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Nonlinear Blind Source Separation Using Higher
Order Statistics and a Genetic Algorithm

Ying Tan, Member, IEEEand Jun WangSenior Member, IEEE

Abstract—Demixing independent source signals from their applications and fields as listed above [3]-[5]. The study of this
nonlinear mixtures is a very important issue in many scenarios. problem is of great importance in both theory and applications.
This paper presents a novel method for blindly separating * The problem of source separation concerns extracting inde-

unobservable independent source signals from their nonlinear - Is f heir i i .
mixtures. The demixing system is modeled using a parameterized pendent signals from their linear or nonlinear mixtures. Source

neural network whose parameters can be determined under the S€paration may be achieved in different ways according to the
criterion of independence of its outputs. Two cost functions based amount of available prior information. So-called blind source
on higher order statistics are established to measure the statistical separation (BSS) seeks to recover original source signals from
dependence of the outputs of the demixing system. The proposedpeir mixtures without any prior information on the sources
method utilizes a genetic algorithm (GA) to minimize the highly . .

nonlinear and nonconvex cost functions. The GA-based global op- thems.elves or the lelng parameters O,f the mixtures. BSS
timization technique is able to obtain superior separation solutions t€chniques have received extensive attention beyond the context
to the nonlinear blind separation problem from any random initial ~ of signal processing due to their very weak requirements or
values. Compared to conventional gradient-based approaches, the conditions about signal sources and mixing channels. In view of
GA-based approach for blind source separation is characterized this, we make the following moderate assumptions for our later

by high accuracy, robustness, and convergence rate. In particular, di . in thi 1) th tric f f mixt .
it is very suitable for the case of limited available data. Simulation iscussions in this paper: 1) the parametric form of mixtures is

results are discussed to demonstrate that the proposed GA-basedknown; 2) signal sources are statistically independent; and 3)
approach is capable of separating independent sources from their the number of sensors is equal to that of sources. Because of

nonlinear mixtures generated by a parametric separation model.  the weak conditions, from another point of view, the separation
Index Terms—Blind source separation, feedforward neural net- System may be seen as a black box that receives mixtures
works, genetic algorithms, higher order statistics, nonlinear mix- at its inputs and provides the estimation of original sources
ture, statistical independence. at its outputs. However, the outputs of the separation system
are not knowna priori due to the nature of blind separation.
As a result, we only expect the outputs of the system to be
o ) ) statistically independent. Thus, a BSS algorithm adjusts the
N MANY applications such as biomedical, speech, angternal parameters of the separation system so as to obtain the
sonar/radar signal processing, signals come from Mukgependence of its outputs via unsupervised learning. When
tichannels and are received by several sensors. The sigRgiSparameters of the separation system are tuned correctly, an
from the sensors are generally mixtures of many independ@atimation of sources can be obtained at the outputs regardless
sources [1], [2]. For example, electrocardiogram signals § the indeterminacies of permutation and scaling [2].
medical diagnosis are collected from multiple electrodes Neyral-network models with learning capabilities for online
placed at different locations of a human body and are usedg@s from linear mixing signals were first developed by Her-
diagnose the cause of diseases and locate sources of illngg. and Jutten [6]-[8]. Since then, most BSS studies address
Similarly, electroencephalograph signals collected from eigfie case of linear and instantaneous mixtures, which was ex-
to 16 sensors at different locations on the scalp of a patienfghded recently to linear convolved mixtures, e.g., for convolu-
head are processed to seize spike pulses. The same king\@fmixing of sources with causal FIR filters [9], [10], and even
problem can be also found in aerial processing for sonar agghlinear mixtures [11], [12].
radar signals or speech processing for enhancement of speeqlienerally, the mixing process of multiple sensors contains
signals in a strong background-noise environment. Therefosgme nonlinear transformation such as the saturation distortion
signal separation is a basic problem in numerous practiGlsensors. The study of nonlinear BSS is more realistic and
important than linear BSS in practice. However, blind separa-
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methods were proposed recently for nonlinear BSS. Deco [14]This paper presents a novel procedure for separating original
studied a volume-conserving nonlinear transform for nonlineerdependent sources from their nonlinear mixtures using a GA
BSS. Pajuneret al. [15] used Kohonen's self-organizing mapand HOS of the outputs of a separation system. The proposed
(SOM) to extract sources from nonlinear mixtures. It is approach differs from previous ones in several aspects. The first
model-free method but suffers from the exponential growtspect is to utilize a global optimization method to learn the un-
of network complexity and interpolation error in recoveringnown parameters of the separation system. The second aspect
continuous sources. Talebal.[16] proposed an entropy-baseds to minimize a predetermined cost function that measures the
BSS algorithm in post nonlinear mixtures. Yaeg al. [17] independence of the outputs of the separation system and can
proposed an information back-propagation algorithm fgje expressed using HOS. The third aspect is that this method
interchannel nonlinear mixtures in the sense of entropy max-aple to handle both linear and nonlinear mixtures. Our sim-
imization and mutual information minimization, and adopteg|ation studies demonstrate that the GA-based BSS scheme is
a sigmoidal nonlinear transformation of the nonlinear modgly, st to estimation errors in HOS and can achieve global op-
based on the work by Burel [11]. Very recently, Tabal. ima| solutions from any initial values of the separation system.
applied radial basis function networks for nonlinear BBg,,rthermore, since the number of parameters to be optimized in

