
Bridging boundaries: CORBA in perspective.Bridging boundaries: CORBA in perspective.

Vinny Cahill, Sean Baker, Paddy Nixon

Publication datePublication date

01-01-1997

LicenceLicence

This work is made available under the CC BY-NC-SA 1.0 licence and should only be used in accordance with
that licence. For more information on the specific terms, consult the repository record for this item.

Document VersionDocument Version
1

Citation for this work (HarvardUL)Citation for this work (HarvardUL)

Cahill, V., Baker, S.and Nixon, P. (1997) ‘Bridging boundaries: CORBA in perspective.’, available:
https://hdl.handle.net/10344/1103 [accessed 24 Jul 2022].

This work was downloaded from the University of Limerick research repository.

For more information on this work, the University of Limerick research repository or to report an issue, you can
contact the repository administrators at ir@ul.ie. If you feel that this work breaches copyright, please provide
details and we will remove access to the work immediately while we investigate your claim.

https://creativecommons.org/licenses/by-nc-sa/1.0/
mailto:ir@ul.ie


A pplications that cross the boundaries of different computing machines,
operating systems, and programming languages are increasingly the norm.
As a result, the need for what might be called “bridging technologies” to

develop software that works across heterogeneous environments has become more
compelling. The Common Object Request Broker Architecture is one such tech-
nology that is both robust and commercially available. CORBA essentially describes
how client applications can invoke operations on server objects using the services of
an intermediary known as an Object Request Broker, or ORB. CORBA has already
been successfully deployed in a variety of application domains ranging from finan-
cial information systems to video-on-demand. 

While early CORBA adopters were often large commercial enterprises that need-
ed to integrate proprietary back-end applications over diverse operating and hard-
ware systems, CORBA is increasingly finding its way onto the desktop and becom-
ing a serious contender as the technology of choice for the development of
Internet-based applications. The standardization of a Java binding for CORBA, sup-
ported by products such as Visigenic’s VisiBroker for Java* and Iona Technologies’
OrbixWeb,* allows client applets to invoke server objects across the Internet.

Consider the example of a ticket agency that implements a CORBA interface
to its services. This agency could then use a Java applet from a Web page to invoke
one of its servers and book tickets on behalf of a client. Moreover, Netscape’s incor-
poration of an ORB into its Communicator* client software means that many users
will already have an ORB on their desktop.

This article introduces CORBA by describing its key components. We then
review the boundaries it helps to bridge. We conclude by comparing CORBA with
a number of other bridging technologies available today.

TECHNICAL OVERVIEW 
CORBA is a standard for interoperability in heterogeneous computing environments.
It is controlled by the Object Management Group.* At its core is the specification of

S P E C I A L  F E A T U R E

52

1089-7801/ 97/$10.00 ©1997 IEEE IEEE INTERNET COMPUTING

BRIDGING
BOUNDARIES: 
CORBA in
Perspective

SEAN BAKER

Iona Technologies
VINNY CAHILL AND PADDY NIXON

Trinity College, Dublin

.

Authorized licensed use limited to: TRINITY COLLEGE LIBRARY DUBLIN. Downloaded on September 3, 2009 at 09:16 from IEEE Xplore.  Restrictions apply. 



the ORB, which facilitates, or brokers,
the making of requests on objects.
CORBA systems are composed of
objects—components with well-defined
interfaces that describe the services they
provide to other objects in the system.
These objects may be components
implemented using an object-oriented
language such as C++ or Java, or they
may be simple wrappers for large
amounts of, possibly legacy, code. 

Object Request Broker
The ORB itself normally consists of a
library that is linked with each CORBA
process and a daemon process that is
involved in establishing a connection
but not otherwise in communication.
Client processes make calls to objects in
server processes; but the system is flexi-
ble because servers can also make calls
on objects (that is, they can behave like
clients) and clients can contain objects.
The exact nature of an ORB, however,
must depend on the environment. For
example, an ORB in a real-time envi-
ronment might dispense with the dae-
mon to save space.

ORBs support other capabilities. For
example, the so-called dynamic invoca-
tion interface (DII) and dynamic skele-
ton interface (DSI) shown in Figure 1
allow access to objects without type-
specific stubs and skeletons. Moreover,
at runtime a client can 

■ determine the interface to an object
for which it has received an object
reference; 

■ make calls to an object without
having to know the object’s inter-
face at runtime; and 

■ control the parameters of the ORB
itself. 

