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Nonlinear Blind Source Separation Using Higher
Order Statistics and a Genetic Algorithm
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Abstract—Demixing independent source signals from their
nonlinear mixtures is a very important issue in many scenarios.
This paper presents a novel method for blindly separating
unobservable independent source signals from their nonlinear
mixtures. The demixing system is modeled using a parameterized
neural network whose parameters can be determined under the
criterion of independence of its outputs. Two cost functions based
on higher order statistics are established to measure the statistical
dependence of the outputs of the demixing system. The proposed
method utilizes a genetic algorithm (GA) to minimize the highly
nonlinear and nonconvex cost functions. The GA-based global op-
timization technique is able to obtain superior separation solutions
to the nonlinear blind separation problem from any random initial
values. Compared to conventional gradient-based approaches, the
GA-based approach for blind source separation is characterized
by high accuracy, robustness, and convergence rate. In particular,
it is very suitable for the case of limited available data. Simulation
results are discussed to demonstrate that the proposed GA-based
approach is capable of separating independent sources from their
nonlinear mixtures generated by a parametric separation model.

Index Terms—Blind source separation, feedforward neural net-
works, genetic algorithms, higher order statistics, nonlinear mix-
ture, statistical independence.

I. INTRODUCTION

I N MANY applications such as biomedical, speech, and
sonar/radar signal processing, signals come from mul-

tichannels and are received by several sensors. The signals
from the sensors are generally mixtures of many independent
sources [1], [2]. For example, electrocardiogram signals in
medical diagnosis are collected from multiple electrodes
placed at different locations of a human body and are used to
diagnose the cause of diseases and locate sources of illness.
Similarly, electroencephalograph signals collected from eight
to 16 sensors at different locations on the scalp of a patient’s
head are processed to seize spike pulses. The same kind of
problem can be also found in aerial processing for sonar and
radar signals or speech processing for enhancement of speech
signals in a strong background-noise environment. Therefore,
signal separation is a basic problem in numerous practical
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applications and fields as listed above [3]–[5]. The study of this
problem is of great importance in both theory and applications.

The problem of source separation concerns extracting inde-
pendent signals from their linear or nonlinear mixtures. Source
separation may be achieved in different ways according to the
amount of available prior information. So-called blind source
separation (BSS) seeks to recover original source signals from
their mixtures without any prior information on the sources
themselves or the mixing parameters of the mixtures. BSS
techniques have received extensive attention beyond the context
of signal processing due to their very weak requirements or
conditions about signal sources and mixing channels. In view of
this, we make the following moderate assumptions for our later
discussions in this paper: 1) the parametric form of mixtures is
known; 2) signal sources are statistically independent; and 3)
the number of sensors is equal to that of sources. Because of
the weak conditions, from another point of view, the separation
system may be seen as a black box that receives mixtures
at its inputs and provides the estimation of original sources
at its outputs. However, the outputs of the separation system
are not knowna priori due to the nature of blind separation.
As a result, we only expect the outputs of the system to be
statistically independent. Thus, a BSS algorithm adjusts the
internal parameters of the separation system so as to obtain the
independence of its outputs via unsupervised learning. When
the parameters of the separation system are tuned correctly, an
estimation of sources can be obtained at the outputs regardless
of the indeterminacies of permutation and scaling [2].

Neural-network models with learning capabilities for online
BSS from linear mixing signals were first developed by Her-
ault and Jutten [6]–[8]. Since then, most BSS studies address
the case of linear and instantaneous mixtures, which was ex-
tended recently to linear convolved mixtures, e.g., for convolu-
tive mixing of sources with causal FIR filters [9], [10], and even
nonlinear mixtures [11], [12].

Generally, the mixing process of multiple sensors contains
some nonlinear transformation such as the saturation distortion
of sensors. The study of nonlinear BSS is more realistic and
important than linear BSS in practice. However, blind separa-
tion of the original signal in nonlinear mixtures has rarely been
addressed because ifand are two independent random vari-
ables, then any nonlinear functions and are also sta-
tistically independent regardless of the specific form ofand
. That is to say, it is impossible to separate original sources

using only the source independence assumption of some un-
known nonlinear transformations of the sources [13].