[12]. These newly developed models are established on Qg broplem is usually small, GAs are particularly effective and

basis of parametric models because it is very important fgfficient for this kind of optimization problem
nonlinear BSS to obtain unique separating results when on Y1 '
the independence of sources are knaavpriori. All of these rinciple of the BSS problem. In Section Ill, we propose two
methods are developed based on gradient-based optimizatioE{ t functions based on HOS. In Section I\} a GA with some
::Aigf?.ﬂztrlgf%rseor?ﬁeggkrgzmlggz?te'tfjslgeagbulgstlépﬁg'ls%g ifications suitable for our problem at hand are described. In

NN P . P %ection V, simulation results are given to show the effectiveness
rminima problem durlng thellea_rnlng process and are thgﬁd validity of the proposed GA-based method. Finally, conclu-
limited in many practical applications. ' '

On the other hand, different from the likelihood estimatioﬁIonS are provided in Section VI.

of probability, which can be performed with local minima, the
BSS problem requires obtaining a global optimum. Further-
more, the learning objective functions of the BSS problem areBased on the specific application and available prior in-
multimodal and highly nonlinear. However, all of the existingormation about source signals, the source mixing process
learning algorithms of BSS systems are based on stochastic @i be described by various mathematical models. Here, we
dient methods such as back propagation, bigradient, and rifiscuss a general mixing model that can describe most of
ural gradient [1], [2]. These conventional gradient optimizatiogctual mixing processes. Let unobservable source signals be
techniques may converge to “bad” solutions unless good initidly) = [s;(t), so(t), ..., s,(t)]* with mutually independent
values are provided, which is impossible in view of the blingnd stationary components. We further assume that each source
hypothesis. Therefore, it is important to develop new BSS algRas a moment of any order with a zero mean. The mixture is

he paper is arranged as follows. In Section I, we present the

Il. BLIND SOURCE SEPARATION

rithms on the basis of global optimization techniques. generally expressed as
In order to overcome the local minimum problem in many ex-
isting methods, here we propose a BSS approach based on a ge- x(t) = Af(Hs(t)) (1)
netic algorithm (GA). In this approach, we first define some cost
functions to measure the independence of the outputs, whighere x(t) = [z1(t),z2(¢)....,z.(t)]*, the superscript"

consist of higher order statistics (HOS) of the outputs. Then, dgnotes the transpose operaf¢r) = [f1(-), f2(*), ..., fu ()]
using a GA to minimize the cost functions, we can obtain highig an unknown componentwise nonlinear transform function
accurate estimation of original sources at the outputs of the sepHed the nonlinear mixing function, anH, A € R™*"
aration system. are unknown nonsingular mixing matrices that mimic the
Several researchers have applied GAs to blind signal piostantaneous mixtures of signals.
cessing. Cheret al. [24], [25] studied the application of a The unknown mixing and proposed separating systems for
micro-GA method proposed by Krishnakumar [26] to blindBSS are illustrated in Fig. 1. As shown in the figure, the un-
channel identification based on higher order cumulant fittingnown mixing system at the left part of Fig. 1 can be modeled
Alkanhal et al. [27] made use of GAs for blind identification as a cascaded instantaneous linear mixing, componentwise non-
of nonminimum phase finite-impulse response systems ligjear transformation, and linear mixing. Actually, this model
evaluating a cost function defined in terms of output cumulanis. realistic since most of the practical mixing systems can be
Yet the applications of GAs to BSS is rare. Most recentlyyell described by Fig. 1, which contains both channel and inter-
Yoshiokaet al. [28] reported a preliminary study. This methocchannel nonlinearities. At the same time, we also give the sepa-
can separate original images from noise-corrupted images byrditing system at the right part of Fig. 1, which is an inverse pro-
rectly minimizing the Kullback-Leibler (KL) divergence usingcedure of the mixing process among which the nonlinear sepa-
GAs. However, this method needs to estimate the prior pratating functiong = [g1(-), g2(*), - - -, gn(-)]* of the separating
ability of the sources. It is well known that BSS requires thgystem is a parametric inverse function of the nonlinear mixing
global optimization solution, but serious local minima of curreritansform functiorf.
existing approaches obstruct their wide applications in manyThe task of the separating system is to recover the unobserv-
practical fields [1]-[16]. able original signals(t) from the mixturesx(t) without any
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Fig. 1. Mixing and separating systems in BSS.

knowledge of the source signal&), the mixing matrice¥I, A, function g is the activation function of the neurons in hidden
or the parameters of the nonlinear transform funcfigh Since layer, and the output connection weight is given by matkix
we assume the nonlinear transform functf¢r) and its inverse ~ Usually, the activation functio can be of the following
g(-) are of parametric network formulations, our problem is tforms.
estimate the parameters of demixing matriBesndW and the 1) Threshold function
separating function for the output$t) to approximate the orig- .
inal sources apart from the indetermination of a permutation and L, !f v>0
scaling due to the weakness of the hypotheses. That is to say, the g(v) =140, !f v=0. ©)
learning algorithm of this BSS problem is to tune the parame- -1, ifv <0
ters of the separation system so as to achieve independence &f) Piecewise-linear function
the outputs.
As shown in Fig. 1, the outputs of the separating system areg(v) |14 kv| — |1 — kvl
2 :

y(t) = Wg[Bx(?)]. ) -1
wherek > 0 is the amplification factor inside the linear
region of operation and, is the saturation level. This
form of an activation function may be viewed as an
approximation to a nonlinear amplifier. There are two
special situations of piecewise-linear functions. One
is a linear function if the linear region of operation is
maintained without running into saturation. The other is
that the piecewise-linear function reduces to a threshold
BA=1 g()=f"'(), WH=PD. (4) functiqn if t.he amplification factor of the linear region is

made infinitely large.

