
University of South Carolina University of South Carolina 

Scholar Commons Scholar Commons 

Faculty Publications Computer Science and Engineering, Department 
of 

2000 

Agent Teams: Building and Implementing Software Agent Teams: Building and Implementing Software 

Michael N. Huhns 
University of South Carolina - Columbia, huhns@sc.edu 

Follow this and additional works at: https://scholarcommons.sc.edu/csce_facpub 

 Part of the Computer Engineering Commons 

Publication Info Publication Info 
Published in IEEE Internet Computing, Volume 4, Issue 1, 2000, pages 93-95. 
http://ieeexplore.ieee.org/servlet/opac?punumber=4236 
© 2000 by the Institute of Electrical and Electronics Engineers (IEEE) 

This Article is brought to you by the Computer Science and Engineering, Department of at Scholar Commons. It has 
been accepted for inclusion in Faculty Publications by an authorized administrator of Scholar Commons. For more 
information, please contact digres@mailbox.sc.edu. 

https://scholarcommons.sc.edu/
https://scholarcommons.sc.edu/csce_facpub
https://scholarcommons.sc.edu/csce
https://scholarcommons.sc.edu/csce
https://scholarcommons.sc.edu/csce_facpub?utm_source=scholarcommons.sc.edu%2Fcsce_facpub%2F55&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=scholarcommons.sc.edu%2Fcsce_facpub%2F55&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ieeexplore.ieee.org/servlet/opac?punumber=4236
mailto:digres@mailbox.sc.edu


93IEEE INTERNET COMPUTING h t tp ://computer.org/in terne t/ JANUARY • FEBRUARY 2000

Since the very first issue of IEEE
Internet Computing, this column has
focused on the many ways in which
agents can help users exploit the Web.
Soon, agents will begin to play an
even more important role, becoming
the fundamental building blocks for
general-purpose Internet-based soft-
ware. The software may not display
any explicitly agent-like characteris-
tics, but it will exhibit the benefits of
tolerance to errors, ease of mainte-
nance, adaptability to change, and
speed of construction that agents pro-
vide. Moreover, an agent-based
approach to software development can
lead to new types of software solutions
that might not otherwise be obvious.

Conventional Software
Development
Nearly everyone agrees that something
is fundamentally wrong with current
software development practice. Even
as the infrastructure for computing
and communications is increasing dra-
matically and the number of users
working with a wide range of applica-
tions is growing, techniques for devel-
oping software systems remain woeful-
ly inadequate. Although we use

phrases such as “computer age” to
mean advanced or leading edge, the
systems that give the modern age its
name are constructed in a manner
more resembling sorcery than science.

Software development has simply
not kept pace with the rest of the
computing industry. Whereas proces-
sor performance has been increasing
48 percent and network capacity 78
percent annually, software productivi-
ty has been growing only 4.6 percent
annually. Moreover, we are stuck with
a legacy of approximately 50 billion
lines of Cobol, representing roughly
80 percent of all software written since
1960. It is unlikely that we can replace
it anytime soon, even though main-
taining it costs US$3 billion annually.

Programmers still produce approxi-
mately the same number of lines of
tested and debugged code per day as
they did in 1975, despite such “silver
bullets” as structured programming,
declarative specifications, object-ori-
ented programming, formal methods,
and visual languages. Actually, this
shouldn’t be surprising, considering
that software systems are the most
complicated artifacts people have ever
attempted to construct. Paradoxically,

they are (supposedly) guaranteed to
work correctly only when all errors
have been detected and removed,
which their very complexity makes
infeasible. Moreover, the effect of an
error is unrelated to its size, so that a
single misplaced character out of mil-
lions can render a system useless—or
worse, harmful.

Agent-Based Software
Development
What we need is not simply another
variant of conventional software engi-
neering but a radically new way of
thinking about software and the pur-
poses it serves. From this new way of
thinking will arise new technical
approaches for constructing software.
An approach based on teams of
active, cooperative, and persistent
software components—that is,
agents—shows special promise in
enabling the rapid construction of
robust and reusable software.

Most business software compo-
nents are designed to be models of
some real entity, such as an employee.
But unlike the entities they represent,
these components are passive. Why is
this a problem? Let’s say someone
accidentally reduced the salary of an
employee by 50 percent. A conven-
tional software component would
accept the change without protest,
but a well-designed agent that is
active and aware would object, just
like a real employee.

Agents can do much more. Imagine
what software development would be
like if programmers were freed from
debugging lines of code and instead
spent their time selecting “volunteers”
(agents from an active repository) and
assembling them into a problem-solv-
ing team. These agents would cooper-
ate and provide mutual assistance,
compensating for each other’s mis-
takes or limitations. The team would
be open in that its membership would
be dynamic, making it more suitable
than conventional software for dealing
with open information environments,
such as the Internet.