In spite of many difficulties in separating independent
sources from nonlinear mixtures, several effective models and
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methods were proposed recently for nonlinear BSS. Deco [14]
studied a volume-conserving nonlinear transform for nonlinear
BSS. Pajunenet al. [15] used Kohonen’s self-organizing map
(SOM) to extract sources from nonlinear mixtures. It is a
model-free method but suffers from the exponential growth
of network complexity and interpolation error in recovering
continuous sources. Talebet al.[16] proposed an entropy-based
BSS algorithm in post nonlinear mixtures. Yanget al. [17]
proposed an information back-propagation algorithm for
interchannel nonlinear mixtures in the sense of entropy max-
imization and mutual information minimization, and adopted
a sigmoidal nonlinear transformation of the nonlinear model
based on the work by Burel [11]. Very recently, Tanet al.
applied radial basis function networks for nonlinear BBS
[12]. These newly developed models are established on the
basis of parametric models because it is very important for
nonlinear BSS to obtain unique separating results when only
the independence of sources are knowna priori. All of these
methods are developed based on gradient-based optimization to
avoid computing some unknown quantities in an unsupervised
manner. Therefore, these methods are susceptible to the local
minima problem during the learning process and are thus
limited in many practical applications.

On the other hand, different from the likelihood estimation
of probability, which can be performed with local minima, the
BSS problem requires obtaining a global optimum. Further-
more, the learning objective functions of the BSS problem are
multimodal and highly nonlinear. However, all of the existing
learning algorithms of BSS systems are based on stochastic gra-
dient methods such as back propagation, bigradient, and nat-
ural gradient [1], [2]. These conventional gradient optimization
techniques may converge to “bad” solutions unless good initial
values are provided, which is impossible in view of the blind
hypothesis. Therefore, it is important to develop new BSS algo-
rithms on the basis of global optimization techniques.

In order to overcome the local minimum problem in many ex-
isting methods, here we propose a BSS approach based on a ge-
netic algorithm (GA). In this approach, we first define some cost
functions to measure the independence of the outputs, which
consist of higher order statistics (HOS) of the outputs. Then, by
using a GA to minimize the cost functions, we can obtain highly
accurate estimation of original sources at the outputs of the sep-
aration system.

Several researchers have applied GAs to blind signal pro-
cessing. Chenet al. [24], [25] studied the application of a
micro-GA method proposed by Krishnakumar [26] to blind
channel identification based on higher order cumulant fitting.
Alkanhal et al. [27] made use of GAs for blind identification
of nonminimum phase finite-impulse response systems by
evaluating a cost function defined in terms of output cumulants.

Yet the applications of GAs to BSS is rare. Most recently,
Yoshiokaet al. [28] reported a preliminary study. This method
can separate original images from noise-corrupted images by di-
rectly minimizing the Kullback-Leibler (KL) divergence using
GAs. However, this method needs to estimate the prior prob-
ability of the sources. It is well known that BSS requires the
global optimization solution, but serious local minima of current
existing approaches obstruct their wide applications in many
practical fields [1]–[16].

This paper presents a novel procedure for separating original
independent sources from their nonlinear mixtures using a GA
and HOS of the outputs of a separation system. The proposed
approach differs from previous ones in several aspects. The first
aspect is to utilize a global optimization method to learn the un-
known parameters of the separation system. The second aspect
is to minimize a predetermined cost function that measures the
independence of the outputs of the separation system and can
be expressed using HOS. The third aspect is that this method
is able to handle both linear and nonlinear mixtures. Our sim-
ulation studies demonstrate that the GA-based BSS scheme is
robust to estimation errors in HOS and can achieve global op-
timal solutions from any initial values of the separation system.
Furthermore, since the number of parameters to be optimized in
this problem is usually small, GAs are particularly effective and
efficient for this kind of optimization problem.

The paper is arranged as follows. In Section II, we present the
principle of the BSS problem. In Section III, we propose two
cost functions based on HOS. In Section IV, a GA with some
modifications suitable for our problem at hand are described. In
Section V, simulation results are given to show the effectiveness
and validity of the proposed GA-based method. Finally, conclu-
sions are provided in Section VI.

II. BLIND SOURCESEPARATION

Based on the specific application and available prior in-
formation about source signals, the source mixing process
can be described by various mathematical models. Here, we
discuss a general mixing model that can describe most of
actual mixing processes. Let unobservable source signals be

with mutually independent
and stationary components. We further assume that each source
has a moment of any order with a zero mean. The mixture is
generally expressed as

(1)

where , the superscript
denotes the transpose operator,
is an unknown componentwise nonlinear transform function
called the nonlinear mixing function, and
are unknown nonsingular mixing matrices that mimic the
instantaneous mixtures of signals.