This means that the components of the outguase indepen-  3) Sigmoid function
dent. Therefore, we have the following proposition. av 1 — exp(—av)

Proposition: For the mixing and separation systems given g(v) = tanh (3) = m
in Fig. 1, suppose that we know the parametric formulation P
of the mixing and separation systems and assume that the Wherea > 0 is the gain of the neuron. The sigmoid
number of original sources is equal to that of mixtures, if ~ function is by far the most common form of activation
(4) holds through the adjustment of parameters of the sep- function used in the construction of neural networks. Itis
aration system, then the outputs of the separating system a strictly increasing and differentiable function, whereas
v(t) = [y (t),y2(t), ...,y (t)]" are mutually independent. the threshold function is not.

For the nonlinear mixing transform functidhwe assume it In particular, ifg is a linear function, Fig. 1 becomes the con-
has the inverse functiofT !, which also has a parametric form.ventional BSS problem in linear simultaneous mixture, which
Specifically, it is seen from Fig. 1 that the separating system canwell documented. Here we stress the nonlinear BSS problem
be implemented by a two-layer feed-forward neural networkyheng is chosen to be nonlinear. From (5)—(7), we know that
where the input weight is matriB, the nonlinear transform the activation function for the hidden layer in the mixing system

> -+ (6)
k

Substituting (1) into (2), we can obtain
¥(t) = PDs(?) 3)
whereP is a permutation matrix anb is a nonsingular and di-

agonal matrix. Equation (3) holds when the following condition
is satisfied:

()
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is an unbounded function even on a bounded input regionkifiown that the characteristic function and the pdf are related as
we employ a two-layer neural network with bounded activa Fourier transform pair [29], i.e.,

tion function given in (5)—(7) as the separation system. For ex-

ample, ifg is the sigmoid function in (7), theh= arctantids),  ®,(v) = /py(y) exp(—jv'y)dy = Elexp(—jvty)] (8)
whered denotes the parameter of the mixing nonlinear func-

tion. In practice, in our simulation studies, as long as the inverggerev = [v1,...,v,]T is a vector of variables in Fourier

functionf~* can be approximated by a parametric neural nefansform domain angi = +/—1 stands for an imaginary unit.
work, we can recover the inputs from the outputs of a parametfi¢particular, for the single random variable, we have
two-layer neural network with a monotonic activation function

for each neuron in the hidden layer. In order to measure the in- @, (v;) = Elexp(—jvy)]- 9)
dependence of the outputs effectively, we will define two cost

functions in terms of easily computable HOS in the next section. !N What follows, we will use two methods to reexpress the
independence conditions of the theorem. One uses the moment

statistics of the nonlinear function transform of the outputs. The
other uses the HOS of the outputs. In order to further facilitate
learning, constrain the outputs, and achieve good separation re-
sults, we impose two conventional constraints on the outputs of
the separation system

In order to measure the independence of the outputs, it is very

IIl. COSTFUNCTIONS

A. Independence Conditions and Constraints

natural to use the probability criterion of random variables. Sto- Oy = Z E(y:)? =0 (10)
chastic independence of random variables is defined from its P
probability distribution and the concept of the statistical inde- n
pendence is more general than decorrelation, which takes only Cy = Z[E(yf) -1>=0. (11)
second-order statistics into account. pé#) be the probability i=1

dz?s:cty func(;ion (pt;j f)tﬁf ra *?dtorg fv afriabgl,gp i (Ui) ?e marginal Constraint (10) is very natural and can always be achieved by
pdf of y;, andp(y) be the joint pdf of random vectgr, we have adjusting the bias of neurons in the output layer when the system

glbelé‘gllowmg conditions for the independence of random varis implemented in a neural network. Constraint (11) is used to

" . limit the variance of the outputs to be unity, which is very useful
Independence Conditiong=or the independent component b Y y

¢ d : the followi tat ‘ ¢ ”?n the context of blind signal processing according to many sim-
gqu:/re]xlgr:? vectory, the following statements are mutually, ation studies. So, we will add these two constraints in the cost

functions to be defined and call them basic constraints.
1) p(y) = [iz1 Py (%)

2) KL[p,(y),p(y)] = [ p,(y)log(p,(y)/p(y))dy = 0; B. Dependence Measure by Nonlinear Function Moment
3) ].[P(Y) - H?=.1.pyi (y%)]Qdy = 0 _ ] In view of (8) and (9), according to the probability theory
Obviously, Condition 1 is the definition of independence &fp, the independence of random variables, Condition 1 can be

random variables. Condition 2 is just the famous KL divefsxpressed equivalently by using the characteristic function as
gence between two probability distributipp(y) andp(y) =

