculates the expected daily 
profit and the expected acceptance rate, for each one of the 
mark-ups used at that specific iteration: 
1. The expected daily profit is calculated using 

exponential smoothing of the profits earned on past 
trading days.  

2. The expected acceptance rate is calculated using 
exponential smoothing of the number of hours that a 
bid (offer) was accepted in the past trading days.  

 
Thus, given the expected acceptance rate and the expected 
daily profit, each player calculates the expected reward for 
each mark-up. Then the agent constructs a utility function 
over the mark-ups. In order to construct this utility function 
the agent ranks the mark-ups by decreasing rank of 
expected reward. The mark-up with the highest expected 
reward will receive a higher perceived utility value. This 
transformation also takes into account the Search 
Propensity parameter, such that a low parameter will be 
associated with a conservative utility function. A high 
search parameter, on the other hand, defines a more 
adventurous agent in trying different mark-ups. Finally the 
agent will transform the utility function into a policy – an 
association between each mark-up and the probability of 
bidding (offering) that mark-up. The agent’s policy will be 
used to choose the price in the following day. The basic 
ideas behind the construction of the utility function and the 
derivation of the policy are inspired by the fitness function 
and selection mechanisms which have been used in genetic 
algorithms, eg [28, 29]. 
 
Letting j=1,…, 10 represent the interval index (the mark-up 
number) and t=1…, K represent the iteration. Then 

( ) represents the daily profit (acceptance rate) at 

iteration t, using mark-up j. 
tjPrf tjArt

)Prf( tjExp 9 represents the 
expected time t daily profit (conditional on acceptance) of 
mark-up j.  represents the expected time t )Art( tjExp

 
9 In our notation Exp(Xtj) – stands for the expected time t 
value of the variable X, at time t-1. 
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acceptance rate, using mark-up j.  represents 

the expected time t reward of mark-up j.  stands for 
the rank of the mark-up j.  and  stand for the 
perceived utility and the probability of using a mark-up j. 
The policy is calculated with the following algorithm. At 
the end of the day, after receiving the feedback with the 
prices and quantities traded in each hour: 

)Rwd( tjExp

Rank(j)

jUtil jPol

 
Step 1. Calculate the new expected daily profit and 
acceptance rate for the mark-ups used.  
 
Let represent the profit at hour i, and iteration t, of 
the mark-up j, then the daily profit and the acceptance rate 

will be, respectively  and 

tj
iProfit

∑
=

=
24

1
ProfitPrf

i
tj

i
tj

24

accepted (offers) bids ofNumber 
Art tj

tj = . 

 
Then for each used mark-up j: 
 

)](Prf-.[Prf)(Prf)(Prf 111 jtjt-jt ExpExptjExp −− += α ; 

 
)]Art(-Art.[)Art()Art( 111 jtjt-jttj ExpExpExp −− += α . 

 
Step 2. Recalculate the expected reward for each mark-up. 
For every mark-up j: 
 

)Art().Prf()Rwd( tjtjtj ExpExpExp = . 
 
Step 3. Rank the mark-ups j by descending value of the 
expected rewards. The ranking idea is used in the “genetic 
algorithms” literature to avoid the fast convergence of the 
selection process, possibly to a second best solution. 
 
Step 4. Calculate the perceived utility of each mark-up j. 
 

1

Util

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
⋅=

Rank(j)

Propensity Search
nPropensity SearchUj  

 
Where, for each agent, U, Search Propensity and n equal 
1000, 4 and 3, respectively. This approach is quite flexible 
enabling the construction of a wide variety of utility 
functions. After calculating the perceived utility from each 
mark-up, the agent transforms this utility function into a 
policy.  
 
Step 5. Calculate the “policy”, ie the probability of using 
each mark-up j. For this purpose we have used the rule of 
proportionality: the probability of choosing a certain mark-
up is directly proportional to the weight of that mark-up 
perceived utility in the sum of perceived utilities of all 
mark-ups. 
 

∑
=

k
k

j
j Util

Util
Pol .  

 
This algorithm differs from Erev and Roth’s work [6, 7] on 
three main points: 
1. Our model is a pure strategy stochastic game. Our 

agents try to learn the best pure strategy, and the 
learning process is organised in order to find pure 
strategy equilibria  

2. Our model takes into account the exploration vs 
exploitation problem. In Erev-Roth’s model, these 
concepts are not present. In the reinforcement learning 
problem [25-27] the agent has to define how much 
exploration and exploitation to undertake. In order to 
allow agents to explore new strategies we used the 
utility function model. Thus, agents only use, with a 
high probability, the best strategy, or the first three best 
strategies, and only with a small probability do they 
use the other ones. The learning parameter α  is also 
very important. Since it is equal to 0.5, this implies that 
we are modelling a tracking problem (the agents are 
able to quickly react and change strategy). 