The unknown mixing and proposed separating systems for
BSS are illustrated in Fig. 1. As shown in the figure, the un-
known mixing system at the left part of Fig. 1 can be modeled
as a cascaded instantaneous linear mixing, componentwise non-
linear transformation, and linear mixing. Actually, this model
is realistic since most of the practical mixing systems can be
well described by Fig. 1, which contains both channel and inter-
channel nonlinearities. At the same time, we also give the sepa-
rating system at the right part of Fig. 1, which is an inverse pro-
cedure of the mixing process among which the nonlinear sepa-
rating function of the separating
system is a parametric inverse function of the nonlinear mixing
transform function .

The task of the separating system is to recover the unobserv-
able original signals from the mixtures without any
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Fig. 1. Mixing and separating systems in BSS.

knowledge of the source signals , the mixing matrices ,
or the parameters of the nonlinear transform function. Since
we assume the nonlinear transform function and its inverse

are of parametric network formulations, our problem is to
estimate the parameters of demixing matricesand and the
separating function for the outputs to approximate the orig-
inal sources apart from the indetermination of a permutation and
scaling due to the weakness of the hypotheses. That is to say, the
learning algorithm of this BSS problem is to tune the parame-
ters of the separation system so as to achieve independence of
the outputs.

As shown in Fig. 1, the outputs of the separating system are

(2)

Substituting (1) into (2), we can obtain

(3)

where is a permutation matrix and is a nonsingular and di-
agonal matrix. Equation (3) holds when the following condition
is satisfied:

(4)

This means that the components of the outputsare indepen-
dent. Therefore, we have the following proposition.

Proposition: For the mixing and separation systems given
in Fig. 1, suppose that we know the parametric formulation
of the mixing and separation systems and assume that the
number of original sources is equal to that of mixtures, if
(4) holds through the adjustment of parameters of the sep-
aration system, then the outputs of the separating system

are mutually independent.
For the nonlinear mixing transform function, we assume it

has the inverse function , which also has a parametric form.
Specifically, it is seen from Fig. 1 that the separating system can
be implemented by a two-layer feed-forward neural network,
where the input weight is matrix , the nonlinear transform

function is the activation function of the neurons in hidden
layer, and the output connection weight is given by matrix.

Usually, the activation function can be of the following
forms.

1) Threshold function

if
if
if

(5)

2) Piecewise-linear function

if
if
if

(6)

where is the amplification factor inside the linear
region of operation and is the saturation level. This
form of an activation function may be viewed as an
approximation to a nonlinear amplifier. There are two
special situations of piecewise-linear functions. One
is a linear function if the linear region of operation is
maintained without running into saturation. The other is
that the piecewise-linear function reduces to a threshold
function if the amplification factor of the linear region is
made infinitely large.

3) Sigmoid function

(7)

where is the gain of the neuron. The sigmoid
function is by far the most common form of activation
function used in the construction of neural networks. It is
a strictly increasing and differentiable function, whereas
the threshold function is not.

In particular, if is a linear function, Fig. 1 becomes the con-
ventional BSS problem in linear simultaneous mixture, which
is well documented. Here we stress the nonlinear BSS problem
when is chosen to be nonlinear. From (5)–(7), we know that
the activation function for the hidden layer in the mixing system
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is an unbounded function even on a bounded input region if
we employ a two-layer neural network with bounded activa-
tion function given in (5)–(7) as the separation system. For ex-
ample, if is the sigmoid function in (7), then arctanh ,
where denotes the parameter of the mixing nonlinear func-
tion. In practice, in our simulation studies, as long as the inverse
function can be approximated by a parametric neural net-
work, we can recover the inputs from the outputs of a parametric
two-layer neural network with a monotonic activation function
for each neuron in the hidden layer. In order to measure the in-
dependence of the outputs effectively, we will define two cost
functions in terms of easily computable HOS in the next section.

III. COST FUNCTIONS

A. Independence Conditions and Constraints

In order to measure the independence of the outputs, it is very
natural to use the probability criterion of random variables. Sto-
chastic independence of random variables is defined from its
probability distribution and the concept of the statistical inde-
pendence is more general than decorrelation, which takes only
second-order statistics into account. Let be the probability
density function (pdf) of random variable, be marginal
pdf of , and be the joint pdf of random vector, we have
the following conditions for the independence of random vari-
ables.