Any system’s behavior depends on
its construction and its operating envi-
ronment. When the system contains
numerous components that interact
with each other and with a complex

A
G

EN
TS O

N
 TH

E W
EB

 

Agent Teams:
Building and

Implementing
Software

Michael N. Huhns • University of South Carolina • huhns@sc.edu



environment, behavior can be difficult
to predict and control. Traditional
software interfaces are rigid. Often the
slightest error in a component’s imple-
mentation can have far-reaching
repercussions on the behavior of the
entire system. A component’s output
may be erroneous because it malfunc-
tions, its environment is out of its
design range, or it receives erroneous
input from another component.
Traditional, rigid approaches for soft-
ware or hardware fault tolerance use
fixed means such as averaging or vot-
ing to correct errors.

By contrast, with an agent-based
approach the interactions among
components are defined in a more
robust manner using higher level
abstractions, such as social commit-
ments and team intentions. These
abstractions enable programmers to
design components to be more flexi-
ble toward their inputs and outputs.
Moreover, in real-life situations, a
component may be forced to release
erroneous results because it lacks the
time to await definite inputs and/or
the resources to process them proper-
ly. The new approach can handle
these situations naturally, whereas tra-
ditional approaches are incapable of
even representing them.

The team approach presupposes
that the components can enter into
social commitments to collaborate and
negotiate with others and, when nec-
essary, reverse previous decisions on
the basis of new information. They
must be long-lived to detect errors
that manifest later in the execution,
and they must be persistent to resolve
them. In other words, the components
are interacting agents functioning in
teams. The agents can detect not only
errors but also opportunities. They
can volunteer to take advantage of
those opportunities, to form teams,
negotiate solutions, and enact solu-
tions in a persistent manner.

One risk with such systems is that
their persistence may get them into
“livelocks,” where continuous interac-
tions prevent progress. For example,
two agents that are designed to
acknowledge every message they
receive might get stuck acknowledging
each other’s acknowledgments. Agents
must be able to explore their way out

of livelocks, possibly by continually
reassessing whether or not they are
getting nearer their goals or objectives.

Forming a Circle
When asked to form a circle, children
can comply regardless of their num-
ber, sizes, or ages; they do not need
explicit directions as to who should
stand where. Formation of the circle
will be robust with respect to the
removal or addition of children. It
will even accommodate a few children
who do not understand the request.
This “circle algorithm” succeeds
because each element of the solution
is intelligent and autonomous, pos-
sessing basic knowledge of the prob-
lem domain. Each element is not,
however, required to be perfect.

Contrast this with a conventional
object-oriented approach to develop-
ing software for arranging items in a
circle. A programmer would first
define classes for the items, with
attributes describing their size and
shape. The programmer would then
construct a central control module
that would use trigonometry to com-
pute the precise locations for each of
the items. The control module would
have to be written to accommodate
an arbitrary number of items having a
variety of sizes and shapes. Changing
any one of the parameters would
require the control module to recom-
pute the locations of all items. More
significantly, redefining the shape or
size of an item would require the con-
trol module to be rewritten.

A Team of Agents
The approach envisioned here would
consist of multiple, redundant, agent-
based components interacting over a
network. For the above example, each
would behave like a child in under-
standing what a circle is and what its
role in a circle would be. The appro-
priate analogy is that of a large,
robust, natural system. Programming
and activating a team of agents
requires that the following matters be
resolved: who (role) will do what
(subtask), when (coordination), how
(capabilities), where (resources or
location), and why (team plan and
external requirements). In addition,
there are the aggregate matters of how

many (agents per role), how much
(extent of resources), and how long
(performance requirements). The
main steps are agent creation (compi-
lation), team configuration (linkage),
and team activation (execution).

The approach presupposes either a
repository of agents or the availability
of “agent factories,” together with pro-
tocols for discovery, negotiation, and
software configuration. In a general
setting, the agents could join and acti-
vate teams with minimal programmer
intervention. Their negotiated com-
mitments to one another would lead
to coordinated and coherent action by
the entire team even as the member-
ship of the team evolves. Table 1 com-
pares the major features of two exist-
ing software paradigms with those
promised by the new paradigm.

A Leaderless Orchestra
But wouldn’t a self-assembled team of
agents behave just like an orchestra
without a leader? Yes, but maybe this
isn’t so bad. One such orchestra,
Orpheus, performed recently at
Carnegie Hall in New York City, and
with remarkable success.1 Orpheus is
the ultimate flat, nonhierarchical
organization, and its experiences with
being leaderless are of great interest to
hundreds of American companies that
are trying to become “flatter” by
removing layers of middle manage-
ment. Flatter organizations, according
to the management theory promoting
them, have lower overhead costs and
can react more quickly to technologi-
cal change. Wal-Mart, Cisco Systems,
and General Electric have been oper-
ating according to this theory.