3. The players always have the same probabilities of 
exploitation or exploration, independently of the 
iteration of the game. This approach keeps the agents’ 
capacity of reaction to changes constant along the 
simulation: this makes the model suitable to deal with 
non-stationary environments. In Roth-Erev’s basic 
model, [6], the probability of choosing a certain 
strategy is directly proportional to the expected reward. 
The implication of this is that Roth-Erev’s algorithm 
tends to converge to local equilibria with insufficient 
search of the solution space. 

 
In Table 2 an example illustrates the learning process. 
 

--- Insert Table 2 About Here --- 
 
Overall, the simulation model can be summarised by the 
behavioural pseudo-code outlined in the Appendix. 
 

IV. INITIAL SIMULATIONS OF THE NEW 
ELECTRICITY TRADING ARRANGEMENTS 

 
The NETA simulation model, as described above was 
applied to the full system of England and Wales, as it 
existed in summer 2000, with 80 generating plants, owned 
by 24 generators who sell power to 13 Suppliers. All the 
experiments have simulated 200 iterations (trading days) of 
the algorithm, based upon the winter demand profile, shown 
in Figure 1, with an available capacity of around 56GW.  
 
In the experiments presented we use a 0.5 smoothing 
parameter (learning rate). The Retail Price was fixed at £80. 
The plant availability was defined as a function of the 
technology: base-load technology is available 99% of the 
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days, while the flexible technology is available 95% of the 
days.  
 

--- Insert Figure 1 About Here --- 
 
The estimated marginal generation costs for each plant 
ranged from £3 MWh to £94 MWh. The low marginal costs 
are associated with base-load plants, nuclear, CCGT and 
some large coal plants. The high marginal costs are 
associated with Gas Turbines, Pumped Storage and oil 
plants. The estimates used are consistent with those used in 
other published studies on the UK generation market, as 
well as with known data on plant efficiencies and fuel costs. 
The relation between Cycles and the plants’ positions in the 
supply curve is presented in Figure 2. 
 

--- Insert Figure 2 About Here -- 
 

A. Market Results 
 
Initial results give an overview of how the model is 
working and the evolution of prices and quantities traded in 
the PX and BM. In Table 3, we analyse the impact of 
suppliers’ prediction error on the quantities sold and bought 
in the BM and on the Imbalances (spillage and top-up). 
 

--- Insert Table 3 About Here --- 
 
The quantity traded (bought or sold) in the BM is less than 
2.5% of the total trade in the PX. As one might expect, the 
prediction error is a determinant factor in the amount 
traded, and these results point to the economic gain, which 
could be achieved through better forecasting, by the 
suppliers (these agents are the ones that will be paying the 
imbalance charges resulting from prediction errors). Whilst 
forecasting load at the national level has become very 
accurate (2% mean absolute percentage error), at the 
regional level, where metering is less frequent and where in 
the past there had not been a need to forecast accurately in 
such a short time-scale, errors of between 5-10% are 
thought to be the norm. Imbalances and trade in the BM are 
different concepts. The spillage and top-up represent from 
2.5% to 2.9% of total trade in the PX, with a low prediction 
error, and represent 5.0% to 6.1% of total trade in the PX, 
for the higher prediction error. The reason why imbalances 
represent a higher percentage than trades in the BM is that 
some positive imbalances can cancel the negative ones. 
Overall, these results show that the risks of NETA are much 
greater for suppliers. The generators can control their 
Imbalances, with the exception of unplanned technical 
outages, while the suppliers are completely dependent on 
industry prediction capabilities. 
 
An example of how the model learns can be seen in Figure 
3, which displays a representation of the average daily 
prices (24 hour moving window) in the Power Exchange 
and in the BM (PXP, SBP, and SSP), during the 200 
iterations of the baseline experiment. Note that market 

prices do emerge to create a wide spread between SBP and 
SSP, and that PXP is centrally located between them. This 
is what the advocates of NETA hoped would occur, in that 
out-of-balance players would regret they had not traded 
forward at PXP. The level of prices which have emerged 
around £50/MWh for winter days is rather high, because in 
this experiment, as will be seen below, agents learn to 
exercise market power and create price spikes at the two 
peak periods. Notice that the SBP is much more volatile 
than the PXP or the SSP. Notice also the emergence of 
daily price cycles (with high prices at the peaks) as agents 
learn from experience. 
 