Independence Conditions:For the independent components
of random vector , the following statements are mutually
equivalent:

1) ;
2) ;
3) .
Obviously, Condition 1 is the definition of independence of

random variables. Condition 2 is just the famous KL diver-
gence between two probability distribution and

. According to the KL divergence, one can obtain
the mutual information criterion of , which has been studied
widely in the context of blind signal processing. It is easily
shown that Condition 3 is a direct result of Conditions 1 and
2. Therefore, the three statements are sufficient and necessary
conditions of the mutual independence of random variables; i.e.,
minimizing the KL divergence of or the left part of Statement
3 to zero can make the outputs mutually independent and vice
versa.

Although the above conditions are necessary and sufficient
for the independence of the outputs of the separation system,
they need the estimation of the probability or entropy of the
output variables and mixing input variables, which are unknown
under the “blind” assumption. So, these conditions seem diffi-
cult to use. In order to avoid the difficulties in estimating the
probability of unknown random variables, we wish to find an
expression equivalent to the conditions, but is easier to deal with
in terms of higher order statistical moments without estimating
the probability and the entropy of the outputs.

For the convenience of our later discussions, recall the defini-
tion of the characteristic function of random variables. It is well

known that the characteristic function and the pdf are related as
a Fourier transform pair [29], i.e.,

(8)

where is a vector of variables in Fourier
transform domain and stands for an imaginary unit.
In particular, for the single random variable, we have

(9)

In what follows, we will use two methods to reexpress the
independence conditions of the theorem. One uses the moment
statistics of the nonlinear function transform of the outputs. The
other uses the HOS of the outputs. In order to further facilitate
learning, constrain the outputs, and achieve good separation re-
sults, we impose two conventional constraints on the outputs of
the separation system

(10)

(11)

Constraint (10) is very natural and can always be achieved by
adjusting the bias of neurons in the output layer when the system
is implemented in a neural network. Constraint (11) is used to
limit the variance of the outputs to be unity, which is very useful
in the context of blind signal processing according to many sim-
ulation studies. So, we will add these two constraints in the cost
functions to be defined and call them basic constraints.

B. Dependence Measure by Nonlinear Function Moment

In view of (8) and (9), according to the probability theory
on the independence of random variables, Condition 1 can be
expressed equivalently by using the characteristic function as

(12)

Since the characteristic function of a random vector is equal to
the product of that of each component of the outputs when they
are mutually independent, if we take the Taylor expansion at
both sides of (12), cross moments must be zero. As a result,
we get an idea that if all joint cross moments of the outputs are
forced to zero, the independence of the outputs can be achieved.
This means that we can get an expression of the dependence
measure by using moments that are easier to cope with. Unfor-
tunately, it is impossible to take the moments of the all orders
into account since the exhaustive computation is infeasible. To
amend it, one can use a nonlinear transform function of sig-
nals before computing its moments. In this way, we can indi-
rectly take all the moments into account to separate nonlinear
mixtures. Suppose we haveinfinitely differentiable functions

and have the following Taylor expansion:

(13)
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where we define to simplify notations. If we
take the central moment of quantity , we can get

(14)
Substituting (13) into (14), we have

(15)

If the components in are mutually independent, then
we have according to (14). From
(15), we know that is null if all

for , where .
Hence, is a necessary condition
for to be independent. Based on the above discus-
sions, we can define the following cost function for BSS in
case of two independent sources:

(16)

where is the parameter vector of the separation system and
and are two positive constants weighting the dependence

measure and the basic constraints. Even though this is only a
necessary condition for the dependence of outputs, it is very
easy to deal with and good separation results are often obtained
by minimizing this cost function, as will be further illustrated
by our simulation results.

C. Dependence Measure by Higher Order Moments

By using Statement 3 to measure the dependence of random
variables, we can get another expression of dependence by the
higher order moments of the outputs. Before we proceed, a
smoothing window should be enforced on the difference of the
joint pdf and product of marginal pdf of for reducing the fluc-
tuations on the coefficients of the expression and decreasing the
errors of real data. Hence, the measure of the dependence of
random variables becomes

(17)

with

(18)

where in (17) denotes the convolution operator and
are window functions that may take different forms

such as rectangular window function, up-cosine function, or
Gaussian window function and can be selected according to spe-
cific applications. By considering (8), taking the Fourier trans-

form of (17), and considering the properties of the Fourier trans-
forms, we can obtain

(19)

where is the Fourier transform of the window function
defined in (18).