Interface Definition Language
The interfaces between objects are the
key to a CORBA system. The ORB
must allow one object to use another,
even if the two objects are implement-
ed in different programming languages
and run on different networked
machines with different operating sys-

tems. Each CORBA object has an inter-
face defined in the Interface Definition
Language. IDL is a simple language
with a simple underlying object model;
it acts as a lingua franca between differ-
ent programs and systems. The ORB
transports requests on an object to it
and performs any required translation
between caller and object.

The IDL interface is defined by giv-
ing a name, possibly an inheritance list,
and a list of operations and attributes.
Each operation has a name, a return
value, possibly some parameters, and
perhaps a raises clause. Attributes are a
shorthand way to specify a value that can
be read and written; however, the
returned value can be recalculated as a
result of a read request, so the attributes
do not represent
internal (member)
variables. 

IDL supports
a range of basic
types as well as
structured types
(structs, sequen-
ces, arrays, and
unions). Because
IDL is an object-
oriented language,
a CORBA system
is object-oriented
at its global level,

even if its objects are implemented in a
procedural paradigm. The example in
Figure 2 of an IDL-defined interface
could be used by the aforementioned
ticket agency to define a very simple
interface to a cinema.1

Any number of objects of type
FrontOffice can exist in the same or dif-
ferent servers. Each allows its capacity
(number of seats) to be retrieved (but
not updated directly because the
attribute has been labeled as readonly).
The price of a place is returned by a call
to the operation getPrice(). This call can
be made without concern for what pro-
gramming language the target
FrontOffice object is implemented in,
which host it is running on, or what
the host’s operating system is.

C O R B A

53

IEEE INTERNET COMPUTING h t tp ://computer.org/ in te rne t/ SEPTEMBER • OCTOBER 1997

.

struct Place {// a structure containing the row
// and seat number in that row

char row;
unsigned long seat;

};

interface FrontOffice {
readonly attribute unsigned long numberOfSeats;
float getPrice (in Place chosenPlace);

};

Figure 2. Example IDL-defined interface between a ticket
agency and a cinema.

Client Project implementation

Dynamic
invocation
interface

IDL
stubs

ORB
interface

IDL
skeleton

Dynamic
skeleton
interface

Object
adapter

ORB core

Interface identical for all ORB implementations
Multiple object adapters allowed
Stubs and skeletons for each object type
ORB dependent interface

Figure 1. The static and dynamic aspects of the core CORBA standard.

A
da

pt
ed

 w
ith

 p
er

m
is

si
on

 o
f t

he
 O

bj
ec

t M
an

ag
em

en
t G

ro
up

.

Authorized licensed use limited to: TRINITY COLLEGE LIBRARY DUBLIN. Downloaded on September 3, 2009 at 09:16 from IEEE Xplore.  Restrictions apply. 



As Figure 1 shows, IDL interface def-
initions are used to generate client-side
stubs and server-side skeletons that pro-
vide the link between the underlying
ORB and, respectively, the client and
server applications. When using
CORBA, the client normally invokes a
method in a local stub, which forwards
the request to the ORB. The ORB is
responsible for locating an object that
can implement the request and forward-
ing the request to it before invoking the
appropriate method via the skeleton.

IDL lacks any computation capa-
bilities; it is used solely for interface
definition. Therefore, every CORBA
implementation must map IDL to

■ the client programming language
in order to make calls to CORBA
objects and 

■ the server language in order to
implement, for example, the inter-
face FrontOffice and create objects
of that type. 

An IDL compiler handles the map-
ping between IDL and the target pro-
gramming language, and is therefore
used to generate the required stubs and
skeletons. 

Internet InterORB Protocol
Interoperability among ORBs provid-
ed by different vendors is clearly a crit-
ical requirement. Thus, OMG also
defines the on-the-wire Internet
InterORB Protocol that two ORBs
from different vendors must be able to
use for interoperability over the
Internet. A typical IIOP packet encodes
the identifier of the target object, the
operation being called, and the para-
meters to be passed to the target object.