--- Insert Figure 3 About Here --- 
 
To look at the daily price profile in more detail, the actual 
prices on the last iteration are shown in Table 4.  
 

--- Insert Table 4 About Here --- 
 
The peak prices spikes are noteworthy, as the PXP ranges 
from £14.5 to £29.5 in the off peak hours, to £318 and £509 
in the two peak-hours. The mark-ups PXP/MC above 60% 
are associated with capacity used above 80% and the “price 
explosion” only happens with capacity used above 85%.  
 
The prices can be divided in three periods: 
1. A low demand period (below 80% of available 

capacity) where the prices tend to be close to marginal 
costs.  

2. An average demand period (between 80% and 85% of 
available capacity) where the prices are at least 60% 
above the marginal costs. 

3. A high demand period (above 85% of available 
capacity) where the prices rise to at least 38 times the 
marginal cost. 

 
Notice the small difference in capacity used between the 
high demand and the average demand period: this is due to 
the supply function’s shape. 
 
These results are stronger than the ones in [4]. The 
experiments show that even if the demand is lower than the 
total capacity, prices may rise well above the marginal cost. 
Thus, there is a threshold above which collusion is possible 
and sustainable, and there is another above which only the 
Regulator can stop prices from unbounded spiking. 
 
In the rest of the analysis we disregard these two hours with 
demand of 49GW, since the equilibrium was not reached. It 
is also interesting to note that the off-peak prices (without 
these two hours) show a profile of PXPs consistent10 with 
the 6-month forward prices, which were emerging in 
summer 2000, ahead of the planned NETA introduction 
during the winter (and indeed close to what did occur in the 
early months of NETA after March 2001). 
 
                                                           
10 In August 2000, forward prices for off-peak winter 
2000/2001 were averaging £22/MWh 
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B. Strategic Implications for Suppliers 
 
The 13 suppliers used in the experiments had market shares 
of between 3.6% and 12.2%. The analysis of the suppliers 
initially focused on two main issues: demand prediction 
capabilities and contract cover (how much of there expected 
demand they want to buy in the PX). In Table 5 we specify 
the 5 experiments on this theme. 
 

--- Insert Table 5 About Here --- 
 
We used regression analysis to test the influence of the 
separate effects. The regression for the off-peak hours, 
where the dependent variable is the suppliers’ Profit-per- 
unit-sold, is reported in Table 6. 
 

-- Insert Table 6 About Here --- 
 
The regression in Table 6 shows that the lower the 
prediction error, the higher the Profit-per-unit-sold of the 
industry as a whole, given an objective for contract cover of 
100%. The experiments have also shown that a contract 
cover of 115% (85%) has a negative (positive) impact on 
the suppliers Profit-per-unit-sold. This is a result which 
surprised the supply industry since conventional wisdom 
has been that they would be wise to be risk averse to 
Imbalances, and if anything, be slightly over-contracted in 
their FPNs. In our model, however, the intuition is that if all 
suppliers under-contract, the PX price falls given the 
reduction in demand. Following that, the generators expect 
a lower price in the BM and also have extra capacity 
available to sell, so the BM price falls as well.  
 

C. Strategic Implications for Generation 
 
In order to study generators’ behaviour, we analyse two 
dependent variables: profit-per-unit-of-capacity-available 
and price offered in the PX (price-offered-PX). Note these 
variables are defined at the plant level. The objective is to 
identify a relationship between generators’ behaviour and 
plant ownership structure. The regression parameters for the 
profits-per-unit-of-capacity-available in the off peak hours 
(for the accepted offers in the PX) are presented in Table 7 
(Model 1). The regression parameters for price-offered-PX 
(for the accepted offers in the off-peak hours) are presented 
in the Table 7 (Model 2)11. 
 

-- Insert Table 7 About Here -- 
 
Applying hierarchical clustering to Model 1 and Model 2 
parameters we have identified the following strategic 
groups of generators: 

                                                           
11 Although some of the estimated regression parameters 
are not statistically significant, the overall results do 
provide an indication for the informal clustering into 
strategic groups. 

1. AES, MG and PG. These generators have lower profits 
per-unit and lower prices than average. These players 
own base-load plants that they use intensively with low 
profits per unit of capacity available. 