Since most signals considered are bounded and the moments
of bounded random variables always exist, we can take the
Taylor expansion around the origin of the characteristic func-
tion

(20)

(21)

According to the convention that the partial derivative of
order zero of a function is the function itself, we obtain

(22)

where

(23)

According to the definitions of a characteristic function and
the moment of random variables, we have the following rela-
tionship between the origin moment and the derivatives of the
characteristic function at zero:

(24)

(25)

Thus

(26)

where stands for the th central moment
of .

In view of (19)–(26), the expression of the measure of depen-
dence can be rewritten as

(27)

which can also be transformed as
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By interchanging the sequence of summation and integral, we
obtain

(28)

Finally, we reach

(29)
with

(30)

where

(31)

is the th moment of the transformed
window function . Note that the positive constant in (28)
is disregarded without any effect on our conclusion.

In this way, we have obtained the exact expression of the
dependence measure in (17) in terms of the HOS of outputs,
which is much easier to cope with. Because (29) is always non-
negative, it becomes zero if and only if all the HOS
are equal to zero. It also means that the independence of the
outputs has been achieved by dealing with the HOS of outputs
only. In addition, according to the property and smoothing effect
of the window functions, it is easily shown that the coefficient

decreases gradually to zero as the
index of sum increases. This property
allows us to use the finite sum of lower orders to approximate
(29) with a satisfactory accuracy. For this purpose, we can de-
fine the following cost function:

(32)

where the basic constraints are also included in the cost func-
tion to help obtain the correct separation in nonlinear mixtures.
This criterion is exactly the same as the dependence criterion
of outputs. So, it is also a sufficient and necessary condition for
the independence of outputs. As a result, minimizing (32) will
result in the independence of outputs and reaching the goal of
BSS. However, the cost function in (32) includes the moments
of the outputs in any order, which are impossible to realize in
specific calculation. Therefore, in our specific implementation,
we only take finite moments (up to th moment) into account,
then (32) becomes

(33)

By using the derivation results of (10), (11), (16), and (33),
we approach our aforementioned goal of defining cost functions
by HOS for BSS. The minimization of the cost function in (33)
gives the correct separation results for linear or nonlinear mix-
tures in our parametric model. In the next section, we present the
GA-based method to fulfill the search of the optimal parameter
set of the separation model based on the cost functions specified
in (16) and (33).

IV. GA-BASED SEPARATION APPROACH

A canonical GA is constituted by the operations of parameter
encoding, population initialization, mate selection, crossover,
mutation, and population replacement. Thus, the operations of
a GA can be concisely described individually as follows.

Encoding: The parameters of the parametric separation
system to be optimized are generally encoded into genes and
chromosomes (also call individuals) as a string of binary
digits using one’s complement representation. Assume that the
parameters lie in some bounded region

for (34)

where represents the number of the parameters. The length
of the gene and individual can be calculated as the length of
the binary string needed to encode based on and the
desired accuracy. Other encoding methods are also possible. In
[20]–[30], the value of each parameter is taken as a gene and,
thus, the individual is encoded by a string of real numbers in-
stead of binary numbers.

Initial Population Generation:The initial population is gen-
erated randomly in the range of each parameter. Therefore, at the
beginning of the separating procedure,individuals are gen-
erated as random binary strings.

Evaluation of Fitness:After the initial population generation,
the fitness of each individual is determined. Fitness is a numeric
index to measure the effectiveness of each individual of the pop-
ulation as a solution, which is usually utilized to select members
of the population for reproduction. For the BSS problem, we can
define a fitness function based on the defined cost functions in
(16) or (33). As a result, the value of the fitness functionfor
th individual can be defined as

(35)

where is the cost function with parameter setto be de-
termined, which is encoded as theth individual. For this fitness
function, though it is very sensitive to the change of individual

, the value of the fitness near the global optimal solution ap-
proaches infinity. To amend this problem, we can add a min-
imum positive constant expressible by an actual digital com-
puter to the denominator of (35), i.e., .

Selection Operator:A pair of individuals is selected from the
current population for mating using roulette wheel selection.