While IIOP was not part of the first
CORBA specifications, it is now wide-
ly supported by ORB vendors. Indeed,
stand-alone implementations of IIOP
will soon be available. Such imple-
mentations can be embedded in other
applications, allowing them to, as it
were, “speak CORBA” and hence ini-
tiate invocations on CORBA objects. 

Like IDL, IIOP reflects the attempt
to standardize on interoperability, since
standardizing on computing environ-
ments is so unlikely.

Object Services
CORBA defines a wide range of ser-
vices to extend the core capabilities of
the ORB. Some run as servers on top of
the ORB, while others must be built, at
least partly, into the ORB. The services
range over a wide area of computer sci-
ence, and each application is likely to
use only a few. Among the most impor-
tant for the bridging functions are

■ Naming—associates a symbolic
name with an object and allows a
client to obtain a reference to the
object by looking up its name. 

■ Event—allows the decoupling of
clients from target objects. The
client sends an event (message) to an
event channel, and the event is then
sent to each of the servers registered
on that channel. This allows one-to-
many communication. 

■ Security—supports authentication
and authorization so that applica-
tions can restrict certain or all oper-
ations to specified clients; also sup-
ports encryption.

■ Transaction—allows applications
that communicate with multiple
servers and update multiple data-
bases to atomically commit or
abort their changes. Referred to as
OTS, this service defines the sim-
ple interfaces that clients need to
create and terminate transactions.
Its other interfaces are internal, and
are used by an OTS implementa-
tion to abstract the two-phase com-
mit protocol and other details. 

OMG maintains complete documenta-
tion of CORBA services at http://www.
omg.org/corba/csindex.htm.

CORBA also defines a number of
facilities, such as the System Manage-
ment facility, which provides a set of
interfaces to help structure the imple-
mentation of the management layer.

For complete documentation on
CORBA facilities, see http://www.omg.
org/corba/cfindex.htm.

BOUNDARIES TO
INTEROPERABILITY
CORBA was designed to solve the
problems of interoperability among the
components of (distributed) applica-
tions. If we consider different software
units (programs, objects, functions,
databases, and so on) as components
that provide particular functionality,
then the problem is to integrate com-
ponents across different boundaries. 

■ Network boundaries. Distributed
applications must address the intri-
cacies of network access and com-
munication, while maintaining net-
work transparency. 

■ Language boundaries. Software pro-
ducers use a particular language for
many different reasons, including
skill base, legacy dependencies, and
client requirements. Applications
written in one language must be
able to interoperate with those
written in another. 

■ Operating system boundaries.
Different operating systems might
exist within organizations because
of purchasing decisions, client
requirements, or the needs of lega-
cy systems. For a variety of reasons,
the operating system is seldom a
variable that can be changed.
Integration between applications
that run on different operating sys-
tems is a further requirement.

■ Object model boundaries. Although
object-oriented programming has
become a de facto standard for sys-
tems development, there are still
many differences among the object
models in use. For example, the
object programming models of Java
and C++ differ in subtle ways that
inhibit integration. 

■ Legacy boundaries. Particularly
important from the enterprise per-
spective is the need to integrate with
legacy applications. By mapping

S P E C I A L  F E A T U R E

54

SEPTEMBER • OCTOBER 1997 h t tp ://computer.org/ in te rne t/ IEEE INTERNET COMPUTING

.

Authorized licensed use limited to: TRINITY COLLEGE LIBRARY DUBLIN. Downloaded on September 3, 2009 at 09:16 from IEEE Xplore.  Restrictions apply. 



such applications and providing an
IDL interface into them, the func-
tionality of these applications can be
made available on other platforms.

■ Administrative boundaries. An orga-
nization that provides a service to
several third parties and access to
this service via a software interface
typically ports its access software to
each party and maintains these dif-
ferent instances of the system. The
administrative overhead and other
risks of system changes at third-
party sites are another boundary to
interoperability.

■ Paradigm boundaries. Using different
design and programming paradigms
can generate solutions with compo-
nent sets that should be implement-
ed in different languages and perhaps
based on different sets of assump-
tions and rules. These differences can
be hidden behind an IDL interface.

■ Vendor boundaries. Being tied to a
single vendor can be very restrictive
and costly in a business environ-
ment that changes daily, and consti-
tutes the final boundary in our list.