Orpheus recognizes that the key
techniques for getting people to do
things when you lack authority over
them are negotiation and persuasion.
These are exactly the abilities that
agents in teams need.

Customized Components
Although the pragmatics and method-
ology of how to go about developing
software based on agents are still being
worked out, there has already been
significant progress.2 We are beginning
to see the rise of a software-compo-
nent industry that will distribute on-
demand components with functional-

C O L U M N

94 JANUARY • FEBRUARY 2000   h t tp ://computer.org/in terne t/ IEEE INTERNET COMPUTING



ity customized to users’ needs. Rather
than specifying how computations
should be done, programmers will
specify requirements, possibly in terms
of social commitments and intentions.
The components might negotiate,
make commitments to collaborate,
and reverse previous decisions about
their results. 

These capabilities will let us
achieve the two major goals of soft-
ware engineering—robustness and

increased productivity—that are not
being addressed by the current state
of software practice. Early versions of
tools for building agent teams are
now operating in research laboratories
and will soon be available for imple-
menting the software systems of this
millennium. ■

REFERENCES
1. D. Leonhardt, “Soothing Savage

Structures: A Leaderless Orchestra Offers

Lessons for Business,” The New York Times,
10 Nov 1999, pp. 13-14.

2. M.J. Wooldridge and N.R. Jennings,
“Software Engineering with Agents: Pitfalls
and Pratfalls,” IEEE Internet Computing,
May-June 1999, pp. 20-27.

Michael N. Huhns is a professor of electrical
and computer engineering at the
University of South Carolina, where he
also directs the Center for Information
Technology.

A G E N T S  O N  T H E  W E B

95IEEE INTERNET COMPUTING h t tp ://computer.org/in terne t/ JANUARY • FEBRUARY 2000

Editorial: IEEE Internet Computing targets the technical and scientific Internet user communities as well as
designers and developers of Internet-based applications and enabling technologies. Instructions to authors are
online at http://computer.org/internet/. Articles are peer-reviewed for technical merit and copyedited for clarity,
style, and space. Unless otherwise stated, bylined articles and departments, as well as product and service
descriptions, reflect the author’s or firm’s opinion; inclusion in this publication does not necessarily constitute
endorsement  by the IEEE or the IEEE Computer Society.

Copyright and reprint permission: Copyright ©2000 by the Institute of Electrical and Electronic Engineers. All rights
reserved. Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limits of
US copyright law for private use of patrons those articles that carry a code at the bottom of the first page, provided the
per-copy fee indicated in the code is paid through the Copyright Clearance Center, 222 Rosewood Dr., Danvers, MA
01970. For copying, reprint, or republication permission, write to Copyright and Permissions Dept., IEEE Service
Center, 445 Hoes Ln., Piscataway, NJ 08855-1331.

Circulation: IEEE Internet Computing (ISSN 1089-7801) is published bimonthly by the IEEE Computer Society.
IEEE headquarters: 3 Park Avenue, 17th Floor, New York, NY 10016-5997. IEEE Computer Society headquarters:
1730 Massachusetts Ave., Washington, DC 20036-1903. IEEE Computer Society Publications Office: 10662 Los
Vaqueros Circle, PO Box 3014, Los Alamitos, CA 90720; (714) 821-8380; fax (714) 821-4010. Annual
subscription: $34 in addition to any IEEE Computer Society dues, $48 in addition to any IEEE dues; $58 for
members of other technical organizations. Nonmember subscription rates are available on request. Back issues: $10
for members, $20 for nonmembers. This magazine is also available on microfiche.

Postmaster: Send undelivered copies and address changes to IEEE Internet Computing, IEEE Service Center, 445
Hoes Lane, Piscataway, NJ 08855. Periodicals postage paid at New York, NY, and at additional mailing offices.
Canadian GST #125634188. Canada Post International Publications Mail Product (Canadian Distribution) Sales
Agreement #1008870. Printed in USA.

Table 1. Major features of the procedural, object-oriented, and team-oriented software paradigms.

Procedural Object-oriented Team-oriented
Abstraction Data type Class Society
Building block Instance, data Object Agent
Computation model Procedure/call Method/message Perceive/reason/act
Design paradigm Tree of procedures Method invocations Cooperative interaction
Architecture Functional decomposition Inheritance and polymorphism Managers, assistants, and peers
Modes of behavior Program Design and use Enable and enact
Terminology Implement Engineer Activate


	Agent Teams: Building and Implementing Software
	Publication Info

	tmp.1291146281.pdf.FCY37