Crossover Operator:A multipoint crossover is applied to the
newly selected (parents) individuals to generate two offspring.
Specifically, the number of crossover points in our application
is equal to the number of the parameters to be optimized.
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TABLE I
COMPUTATIONAL COMPLEXITY OF THE GA-BASED BSS METHOD BASED ON THECOST FUNCTIONS DEFINED IN (16) AND (33)

Mutation Operator:Random mutation operator is applied to
the newly generated offspring to prevent from premature con-
vergence. It randomly alters the gene from zero to one or from
one to zero with a probability expressed by , where is
called mutation probability.

For BSS, the convergence speed of the canonical GA was
found to be very slow. An elitist strategy was used in which the
best individual in the current generation always survived into the
next generation to accelerate the convergence rate of the GA.
We also adopted a reinitialization mechanism with the elitist
strategy to explore a wider space besides the mutation operator.

In addition, in order to terminate the iteration of the GA op-
timization process, a stopping criterion was defined as no fur-
ther improvement of the best fitness value in several consecutive
generations (usually, three or four generations were chosen) so
as to increase the chance of converging to a true global optimum
solution.

In summary, the GA-based BSS algorithm can be imple-
mented as the following iterative procedure.

1) An initial population of size is created from
a random initial set of parameters. The encoding length
of each parameter is 16 bits. By decoding the individual
to get the parameter of the system, the fitness for each
individual is evaluated using (35).

2) Two mates are selected for reproduction with probabili-
ties proportional to their fitness using roulette wheel se-
lection.

3) The multipoint crossover operator with crossover prob-
ability is applied to the two mates and a pair of off-
spring are generated.

4) The mutation operator with probability is applied to
the newly generated offspring.

5) The fitness values for the offspring are computed after
they are decoded as the parameter sets of the parametric
system.

6) Steps 2–5 are repeated until an entirely new population
of individuals is generated.

7) The previous population is replaced with the new popu-
lation with the addition of an elitist selection.

8) If the stopping criterion is satisfied, go to step 11.
9) If generation number is greater than a predetermined

value go to step 10, otherwise go to step 2.

10) Reinitialize the population with the best individual in the
current population survival, go to step 2.

11) Output the individual with the best fitness value and ter-
minate the iterative procedure.

The solution found by this GA-based BSS algorithm is used
to construct the separation system, which is employed to sepa-
rate the mixtures to get the original unknown sources. The con-
vergence properties of the proposed GA-based approach are dif-
ficult to analyze because of the highly complex nature of the un-
derlying optimization problem.

In order to evaluate the computational time, we coarsely
summarized the computational complexity of the proposed
GA-based BSS algorithm in Table I, where denotes the
population size, is the number of generations to obtain
convergence, is the number of channels, and is the data
length of mixtures. When we derive the computational com-
plexity, we take into account the computational requirements of
the cost function and fitness evaluation only since the compu-
tational complexity of various genetic operators are generally
negligible, compared with the computational complexity of
cost function and fitness evaluation). Moreover, we count each
nonlinear function transform as one multiplication.

Extensive experiments in the next section demonstrated the
validity and effectiveness of the GA-based BSS approach. Be-
cause of the probabilistic nature of the GA-based method, the
proposed method almost converges to a global optimal solution
on average. In our simulations, however, we have not encoun-
tered any nonconvergent case.

V. SIMULATION RESULTS

To verify the validity and performance of the proposed algo-
rithm, several computer simulations were conducted to test the
GA-based approach to blind separation of independent sources
from their nonlinear mixture.

Example 1: Consider the mixing case of two indepen-
dent random signals—a random binary signal and a random
signalwith uniform distribution on interval . The mixing
matrices and are chosen randomly as
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(a) (b)

(c) (d)

Fig. 2. Two source signals and their mixtures with inverse hyperbolic tangent nonlinearity. (a) One source signals (t) and (b) another source signals (t). (c)
One mixturex (t) of the two source signals with hyperbolic tangent transform function and (d) another mixturex (t).

The nonlinear transform function in each channel is the hyper-
bolic tangent function with unity amplitude and half-unity gain
in (36)

(36)

Fig. 2 depicts the two original sources and their mixtures.
The separation system adopts a two-layer neural network with

piecwise-linear neurons in input and output layers in (6) and sig-
moid neurons in hidden units as in (7). Specifically, the sigmoid
activation functions are in the form of

(37)

where and are respectively the amplitude and
gain of the th neuron in the hidden layer. Thus, we can derive
the corresponding mixing nonlinear transform in the left part of
Fig. 1.