OTHER BRIDGING
TECHNOLOGIES 
Through its ORBs, IDL, and IIOP,
CORBA provides a comprehensive
solution to the bridging problem.
However, it is not the only solution. In
this section, we briefly describe five
main alternatives and identify the
scope of each. Table 1 summarizes the
bridging capabilities described for each
alternative. While the picture is likely
to change as new offerings become
available even in the near term, at this
time CORBA offers the most general
solution. DCOM appears to be the
only other serious contender.

Clearly Table 1 does not show the
whole picture. Important issues such as
functionality, ease of use, performance,
and vendor support, to mention but a
few, are not addressed. For example, it
seems here that the WWW solution is
closely comparable to a CORBA or
DCOM solution, but this is true only

for quite limited applications. None-
theless, we hope the table offers a start-
ing point for comparing available mid-
dleware technologies.

Java
Java and its companion technologies,
especially the JavaBeans component
model and the Java Enterprise API
(including Java Remote Method
Invocation, Java Database Connectivity,
Object Serialization, and the Java
Naming and Directory Interface), are
sometimes seen as a competitor of
CORBA. There is certainly some over-
lap between the capabilities of the two.
For example, Java and RMI provide a
viable means of building distributed
applications—that is, of bridging the
network boundary. Since its inception,
Java’s portability has allowed the oper-
ating system boundary to be bridged. 

However, at its heart, Java is simply
another object-oriented programming
language. While CORBA is concerned
with the interfaces between objects and
application components modeled as
objects, Java is primarily concerned with
the implementation of those objects. Its
suitability as a means of bridging either
the language or object model boundaries
is, at best, questionable. Similar com-
ments apply to the paradigm boundary.
In practice, we expect to see coexistence
between CORBA and Java, with each
playing to its respective strengths. 

DCOM
The Distributed Component Object
Model is Microsoft’s proprietary object
middleware. DCOM has evolved from
Microsoft’s OLE, COM, and ActiveX
technologies. OLE (originally, Object
Linking and Embedding) emerged in
the late 1980s as Microsoft’s initial
solution to supporting the now familiar
data-centric application model, based
on compound documents. OLE 2.0
introduced COM (the Component
Object Model) in the early 1990s.
OLE 2.0 became simply OLE and
eventually represented a wide range of
technologies built on top of COM. 

COM itself provided a binary inter-
face standard through which services
could be packaged (as either dynamic
link libraries or applications) in a vari-
ety of programming languages. How-
ever, COM was substantially limited by
its lack of support for distribution.
DCOM addressed this deficiency by
allowing clients to access services provid-
ed across the network on remote
machines. OLE technologies have been
recently re-branded as ActiveX, and OLE
has been given back its original meaning. 

DCOM was designed from the outset
to provide support for application inte-
gration. Support for distribution came
later. The character of its object model
reflects this history. DCOM supports an
object-oriented model, but one that dif-
fers substantially from classical object-

C O R B A

55

IEEE INTERNET COMPUTING h t tp ://computer.org/ in te rne t/ SEPTEMBER • OCTOBER 1997

.

Table 1. Boundaries versus bridging technologies.
CORBA Java DCOM MOM TP WWW

Network Yes Yes Yes Yes Yes Yes
Language Yes No Yes No No Yes
Operation system Yes Yes No No Yes Yes
Administration Yes Unknown Yes Yes Yes Yes
Legacy Yes Yes Yes No No Yes
Object model Yes No Unknown No No No
Vendor Yes Unknown No No No Yes
Paradigm Yes No Yes No No Yes

Legend: 
Yes = technology can bridge boundary
No = technology does not bridge boundary
Unknown = unable to assess or partial bridge of the boundary 

Authorized licensed use limited to: TRINITY COLLEGE LIBRARY DUBLIN. Downloaded on September 3, 2009 at 09:16 from IEEE Xplore.  Restrictions apply. 



oriented models. A DCOM object
provides services through one or more
distinct interfaces. It may implement
all of its interfaces itself. Alternatively,
it can use a technique called aggrega-
tion to delegate one or more interfaces
to other DCOM objects. Aggregation
allows an application to be construct-
ed from reusable DCOM components. 

DCOM also breaks with classical
object-oriented approaches in its lack of
support for polymorphism. DCOM
advocates considered such support inap-
propriate for a model whose primary
purpose is the construction of applica-
tions from binary components. Note,
however, that DCOM does not place
any restrictions on the use of a language
supporting polymorphism when imple-
menting a DCOM component. 