IT:=) py(w:). According to the KL divergence, one can obtain
the mutual information criterion o, which has been studied
widely in the context of blind signal processing. It is easily
shown that Condition 3 is a direct result of Conditions 1 angince the characteristic function of a random vector is equal to
2. Therefore, the three statements are sufficient and neces$Bgyproduct of that of each component of the outputs when they
conditions of the mutual independence of random variables; i.at¢ mutually independent, if we take the Taylor expansion at
minimizing the KL divergence of or the left part of Statement both sides of (12), cross moments must be zero. As a result,
3 to zero can make the outputs mutually independent and vite get an idea that if all joint cross moments of the outputs are
versa. forced to zero, the independence of the outputs can be achieved.
Although the above conditions are necessary and sufficieHtis means that we can get an expression of the dependence
for the independence of the outputs of the separation systéRgasure by using moments that are easier to cope with. Unfor-
they need the estimation of the probability or entropy of tHéinately, it is impossible to take the moments of the all orders
output variables and mixing input variables, which are unknov\iﬁto account since the exhaustive computation is infeasible. To
under the “blind” assumption. So, these conditions seem difémend it, one can use a nonlinear transform function of sig-
cult to use. In order to avoid the difficulties in estimating th&als before computing its moments. In this way, we can indi-
probability of unknown random variables, we wish to find afectly take all the moments into account to separate nonlinear
expression equivalent to the conditions, but is easier to deal wigixtures. Suppose we hawenfinitely differentiable functions
in terms of higher order statistical moments without estimatirfy () - - -, = (-) and have the following Taylor expansion:
the probability and the entropy of the outputs. o
For the convenience of our later discussions, recall the defini- (5, ) = Z i (0)
tion of the characteristic function of random variables. It is well

n

By (v) =[] @y (v)- (12)

i=1

Tyi :ZCJ77yi, iIl,...,TL (13)
. =0

j=
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where we define; ; = hgj)(o)/j! to simplify notations. If we form of (17), and considering the properties of the Fourier trans-
take the central moment of quantiy;" , 7;(y;), we can get  forms, we can obtain

2

Mwmmwwmwm:E<Hmma—Ipwmm» /bﬁﬂﬂ—ﬂ@ﬂm W(vidv  (19)
=1 =1 (14) 1=1
Substituting (13) into (14), we have whereW (v) is the Fourier transform of the window function
w(y) defined in (18).
Mhi(y1), - hnlyn)) Since most signals considered are bounded and the moments

e e . i of bounded random variables always exist, we can take the
= Z Z Civd e CinM (s, u7). (15)  Taylor expansion around the origin of the characteristic func-

Jj1=0 Jn=0 tion

If the components iny are mutually independent, then ® _ 1 gort-ton g . .
we have M(y/',...,v/») = 0 according to (14). From =3 -l OV QS (0)vy™ -+ vy
(15), we know thatM (hy(y1),...,hn(ys)) is null if all e 20
M(yl,...,yi») =0forji, = 1,...,00, wherek = 1,...,n. - (20)

—0i iti 1 9%, .

Hence, M (hi(y1), .- o hn(y)) = 0 is a necessary condlt.lon &, (v;) = Z =T P gy 1)
for y1,...,y, to be independent. Based on the above discus- = agl vyt
sions, we can define the following cost function for BSS in '
case of two independent sources: According to the convention that the partial derivative of

. order zero of a function is the function itself, we obtain
) => > M(hi(y1),hj(y2))” +aC1 +BCy  (16)

n
i=1 j#i Py (v) - H ®,, (vi) - Z Qayan, V1 rvp™ (22)

i=1 Qe

where# is the parameter vector of the separation system and

a and 3 are two positive constants weighting the dependentdere

measure and the basic constraints. Even though this is only a 1

necessary condition for the dependence of outputs, it is very “aie» = 7T

easy to deal with and good separation results are often obtained ot tan g " oo,

L i ; : . v ”
by minimizing this cost function, as will be further illustrated . {ﬁ ) — H a )}
by our simulation results. guy* - un o Ovi

(23)
C. Dependence Measure by Higher Order Moments
According to the definitions of a characteristic function and

By using Statement 3 to measure the dependence of ranq?hrg moment of random variables, we have the following rela-

\rﬁ“haekil?ra\grenginmgﬁ:sagfmgroeﬁprezséz?o% deéoer:gsggg l;ytloﬁship between the origin moment and the derivatives of the
'9 utput we p ' . .Characteristic function at zero:

smoothing window should be enforced on the difference of the

joint pdf and product of marginal pdf gf for reducing the fluc- gortton gy (0) =(—j)™+ o Byt .. yon] (24)
tuations on the coefficients of the expression and decreasing the  9v(* - - - v =\ 1 n
errors of real data. Hence, the measure of the dependence of 0% P, s o
random variables becomes g (0) =(=7)V Ely;"]. (25)
2
’ Thus
D(y) = |pu(y) - [ [ pu(wi) .
i=1 w . _ sy teeetan,
) ) Quis = oy () Maya,  (26)
:/ { [p(Y) - Hlpw (yi)] * w(Y)} dy (1) \whereM,, ... stands forthéa -+ - --+a,.)th central moment
= of y.
with In view of (19)—(26), the expression of the measure of depen-
" dence can be rewritten as
w(y) = [ [ ww) (18) 2

=1

> Qayan 09| W(v)dv (27)
wherex in (17) denotes the convolution operator and; ) (i = Lt

1..., 7’L) are window functions that may take different form%hich can also be transformed as

such as rectangular window function, up-cosine function, or

Gaussian window function and can be selected according to Ssl?/é Z Z Qur o Q5. vy B (v dy.

cific applications. By considering (8), taking the Fourier tran

apan B8,



TAN AND WANG: NONLINEAR BLIND SOURCE SEPARATION USING HIGHER ORDER STATISTICS AND A GA 605

By interchanging the sequence of summation and integral, weBy using the derivation results of (10), (11), (16), and (33),

obtain we approach our aforementioned goal of defining cost functions
. by HOS for BSS. The minimization of the cost function in (33)
Z Z Qoo @y .8, gives the correct separation results for linear or nonlinear mix-

ayp-Qp 810

tures in our parametric model. In the next section, we presentthe
. / Ula1+,81 2t W (vYdy.  (28) GA-based metho_d to fulfill the search of the optimgl parameF(?r
set of the separation model based on the cost functions specified

Finally, we reach in (16) and (33).