2. BE and EDF. These generators have a low price and 
continuous running policy.  

3. EP. This generator has a portfolio based on some base-
load plants (large coals) with “high” marginal costs and 
a few very flexible and “low” cost plants, the pumped 
storage. EP had a very good performance on the 
Pumped Storage and a below average performance on 
the large coals. 

4. NP and TXU. These generators belong to the same 
structural group, characterised as “diverse portfolios 
with dominant positions”. These agents have a policy 
of high pricing (prices above average).  

 
The flexible technology (two and three cycles) tends to 
price and have profits per unit above average. The fact that 
a plant belongs to a certain portfolio of plant owned by 
different generators also has a significant effect in its 
pricing behaviour. This suggests that the inter-relatedness 
of plant ownership and profits will continue to promote the 
active buying and selling of plant through the capital 
markets, as generators seek to reposition their portfolios of 
plant. 
 

V. CONCLUSIONS 
 
Agent-based computational methods can provide insights 
into pricing and strategic behaviour in complex new 
markets such as electricity. Imperfect competition, 
exercised through the daily repetition of a competitive 
market, with administered market rules, creates a process of 
continuous experimentation and gaming which agent-based 
simulation is able to imitate. Overall, the results obtained in 
this study were plausible to the industry, the prices 
reasonably well calibrated, and the model represented the 
first detailed study of the inter-relationship of the bilateral 
trading to the balancing market in the proposed New 
Electricity Trading Arrangements for the UK. 
 
In summary, the insights into NETA which came out of this 
modelling were: 
1. The amount of trading in the BM maybe less than 2% 

of the total amount sold in the bilateral markets, but the 
imbalances will be much higher (how high depends on 
the prediction-errors by the suppliers).  

2. There is no incentive for the SO to publish more 
accurate predictions, yet this would improve the 
efficiency of the industry. 

3. NETA will have a greater risk impact on suppliers than 
on generators, even though one of the ideals of the 
reform was to make the wholesale electricity market 
less of a “generators’ market”. 

4. The Capacity Margin (demand as a percentage of total 
capacity available) seems to be the most important 
factor behind the possibility of collusive behaviour on 
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the generation side. There is a threshold above which 
collusion is possible and sustainable and there is 
another above which only the Regulator can restrain 
unbounded spikes. Other experiments, not reported in 
this paper, on the parameter availability, have shown 
that withholding capacity may have an extreme impact 
on the peak prices (but, in the experiments reported, a 
tightening of the capacity margin by 5% had a 
important impact on prices). 

5. The experiments have also shown that a contract cover 
of 115% (85%) has a negative (positive) impact on the 
suppliers’ profit-per-unit-sold. If they collectively learn 
to under-contract in this way, they will exert some 
market power on the supply side. 

6. Flexible plant will be relatively more valuable in the 
new market mechanism, yet its value will depend upon 
the portfolio of ownership. This inter-relatedness will 
ensure that there will be continued activity in buying 
and selling plant amongst generators as they seek to 
reposition themselves in the market. 

 
Finally, there is always a caveat in the use of models such 
as these. They embed a number of behavioural assumptions 
and are constrained by exogenous parameters. For example, 
the learning model is based upon adaptive expectations 
between the PX, the BM and the next day’s PX and BM. It 
is plausible to think of more sophisticated agents, but that 
may raise computational limitations. The model simulated 
here is already very large and complex by multi-agent 
standards. Similarly, it would be attractive if some of the 
parameters were endogenous variables. Contract cover is 
one, in particular, where we would like to see some 
emergent behaviour. Nevertheless, this application has 
represented a major, innovative application of agent-based 
simulation to a real issue, that of understanding the 
implications NETA, where there had previously been a 
shortage of reliable analytical, empirical and experimental 
insight. 
 

APPENDIX 
 

Pseudo–Code for the NETA Simulation System Behaviour 
 
For I=1:Number of iterations  

Step 1) Suppliers predict demand for each hour 
Step 2) Generators define which plants can run 
Step 3) Generators offer in the PX 
Step 4) Suppliers bid in the PX 
Step 5) Trading in the PX and calculation of System 
Position in each one of the hours 
Step 6) Generators and Suppliers offer (bid) into the BM 
Step 7) Trading in the BM and calculation of imbalance 
prices 
Step 8) Settlement Process: calculation of imbalances for 
each one of the suppliers and generators (plant by plant) 
Step 9) Learning 

End 
 
SubCode for Suppliers’ Learning Behaviour 
 

Step 1) Verify if the objective for the Balancing 
Mechanism Exposure was achieved. If it was not 
penalise the profit obtained in the PX. 
Step 2) Given the daily profits in the PX and in the BM 
revise, for the mark-up used, the:  
   - Expected profit in the PX and in the BM 
   - Expected acceptance rate in the PX and in the BM 
Step 3) Define the new bidding policy for the next day. 
 