A client may query a DCOM object
(using standard interface methods
implemented by all DCOM objects)
for a particular interface (identified by
a globally unique number known as a
UUID). An interface is considered
immutable, in that once published, it
should never be changed. New func-
tionality is added to a DCOM object
only by adding new interfaces. 

While there are significant technical
differences between CORBA and
DCOM, both are concerned with com-
ponent integration. Thus, DCOM is a
viable solution for bridging the net-
work, language, legacy, and paradigm
boundaries. Its main limitations stem
from the fact that it is not an open stan-
dard. Although Microsoft reports that
it is working with standards bodies such
as IETF and W3C,5 DCOM is cur-
rently available only for Microsoft plat-
forms. This may change as other ven-
dors begin to port DCOM to other
platforms in the next few months, but
for now, DCOM does not bridge the
operating system or vendor boundaries.

Microsoft claims that the release of its
new Transaction Server will give DCOM
many of the services it has lacked, mak-
ing it more than simple “plumbing” and
into a real enterprise solution that offers
naming, event, security, transaction, and

life-cycle services. In practice, we expect
CORBA and DCOM to coexist and,
indeed, the OMG is already consider-
ing COM/CORBA interoperability.

World Wide Web
The Web is an example of a set of tech-
nologies that supports applications that
cross most of the boundaries of interop-
erability. In its most basic form, the Web
allows information supplied via the
FORM tag in an HTML document to
be sent to a WWW server at which it
can be processed by a CGI program.
While this approach is extremely flexi-
ble, it also has  many disadvantages.

The information supplied to the
program must be one or more strings
that must be converted to appropriate-
ly typed values at the server side. In
effect, all messages are untyped and
structured data types are not easily sup-
ported. Sessions are also a problem due
to a lack of persistence and the fact that
WWW servers normally create a new
instance of the CGI program to handle
each request. The programming model
is strictly client-server, with essentially
all processing taking place at the server
side. Moreover, this approach obvious-
ly applies only to applications that are
to be deployed over the Internet. Evans
and Rogers6 provide a more detailed
comparison of the relative strengths and
weaknesses of using HTML and CGI
versus CORBA and Java for the devel-
opment of a distributed application.

While the HTML/CGI approach
will undoubtedly continue to be used,
we expect the majority of future
Internet applications to be developed
using some combination of Java,
ActiveX/DCOM, and CORBA.

MOM
Message-Oriented Middleware refers
to a collection of proprietary products
that enable communication between
clients and servers via queues of mes-
sages. While providing a basis for
developing new distributed applica-
tions, MOM systems are proprietary
and typically restricted to a small num-

ber of platforms.
While MOM systems can differ in

their architecture, an interesting varia-
tion is one in which several clients send
messages via a queue to a set of servers
that feed off that queue—with each
message being handled by only one of
the servers. This gives a natural form of
fault resilience and load sharing.
CORBA Event Service provides similar
functionality except that each of a set of
servers receives each event. Both forms
of communication are important, and
OMG has indicated that the second
form will be allowed for in the future.

TP Monitors
Transaction-processing monitors typi-
cally provide three services: 

■ message transmission from clients
to servers (but not using high-level
interfaces as in CORBA); 

■ two-phase commit of multiple
databases; and

■ control over the number of concur-
rent calls each server must handle. 

The core ORB provides the first of these,
and the OTS provides the second with-
in the CORBA framework. CORBA
does not currently address the third.

TP monitors have been widely used
for application integration in enterprise
computing but lack the openness and
generality of CORBA-based systems.
The current trend is toward closer inte-
gration between ORBs and TP moni-
tors in the context of the OTS, as
exemplified by OrbixOTS from
Transarc, which is based on the Encina
TP monitor.

CONCLUSION
CORBA is a powerful tool that solves
the problem it was designed to solve—
namely, interoperability. The develop-
ment of the Internet as a global com-
puter continues to move the market
toward component-based computing.
As one of our colleagues is fond of say-
ing, “Heterogeneity is business!” As
long as there is heterogeneity, there is a

S P E C I A L  F E A T U R E

56

SEPTEMBER • OCTOBER 1997 h t tp ://computer.org/ in te rne t/ IEEE INTERNET COMPUTING

.