DD dwlans By Ba) - Maga, Mg, IV. GA-BASED SEPARATION APPROACH
a1 By

(29) A canonical GA is constituted by the operations of parameter

with encoding, population initialization, mate selection, crossover,
5 5 mutation, and population replacement. Thus, the operations of
dw (01, ooy, By e e vy Br) =(—j)or T Fan=0i==Fu a GA can be concisely described individually as follows.
Rw (ary. ..y, Bryeens Ba) Encoding: The parameters of the parametric separation

(30) system to be optimized are generally encoded into genes and
chromosomes (also call individuals) as a string of binary
where digits using one’s complement representation. Assume that the

s 5 parameters lie in some bounded region
(e
RVV(OQ, cee, Oén,/}l, - ,/3,,,):/1}1‘ o 'Uz”-i—’ ”W(V)dV

(1)

is the(ay + 1 + - - + arn + 3, )th moment of the transformed whereh represents t_h_e number of the parameters. The length
window function’ (v). Note that the positive constant in (28)°f the gene and individual can be calculated as the length of
is disregarded without any effect on our conclusion. the binary stringB;. needed to encodé. based or; and the

In this way, we have obtained the exact expression of tgesired accuracy. Other encoding methpds are also possible. In
dependence measure in (17) in terms of the HOS of Outh%Q]—[SO],'th(.a yalue.of each parameter is taken as a gene qnd,
which is much easier to cope with. Because (29) is always ndhuS, the individual is encoded by a string of real numbers in-
negative, it becomes zero if and only if all the HQS,,..,, Stéad of binary numbers. o o
are equal to zero. It also means that the independence of thiitial Population GenerationThe initial population is gen-
outputs has been achieved by dealing with the HOS of outp@/&ted randomly inthe range of each parameter. Therefore, atthe
only. In addition, according to the property and smoothing effeBgginning of the separating procedué,individuals are gen-
of the window functions, it is easily shown that the coefficierferated as random binary strings. _ _
dw (o, ... am, 1, ..., 5,) decreases gradually to zero as the E\_/aluatlon of Fltnes_sr_.ﬂ\ftert_he initial popula’qon ge_neranon, _
index of sumoy + 31 + - - - + o, + 3, increases. This property the fitness of each individual is determined. Fitness is a numeric
allows us to use the finite sum of lower orders to approximatadex to measure the effectiveness of each individual of the pop-
(29) with a satisfactory accuracy. For this purpose, we can ddation as a solution, which is usually utilized to select members

|0x] < b for k=1,...,h (34)

fine the following cost function: of the population for reproduction. For the BSS problem, we can
define a fitness function based on the defined cost functions in
C(o) = Z Z dw (o, . oy 0n, By oy ) (16) or (33). As a result, the value of the fitness functigrfor
arean BB ith individual I; can be defined as
. Mozlmozn M@lm,ﬁn + 0401 + /302 (32)
. . . . L) = 1A (35)
where the basic constraints are also included in the cost func- LA C(6;)

tion to help obtain the correct separation in nonlinear mixtures.
This criterion is exactly the same as the dependence criterighereC(6;) is the cost function with parameter getto be de-
of outputs. So, itis also a sufficient and necessary condition f@rmined, which is encoded as thhk individual. For this fithess
the independence of outputs. As a result, minimizing (32) willinction, though it is very sensitive to the change of individual
result in the independence of outputs and reaching the goapfthe value of the fitness near the global optimal solution ap-
BSS. However, the cost function in (32) includes the momenggoaches infinity. To amend this problem, we can add a min-
of the outputs in any order, which are impossible to realize imum positive constant expressible by an actual digital com-
specific calculation. Therefore, in our specific implementatioputer to the denominator of (35), i.€5(1;) = [C(6;) + €] L.
we only take finite moments (up t&'th moment) into account,  Selection OperatorA pair of individuals is selected from the
then (32) becomes current population for mating using roulette wheel selection.
Crossover OperatorA multipoint crossover is applied to the
co) = Z Z dw (o, .. s f1s- o5 Bn) newly selectedp(parents) indi?/iduals to generatepgvo offspring.
Do <K Y Bi<K Specifically, the number of crossover points in our application
Moo, Mg, .5, +aCy + BC. (83) is equal to the number of the parameters to be optimized.
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TABLE |
COMPUTATIONAL COMPLEXITY OF THE GA-BASED BSS METHOD BASED ON THE COST FUNCTIONS DEFINED IN (16) AND (33)

Complexity of multiplications: (N; + 1)n? +1
cost function in (16) additions: n? —n+ 2N, —2
. e e (N D[(K —n)(K —n+1)+2)/2+
Complexity of multiplications: o(K-n)(K~nt1)/2 _
L N (N, —1)(K —n)(K —n+1)/2+ N,/2+
cost function in (33) additions: (K —n)(K -n+1)/2
Complexity of multiplications: Ng 4+ 2n + 2
basic constraints additions: 2N;+3n—4
Complexity per multiplications:  Np(Nyn? + n2 + N, + 2n + 4)
function evaluation additions: Np(n? + 2n + 4N, - 5)
Number of function evaluation NpNg