In the beginning of the next day: 
Step 4) After calculating predictions for demand define 
the quantities and prices bid, making sure that the 
operational rule of behaviour is respected. 

 
SubCode for Generators’ Learning Behaviour 
 
For each plant in the portfolio:  

Step 1) Verify if the objectives for the Balancing 
Mechanism Exposure and the Position in the Load 
Duration Curve were achieved. If they were not 
achieved penalise the profit obtained. 
Step 2) Given the daily profits in the PX and in the BM 
revise, for the mark-up used, the:  
- Expected profit in the PX and in the BM. 
- Expected acceptance rate in the PX and in the BM.  
Step 3) Define the new offering policy for the next day. 

 
In the beginning of the next day: 
Step 4) Define the quantities and prices offered for each 
plant, after knowing which plants are available, making 
sure that all the operational rules of behaviour are 
respected. 
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CAPTIONS 
 
TABLES 
 
Table 1: Relation between Cycles (the maximum number 
of start-ups within a day) and type of plant in the UK. The 
peak technologies (use to supply peak demand), Gas 
Turbine, Oil and Pumped Storage were classified as having 
three daily cycles. The mid-merit technologies were 
classified with one and two cycles, they include CCGT and 
Coal. Finally the base-load plants (running in a non-stop 
regime) are the nuclear stations and the interconnectors. 
 
Table 2: Policy derivation example. An agent has ten 
different possible mark-ups and it builds a policy on them. 
Exp (Prftj), Exp(Rwdtj), and Exp(Arttj) represent, 
respectively, the expected time t profit and reward, and the 
expected time t acceptance rate, of each mark-up j. Rank(j) 
orders the rewards from the highest to the lowest expected 
reward. Utilj represents the perceived utility an agent 
receives from a certain mark-up. Polj represents the 
probability of using a certain mark-up when bidding 
(offering). 
 
Table 3: Quantities traded in the BM and total Imbalances. 
Sell (Buy) BM stands for the quantity sold (bought) in the 
BM. Spill (Top-up) is the total electricity that suppliers 
consumed below (above) the FPNs or that generators 
produced above (below) the FPNs. All quantities are 
presented as a percentage of the total trade in the PX. 
 
Table 4: Final iteration for the winter day baseline scenario. 
It describes the quantity demanded, the marginal costs and 
prices (Price in the Power Exchange and the System Buy 
Price) during the last iteration, for each hour of the day. The 
mark-ups represent the percent increase of the PXP and of 
the SBP compared to the marginal cost. 
 
Table 5: Experiments with suppliers’ parameters: in each 
experiment a different combination of demand prediction 
capabilities and contract cover objective is tried.  
 
Table 6: Dependent variable: suppliers profit per-unit sold. 
Two, Three, Four and Five are dummy variables 
representing experiments 2, 3, 4 and 5, respectively (i.e. 
Two is 1 to indicate experiment two or zero otherwise). 
Experiment one is our base case. The t-statistics are 
presented in parentheses. 
 
Table 7: The dummy variables AES, BE, EP, MG, NP, PG 
and TXU identify the 7 main owners of plant portfolios. C1, 
C2 and C3 are also dummy variables that identify, 
respectively, plants with one cycle, two cycles and three 
cycles. The dependent variables in Model 1 and Model 2 
are, respectively, the plant profit per-unit-of-capacity-
available, and the plant prices-offered-PX (for the accepted 
offers only). The t-statistics are presented in parentheses. 
 
 
 

FIGURES 
 
Figure 1: Standard winter daily demand profile: the 
demand profile used in the experiments presented in this 
paper has three peaks of demand in order to make the 
generators task more difficult (they have to decide when to 
start a plant given the demand cycles). 
 
Figure 2: Plant cycles in the supply curve: Plots the type of 
cycle defined for each plant along the supply curve. On 
average flexible plant have higher marginal cost. 
 