For this parametric separation system, we have 12 parameters
(i.e., matrices and and amplitude and gain for two neu-
rons in the hidden layer) to be tuned during the learning process.
Because the amplitude parameter of the activation function can
be absorbed into the demixing matrices, we can let
without loss of generality. Thus, we have ten remaining param-
eters to determine.

We encoded each of the ten parameters as 16-bit binary string;
each individual was represented by a 160-bit binary string. The
population size was . The crossover probability

while mutation probability by trial and error.

We also assume the maximum generation for GA process to be
30. If the stopping criterion is not satisfied, the GA process is
restarted with the elitist strategy. To accelerate convergence, we
adopt a restart strategy in this experiment.

The data length of the two sources are only 150 points in this
experiment. When tuning the parameters, these data are fed into
the separation system repeatedly until the GA-based learning
process converges. All the results given here were obtained by
averaging over 50 different runs. Each run used same mixture
samples with a different randomly initialized population.

For the cost function of (16), we choose two sets of nonlinear
functions. Case I is and .
Case II is and . The
two cases give similar results. Figs. 3 and 4 plot the separation
results and evolution curves based on the cost functions in the
two cases.

For the cost function of (33), the order of the Taylor expansion
is chosen as up to four, i.e., . We also employ a rectan-
gular windowing function for the calculation of the cost func-
tion. Certainly, other type window functions such as Gaussian
window and up-cosine window can also be adopted even though
the selection of window functions are closely related to the ap-
plication. Figs. 5 and 6 depict the evolution of the cost function
in (33) and the separated signals by using our GA-based BSS
approach with this cost function, respectively.

It can be seen from the simulation results and Figs. 3 and
6 that the GA-based BSS approach is promising and can give
approximately global optimal solutions from any random ini-
tialization. The successful signal separation in case of nonlinear
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(a) (b)

(c) (d)

Fig. 3. Two separated signals of our method with two sets of nonlinear functions. (a) and (b) Case I. (c) and (d) Case II. For case I, nonlinear functions are chosen
asf (x ) = tanh(x ) andf (x ) = x . The obtained separated signals are shown in subplot (a) and subplot (b). In a similar way, for case II, nonlinear functions
are chosen asf (x ) = tanh(x ) andf (x ) = tanh(0:5x ). The resulting separated signals are shown in subplot (c) and subplot (d).

Fig. 4. Averaged evolution curves of the cost functions in (16) over 50 runs
with different initializations for two sets of nonlinear functions: case I and case
II.

mixtures are indeed achieved by our proposed GA-based ap-
proach.

At last, the simulation results in this example are summarized
in Tables II and III. They clearly list the estimated mean and de-
viation of the parameters of the separation system over 50 runs
with different random initializations for two cost functions in
(16) and (33), respectively. Apart from the GA-based method,
we also give two experimental computation results of a gra-

Fig. 5. Averaged evolution curve over 50 runs for the cost functions in (33)
whenK = 4.

dient-based method for the two cost functions for comparison.
It turns out that the gradient-based method fails to obtain the
correct parameters of the separation system from different ini-
tializations due to its limited ability of local search and complex
nonlinear characteristics of the problem. From Tables II and III,
the GA-based method has the capability of blindly separating
independent source signals from their nonlinear mixtures and
has much better performance than the gradient-based method.
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TABLE II
MEANS AND DEVIATIONS OF THEPARAMETERS IN THE SEPARATION SYSTEM OVER 50 RUNS FOR THECOSTFUNCTION IN (16) WITH TWO CHOSENNONLINEAR

FUNCTIONS (CASE I AND CASE II) BY THE GA-BASED METHOD AND A GRADIENT-BASED METHOD IN EXAMPLE 1

TABLE III
MEANS AND DEVIATIONS OF THE PARAMETERS IN THE SEPARATION SYSTEM OVER 50 RUNS FORTHE COST FUNCTION IN(33) WHEN K = 4 BY USING THE

GA-BASED METHOD AND A GRADIENT-BASED METHOD IN EXAMPLE 1

(a)

(b)

Fig. 6. Two separated signals by using the proposed GA-based method with
the cost functions in (33) whenK = 4. (a)Y 1(t). (b)Y 2(t).