Mutation Operator:Random mutation operator is applied to 10) Reinitialize the population with the best individual in the
the newly generated offspring to prevent from premature con- current population survival, go to step 2.
vergence. It randomly alters the gene from zero to one or from11) Output the individual with the best fithness value and ter-
one to zero with a probability expressed By,, where P, is minate the iterative procedure.
called mutation probability. The solution found by this GA-based BSS algorithm is used
For BSS, the convergence speed of the canonical GA wasconstruct the separation system, which is employed to sepa-
found to be very slow. An elitist strategy was used in which thate the mixtures to get the original unknown sources. The con-
bestindividual in the current generation always survived into tlvergence properties of the proposed GA-based approach are dif-
next generation to accelerate the convergence rate of the Géultto analyze because of the highly complex nature of the un-
We also adopted a reinitialization mechanism with the elitisterlying optimization problem.
strategy to explore a wider space besides the mutation operatom order to evaluate the computational time, we coarsely
In addition, in order to terminate the iteration of the GA opsummarized the computational complexity of the proposed
timization process, a stopping criterion was defined as no fuBA-based BSS algorithm in Table |, whefé, denotes the
ther improvement of the best fitness value in several consecutp@pulation size,V, is the number of generations to obtain
generations (usually, three or four generations were chosenksavergencey is the number of channels, ard, is the data
as to increase the chance of converging to a true global optimiangth of mixtures. When we derive the computational com-

solution. plexity, we take into account the computational requirements of
In summary, the GA-based BSS algorithm can be impléie cost function and fitness evaluation only since the compu-
mented as the following iterative procedure. tational complexity of various genetic operators are generally

1) Aninitial population{éi N of sizeN is created from negligible, compared with the computational complexity of
a random initial set of parameters. The encoding leng@®st function and fitness evaluation). Moreover, we count each
of each parameter is 16 bits. By decoding the individu&lonlinear function transform as one multiplication.
to get the parameter of the system, the fitness for eachExtensive experiments in the next section demonstrated the
individual is evaluated using (35). validity and effectiveness of the GA-based BSS approach. Be-

2) Two mates are selected for reproduction with probabil¢ause of the probabilistic nature of the GA-based method, the
ties proportional to their fitness using roulette wheel sg¢roposed method almost converges to a global optimal solution
lection. on average. In our simulations, however, we have not encoun-

3) The multipoint crossover operator with crossover protiered any nonconvergent case.
ability P. is applied to the two mates and a pair of off-

spring are generated. V. SIMULATION RESULTS
4) The mutation operator with probabilify},, is applied to ) o
the newly generated offspring. To verify the validity and performance of the proposed algo-

5) The fitness values for the offspring are computed aftéhm, several computer simulations were conducted to test the
they are decoded as the parameter sets of the paramégft-based approach to blind separation of independent sources
system. from their nonlinear mixture.

6) Steps 2-5 are repeated until an entirely new populationExample 1:Consider the mixing case of two indepen-
of individuals is generated. dent random signals—a random binary signal and a random

7) The previous popu|ation is rep|aced with the new pop§lgna|W|th uniform distribution on interVél—l, 1) The miXing
lation with the addition of an elitist selection. matricesH and A are chosen randomly as

8) If the stopping criterion is satisfied, go to step 11.

9) If generation number is greater than a predetermined.. <0.6744 0.3248) A— <0.9121 0.2292)
value go to step 10, otherwise go to step 2. 0.2461 0.9217 )~ T\ 04763 0.7348 ) °
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Fig. 2. Two source signals and their mixtures with inverse hyperbolic tangent nonlinearity. (a) One source sigraaid (b) another source signal(t). (c)
One mixturez, () of the two source signals with hyperbolic tangent transform function and (d) another mixtune

The nonlinear transform function in each channel is the hypéife also assume the maximum generation for GA process to be
bolic tangent function with unity amplitude and half-unity gair80. If the stopping criterion is not satisfied, the GA process is
in (36) restarted with the elitist strategy. To accelerate convergence, we
adopt a restart strategy in this experiment.
fiwi) = —2y;arc tanh(—6;u;). (36)  The data length of the two sources are only 150 points in this
experiment. When tuning the parameters, these data are fed into
Fig. 2 depicts the two original sources and their mixtures.  the separation system repeatedly until the GA-based learning

The separation system adopts a two-layer neural network wifpcess converges. All the results given here were obtained by
piecwise-linear neurons ininput and output layers in (6) and sigiyeraging over 50 different runs. Each run used same mixture
moid neurons in hidden units as in (7). Specifically, the sigmohmples with a different randomly initialized population.
activation functions are in the form of For the cost function of (16), we choose two sets of nonlinear

1 — exp(—fBivi) functions. Case | igfi(z1) = tanh(zy) and fa(z2) = x3.

e — B (37) case llisfi(x1) = tanh(x;) and fo(x2) = tanh(0.5z2). The
+ eXp(_ﬁzUz) ; . ; ;
two cases give similar results. Figs. 3 and 4 plot the separation
wherea; > 0 andg; > 0 are respectively the amplitude andesults and evolution curves based on the cost functions in the
gain of theith neuron in the hidden layer. Thus, we can deriv&vo cases.
the corresponding mixing nonlinear transform in the left part of For the cost function of (33), the order of the Taylor expansion
Fig. 1. is chosen as up to four, i.e = 4. We also employ a rectan-

For this parametric separation system, we have 12 parameg@tkr windowing function for the calculation of the cost func-
(i.e., matrice® andW and amplituder and gaing for two neu- tion. Certainly, other type window functions such as Gaussian
rons in the hidden layer) to be tuned during the learning proceséndow and up-cosine window can also be adopted even though
Because the amplitude parameter of the activation function dée selection of window functions are closely related to the ap-
be absorbed into the demixing matrices, we camdet= 1 plication. Figs. 5 and 6 depict the evolution of the cost function
without loss of generality. Thus, we have ten remaining paraiif- (33) and the separated signals by using our GA-based BSS
eters to determine. approach with this cost function, respectively.