Figure 3: Average daily prices (moving 24 hours window): 
PXP, SBP and SSP. Price evolution in the PX and in the 
BM for the 200 iterations of the experiment. 
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Table 1 
 

Type Cycle
Gas Turbine 3 

Oil 3 
Pumped Storage 3 

Small coal 2 
CCGT 1 

Large coal 1 
Inter-connector 0 

Nuclear 0 

Table 2 

Mark-up 
Categories 

1 2 3 4 5 6 7 8 9 10 

Exptj(Prf) 500 400 600 300 1000 700 800 850 750 900 
Exptj(Art) (%) 100 94 98 80 85 70 65 70 60 55 
Exptj(Rwd) 500 376 588 240 850 490 520 595 450 495 
Rank(j) 5 9 3 10 1 7 4 2 8 6 
Utilj 3.9 0 62.5 0 1000 0.3 15.6 250 0.1 1 
Polj (%) 0.3 0 4.7 0 75 0 1.2 18.8 0 0.1 

 
Table 3 

Average 
Prediction 

Error  

Sell 
BM 

 

Buy 
BM  

 

Spill 
 

Top-up 
 

10.0 2.4 1.3 5.1 6.2 
5.0 1.3 0.9 2.5 2.9 
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Table 4 
Demand 

(GW) 
Marginal 

Cost 
(MC) 

Capacity 
Used 
(%) 

PXP 
 

SBP Mark-up
PXP/MC

(%) 

Ratio 
SBP/PXP 

Mark-up 
SBP/MC 

(%) 
33 13.25 58.8 14.55 16.57 9.8 1.14 25 
33 13.25 58.8 14.53 18.00 9.7 1.24 36 
36 13.28 64.2 14.89 17.79 12.2 1.19 34 
38 13.36 67.7 15.44 19.00 15.6 1.23 42 
40 14.32 71.3 15.71 20.00 9.7 1.27 40 
42 14.36 74.8 16.99 34.32 18.3 2.02 139 
43 14.60 76.6 17.72 34.16 21.4 1.93 134 
42 14.36 74.8 16.88 30.85 17.6 1.83 115 
41 14.36 73.1 16.03 29.27 11.6 1.83 104 
40 14.32 71.3 15.72 20.00 9.8 1.27 40 
40 14.32 71.3 15.78 26.50 10.2 1.68 85 
42 14.36 74.8 16.71 33.28 16.4 1.99 132 
46 14.62 82.0 29.46 63.00 101.5 2.14 331 
49 15.87 87.3 318.72 603.70 1908.0 1.89 3703 
49 15.87 87.3 509.18 1100.76 3108.0 2.15 6830 
45 14.42 80.2 23.65 51.49 64.1 2.18 257 
42 14.36 74.8 16.29 20.00 13.5 1.23 39 
40 14.32 71.3 15.67 26.60 9.4 1.70 86 
36 13.28 64.2 15.15 16.62 14.1 1.10 25 
38 13.36 67.7 15.47 18.55 15.8 1.20 39 
39 13.36 69.5 15.60 26.80 16.8 1.72 101 
38 13.36 67.7 15.49 24.78 16.0 1.60 86 
36 13.28 64.2 14.96 19.00 12.7 1.27 43 
35 13.28 62.4 14.83 18.00 11.7 1.21 36 

 
 
Table 5 

Exp. 
Number 

Prediction 
Error 

Contract 
Cover 

1 10 100 
2 10 115 
3 5 115 
4 5 100 
5 5 85 

 
Table 6 

  Two Three Four Five 
Coef. 60.8 -5.79 -11.87 0.71 2.4 
t-stat (396) (-26.7) (-54.8) (3.2) (11.2) 
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Table 7 

 
Var. Model 1 Model 2

5.9 16.7 
(57.2) (168) 

C1 -2.8 0.3 
(-27.6) (2.9) 

C2 0.16 1.3 
(0.87) (7.5) 

C3 4.3 4.8 
(14) (16.8) 

AES -1.4 -0.7 
(-12.2) (-6.4) 

BE 1.23 -0.3 
(9.8) (-2.6) 

EDF 1.9 -0.4 
(15.5) (-3.3) 

EP -0.05 -0.3 
(-0.34) (-2.2) 

MG -0.4 -0.2 
(-2.1) (-1.4) 

NP -0.15 0.9 
(-0.8) (5.6) 

PG -2.1 -0.3 
(-17.2) (-2.9) 

TXU 0.5 2.6 
(2.4) (12.5) 

 
 
Figure 1 
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Figure 2 
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