Authorized licensed use limited to: TRINITY COLLEGE LIBRARY DUBLIN. Downloaded on September 3, 2009 at 09:16 from IEEE Xplore.  Restrictions apply. 



.

C O R B A

57

IEEE INTERNET COMPUTING h t tp ://computer.org/ in te rne t/ SEPTEMBER • OCTOBER 1997

role for CORBA and similar bridging
technologies. ■

REFERENCES
1. S. Baker, CORBA Distributed Objects, Add-

ison-Wesley, Longman, Harlow, UK, 1997.

2. P.A. Bernstein, V. Hadzilacos, and N. Good-

man, Concurrency Control and Recovery in

Database Systems, Addison-Wesley, Reading,

Mass., 1987.

3. C. McHale, Synchronisation in Concurrent,

Object-Oriented Languages: Expressive Power,

Genericity and Inheritance, doctoral disser-

tation, Dept. of Computer Science, Trinity

College, Dublin, 1994.

4. C. Atkinson, “An Object-Oriented Language

for Software Reuse and Distribution,” tech-

nical report, Dept. of Computing, Imperial

College of Science, Technology and Med-

icine, Univ. of London, 1990.

5. Microsoft Corp., “DCOM: A Business

Perspective,” http://www.microsoft.com/,

posted Aug. 1997.

6. E. Evans and D. Rogers, “Using Java Applets

and CORBA for Multi-User Distributed

Applications,” IEEE Internet Computing,

Vol. 1, No. 3, May/June 1997, pp. 43-57.

Sean Baker is a co-founder and director of Iona

Technologies, which produces Orbix, a

leading CORBA-compliant ORB. Prior

to establishing Iona, he held a tenured

post in the Department of Computer

Science at Trinity College, Dublin.

Vinny Cahill is a co-founder of Iona Technol-

ogies. He currently leads the Distributed

Systems Research Group in the Compu-

ter Science Department at Trinity Col-

lege, Dublin.

Paddy Nixon is a  lecturer in the Department of

Computer Science at Trinity College,

Dublin, and a member of the Distrib-

uted Systems Group there.

URLs OF INTEREST
Corba Freeware • www.omg.org/news/freestuff.htm
Corba In format ion Repos i tor y • www.ac l . lan l .
gov/CORBA/
Corba In t roduc tor y  • www. in fosys . tuwien.ac .a t/
Research/Corba/ in t ro .h tml
Dis t r ibu ted Objec t  Comput ing Magazine • www.
ondoc.com/
Douglas  Schmidt í s  Corba page • s ies ta .cs .wus t l .
edu/~schmid t/corba.h tml
Draf t  o f  DCOM Protoco l  spec  and o ther  technica l
in format ion • www.microso f t . com/oledev/
Java API  Over v iew and Schedule • www.
javasoft.com:80/products/api-overview/index.html
Java Documentat ion • www.javasof t .com:80/ocs/
index.h tml
Java for  Deve lopers • www. javasof t . com:80/
nav/deve loper/ index.h tml
OMGs Corba-Re la ted Bookmarks • www.omg.
org/news/corbkmk.h tm

MAILING LISTS
Corba mai l  l i s t s  • comp.objec t . corba 

Send mail to: majordomo@omg.org with the following com-
mand in the body of the message: subscribe comp-object-corba.
DCOM Mai l  L i s t

Send mail to: Listserv@listserv.msn.com. Subject: (leave
blank). Message Text (to subscribe): sub DCOM your name.
JavaCORBA • JavaCORBA@luke.org

Send a mail to listserv@luke.org with SUBSCRIBE or SUB-
SCRIBE DIGEST in the Subject field.
Java IDL • id l -users@java.sun.com

Send mail to listserv@java.sun.com with the following com-
mand in the body of the message: subscribe idl-users.

URLs CITED IN THIS ARTICLE
*OrbixWeb • www.iona.com/
*Communicator • www.netscape.com/
*Objec t  Management  Group •www.omg.org/
*Vis ibroker  for  Java • www.visigenic.com/

Authorized licensed use limited to: TRINITY COLLEGE LIBRARY DUBLIN. Downloaded on September 3, 2009 at 09:16 from IEEE Xplore.  Restrictions apply. 


	Bridging boundaries: CORBA in perspective.