We encoded each of the ten parameters as 16-bit binary strindf can be seen from the simulation results and Figs. 3 and
each individual was represented by a 160-bit binary string. TBethat the GA-based BSS approach is promising and can give
population size wagv = 30. The crossover probability). = approximately global optimal solutions from any random ini-
0.99 while mutation probability?,,, = 0.15 by trial and error. tialization. The successful signal separation in case of nonlinear

gi(vi) =
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Fig. 3. Two separated signals of our method with two sets of nonlinear functions. (a) and (b) Case I. (c) and (d) Case IlI. For case |, nonlineardwitizsTs a
asfi(x1) = tanh(xy) andfz(w2) = 23. The obtained separated signals are shown in subplot (a) and subplot (b). In a similar way, for case Il, nonlinear functions
are chosen af; (x1) = tanh(x1) andf2(z2) = tanh(0.522). The resulting separated signals are shown in subplot (c) and subplot (d).
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Fig. 4. Averaged evolution curves of the cost functions in (16) over S0 TuR§y 5 Averaged evolution curve over 50 runs for the cost functions in (33)
with different initializations for two sets of nonlinear functions: case | and casgnen v = 4.
Il

mixtures are indeed achieved by our proposed GA-based dfent-based method for the two cost functions for comparison.
proach. It turns out that the gradient-based method fails to obtain the
At last, the simulation results in this example are summarizedrrect parameters of the separation system from different ini-
in Tables Il and Ill. They clearly list the estimated mean and déalizations due to its limited ability of local search and complex
viation of the parameters of the separation system over 50 runalinear characteristics of the problem. From Tables Il and IIl,
with different random initializations for two cost functions inthe GA-based method has the capability of blindly separating
(16) and (33), respectively. Apart from the GA-based methomhdependent source signals from their nonlinear mixtures and
we also give two experimental computation results of a graas much better performance than the gradient-based method.
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TABLE I
MEANS AND DEVIATIONS OF THE PARAMETERS IN THE SEPARATION SYSTEM OVER 50 RUNS FOR THECOST FUNCTION IN (16) WITH TwO CHOSEN NONLINEAR
FuNcTIONS (CASE | AND CASE 1) BY THE GA-BASED METHOD AND A GRADIENT-BASED METHOD IN EXAMPLE 1

method 1 function [ parameter | b11 bis bay boo w11 wio way wan By B2
GA case I mean -1.3125 -1.7500 -0.8438 -1.1250 -0.7286 1.7499 -2.0043 -2.0106 1.0245 0.3221
deviation 0.0039 0.1383 0.0759 0.1664 0.1006 0.1419 0.0858 0.0609 0.0379 0.0387
method case II mean -1.2989 -1.7392 -0.8377 -1.1220 -0.7125 1.7697 -1.9913 -1.9804 0.7110 0.6612
deviation 0.1009 0.0844 0.1530 0.1397 0.1096 0.1391 0.1122 0.0581 0.0493 0.0580
gradient case I 1st run 1.0989 -1.6263 ~-0.55629 0.7896 0.5956 1.9144 1.9133 -1.8721 0.4449 0.6946
based 2nd run -0.8155 -0.9845 -0.2079 -0.7069 -0.5999 2.1260 -0.5534 -2.9304 0.0118 0.8939
method case II 1st run -0.5543 1.5566 -0.0492 0.5901 -0.6366 1.2424 1.7821 -0.7896 0.4158 0.0504
2nd run 0.8407 -0.6647 0.1784 -0.8812 0.0252 0.6630 -0.4411 -0.8612 0.2728 0.2651

TABLE Il

MEANS AND DEVIATIONS OF THE PARAMETERS IN THE SEPARATION SYSTEM OVER 50 RUNS FORTHE COST FUNCTION IN(33) WHEN K = 4 BY USING THE
GA-BASED METHOD AND A GRADIENT-BASED METHOD IN EXAMPLE 1