TABLE IV
COMPUTATIONAL COMPLEXITY OF THE PROPOSEDGA-BASED BBS

METHOD IN EXAMPLE 1

(a)

(b)

Fig. 7. (a) and (b) Two outputs give the same source signal, but the other one
(b) does not appear at the outputs. A ghost solution appears when using the cost
function by nonlinear function moments.

From the simulation results, we know that the required gener-
ation for the GA-based BSS system to converge and get a good
solution is typically a few hundred generations. Therefore, the
computational advantage over conventional gradient methods is
also obvious. Specifically, the computational complexity of this
example is summarized in Table IV. It turns out from our simu-
lation results that the performance of the cost function by HOS
is slightly better than that of the cost function by nonlinear func-
tion but the computational complexity of the former is substan-
tially higher than that of the latter. So, a compromise should be
made between the two cases. If the accuracy and performance
of a given problem is more important, the former is preferred,
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Fig. 8. Original speech signals of a woman and a man. (a) Woman’s speech. (b) Man’s speech. (c) and (d) Their mixtures.

otherwise the latter is desirable to save limited computational
resources. In addition, in our simulation we also encounter a
few ghost solutions when using the cost function (16) because
it is only a necessary condition. A ghost solution is shown in
Fig. 7(a) and (b), where two outputs give the same source signal,
but the other one (b) does not appear at the outputs. No diver-
gence occurs in our simulations using the cost function by HOS
in (33).

Example 2:In order to further test the practical applicability
of the proposed method, we consider a “cocktail party” problem.
Two speakers, a man and a woman, are considered in this test.
The sampling rate is 11.02 kHz and each sample is quantized as
8 bits. Their speeches are mixed by randomly mixing matrices
and monotonically nonlinear transformation. The mixtures, also
digitalized as 8 bits per point, are used as the inputs of the sepa-
ration system. All data are normalized in the range of
for the sake of computation convenience. Fig. 8 shows the orig-
inal speeches to be recovered and their mixtures.

We use a two-layer neural network with sigmoid activation
function for the neurons in a hidden layer but other neurons are
linear. Also, there are ten decision parameters to be determined
in this case. For the GA, we choose the population size ,
the crossover probability while mutation probability

. Similar to Example 1, a multiple-point crossover
and elitist strategy are employed. There is no restart mechanism
in this experiment. The evolution process of the cost functions
are averaged on five runs. Fig. 9 shows the separated results by
the proposed GA-based BSS approach based on the cost func-
tion defined in (33). To further illustrate the validity of our sepa-
ration system, the cross correlations between the separated sig-

(a)

(b)

Fig. 9. Separated speech signals by using the proposed GA-based BSS
approach based on the cost function in (33). (a) Woman’s speech. (b) Man’s
speech.

nals with original speech signals and their mixtures are listed in
Table V. The separating experiment based on the cost function
in (16) is also carried out by using the proposed approach. To
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TABLE V
CROSSCORRELATIONSBETWEEN THESEPARATED SIGNALS AND CLEAR

SPEECHSIGNALS AND THEIR MIXTURES TO ILLUSTRATE THE VALIDITY

OF THE PROPOSEDSEPARATION SYSTEM, WHERE s AND s ARE THE

CLEAR SPEECHSIGNALS AND THEIR MIXTURES ARE DENOTED BY x AND

x , y AND y ARE SEPARATED SIGNALS

save space, the separated results are not shown due to its some-
what similarity to that in Fig. 9. It is shown from the graphs of
Figs. 8 and 9 that our proposed method achieved the successful
separation of the two speech signals from their nonlinear mix-
tures.

VI. CONCLUDING REMARKS

A GA-based BSS approach has been developed for BSS from
the nonlinear mixtures of independent sources. The proposed
method overcomes the local minima problem occurred in the
conventional gradient-based methods and can obtain global op-
timal solutions to nonlinear BSS problem from any initial con-
ditions. Extensive simulation results demonstrate the validity
and performance of this GA-based BSS method. Apart from
obtaining globally optimal separations, the proposed GA-based
method is also characterized by high accuracy, high robustness,
and fast convergence. Since the number of parameters to be op-
timized in BSS is usually small, the GA-based method is very
suitable for this kind of problem. Another feature of this method
is that it also suits the case of short available data. This is partic-
ular useful in some medical applications where source signals
may appear in a very short time period.
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