method I parameter I b11 b12 ba1 bas wi1 wia woy waz B Ba
GA | mean [ -1.2807 -1.6892 -0.8299 -1.0621 -0.6880 1.8303 -1.93568 -1.9754 0.9548 0.2856
method | deviation I 0.0736 0.1242 0.1463 0.0388 0.1810 0.1138 0.1264 0.0469 0.1098 0.1863
gradient-based I lst run I 0.3212 -0.5007 -0.4038 0.5152 -0.4455 0.5432 0.9425 -1.4682 0.4893 0.1859
method l 2nd run I 0.6698 0.5284 -0.2446 -0.5381 -0.3833 -0.8321 -1.3328 0.6441 0.7008 0.9827
2 2
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Fig. 6. Two separated signals by using the proposed GA-based method Vfith. 7. (a) and (b) Two outputs give the same source signal, but the other one
the cost functions in (33) wheR' = 4. (a)Y'1(#). (b) Y2(¢). (b) does not appear at the outputs. A ghost solution appears when using the cost
function by nonlinear function moments.
TABLE IV _ _ .
COMPUTATIONAL COMPLEXITY OF THE PrROPOSEDGA-BASED BBS FrOm the SImU|atI0n reSUltS, we knOW that the requlred gener'
METHOD IN EXAMPLE 1 ation for the GA-based BSS system to converge and get a good
T TS solution is typically a few hundred generations. Therefore, the
) ;’mp:x“’f © " w00 ’Z‘;,t:? ications computational advantage over conventional gradient methods is
COSC “ncl’or_l m (f ) g a 11_101‘_“ : also obvious. Specifically, the computational complexity of this
) ;’mpt‘?x‘t?' © " ot r’;‘;,ttl,p ications example is summarized in Table IV. It turns out from our simu-
COSC “nclm’_ltm (f ) i & I‘t_lol’fls . lation results that the performance of the cost function by HOS
. omp eX; y.°t 20 ;‘;.t‘_p reations is slightly better than that of the cost function by nonlinear func-
gsm Cl‘mf' raumts g ‘u;‘)flsl_ : tion but the computational complexity of the former is substan-
) omp e’“ti' per 1701 n; tiphcations tially higher than that of the latter. So, a compromise should be
= b“’“’:‘?n va “a“‘)i“ : 7?\[0 additions made between the two cases. If the accuracy and performance
umber of function cvaluation || 30N, of a given problem is more important, the former is preferred,
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Fig. 8. Original speech signals of a woman and a man. (a) Woman'’s speech. (b) Man’s speech. (c) and (d) Their mixtures.

05

otherwise the latter is desirable to save limited computational
resources. In addition, in our simulation we also encounter a
few ghost solutions when using the cost function (16) because
it is only a necessary condition. A ghost solution is shown in

Fig. 7(a) and (b), where two outputs give the same source signal,
but the other one (b) does not appear at the outputs. No diver-
gence occurs in our simulations using the cost function by HOS

in (33).

Example 2:1n order to further test the practical applicability
of the proposed method, we consider a “cocktail party” problem.
Two speakers, a man and a woman, are considered in this test.
The sampling rate is 11.02 kHz and each sample is quantized as
8 bits. Their speeches are mixed by randomly mixing matrices
and monotonically nonlinear transformation. The mixtures, also
digitalized as 8 bits per point, are used as the inputs of the sepa-
ration system. All data are normalized in the rangé-af, +1]
for the sake of computation convenience. Fig. 8 shows the orig-
inal speeches to be recovered and their mixtures.

We use a two-layer neural network with sigmoid activation
function for the neurons in a hidden layer but other neurons are
linear. Also, there are ten decision parameters to be determined
in this case. For the GA, we choose the population &ize 30,
the crossover probability’. = 1.0 while mutation probability

-05

-

0 1 7
x10*

@

Al

Z
0 1 2

x10*

(b)

P,, = 0.25. Similar to Example 1, a multiple-point crossoverig. 9. Separated speech signals by using the proposed GA-based BSS
and elitist strategy are employed. There is no restart mechanirproach based on the cost function in (33). (a) Woman’s speech. (b) Man’s

in this experiment. The evolution process of the cost functiofigeee™

are averaged on five runs. Fig. 9 shows the separated results by

the proposed GA-based BSS approach based on the cost furads with original speech signals and their mixtures are listed in

tion defined in (33). To further illustrate the validity of our sepaTable V. The separating experiment based on the cost function
ration system, the cross correlations between the separatedisig16) is also carried out by using the proposed approach. To
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TABLE V [71
CROSSCORRELATIONS BETWEEN THE SEPARATED SIGNALS AND CLEAR
SPEECHSIGNALS AND THEIR MIXTURES TO ILLUSTRATE THE VALIDITY
OF THE PROPOSEDSEPARATION SYSTEM, WHERE $1 AND $2 ARE THE 8]
CLEAR SPEECHSIGNALS AND THEIR MIXTURES ARE DENOTED BY &; AND
23, Y1 AND ¥z ARE SEPARATED SIGNALS [9]
EE ENE*
vy || 0.0135 | 7.0832x107% | 0.0102 | 0.0079 [10]
yz || 0.0012 | 0.0220 0.0043 | 0.0166
[11]

save space, the separated results are not shown due to its somtél
what similarity to that in Fig. 9. It is shown from the graphs of
Figs. 8 and 9 that our proposed method achieved the successfid;
separation of the two speech signals from their nonlinear mix-

tures.
(14]

VI. CONCLUDING REMARKS s
A GA-based BSS approach has been developed for BSS froin !
the nonlinear mixtures of independent sources. The proposed
method overcomes the local minima problem occurred in the
conventional gradient-based methods and can obtain global ORsg)
timal solutions to nonlinear BSS problem from any initial con-
ditions. Extensive simulation results demonstrate the validity
and performance of this GA-based BSS method. Apart fronk”]
obtaining globally optimal separations, the proposed GA-based
method is also characterized by high accuracy, high robustnegsg)
and fast convergence. Since the number of parameters to be op-
timized in BSS is usually small, the GA-based method is very19
suitable for this kind of problem. Another feature of this method[20
is that it also suits the case of short available data. This is partic-
ular useful in some medical applications where source signalgi]

may appear in a very short time period. 22
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