
New research and a 

prototype implementation solve

some fundamental problems 

in distributed, real-time,

cooperative editing in 

the Internet environment. 

The REDUCE system’s strategies

include a novel consistency

model and responsiveness

techniques that permit 

arbitrary order in executing 

independent operations.

Real-Time Cooperative
Editing on the Internet

YUN YANG

Swinburne University of Technology
CHENGZHENG SUN

Griffith University
YANCHUN ZHANG

University of Southern Queensland
XIAOHUA JIA

City University of Hong Kong

C omputer-supported cooperative work (CSCW) or groupware
systems allow physically dispersed teams to engage in a common
task by providing an interface to a shared workspace.1 Real-time

cooperative editing systems extend the usefulness of CSCW applications
by allowing team members to simultaneously view and edit shared doc-
uments. Both the CSCW and distributed computing communities have
addressed the technical challenges of these systems since the mid-1980s
(for example, see Ellis and Gibbs2 and Rodden3). More recently, com-
mercial products such as Microsoft NetMeeting have emerged to sup-
port some cooperative editing processes (see http://www.microsoft.com/
windows/NetMeeting/Features/).

Our research investigates the principles and techniques underlying the
construction of cooperative editing systems that feature

■ Real-time responsiveness. The response to local user actions cannot
exhibit noticeable delay, and the latency for remote user actions should
be low. The key performance parameter here is the response time
observable by the user, rather than the number of operations per sec-
ond as in noninteractive application systems.

■ Distributed user community. Cooperating users must be able to work
on different machines connected over the Internet with nonnegligible
and nondeterministic latency. While fiber-optic communication tech-
nologies offer virtually unlimited Internet bandwidth, the commu-
nication latency over an intercontinental connection cannot be
reduced much below 100 milliseconds due to the speed limit of elec-
tronic and light signals. It is therefore communication latency, rather
than bandwidth, that challenges the design of Internet-based,
response-sensitive systems and calls for latency-tolerant or latency-
hiding technical solutions.

■ Unconstrained operation. Multiple users must be allowed to edit the
document freely at any time to facilitate a natural cooperative infor-
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mation flow. Many CSCW applications have
failed because they imposed too many restric-
tions on the users, as pointed out by Grudin
over a decade ago.4 The major challenge is to
manage the multiple streams of concurrent
activities so that system consistency can be
maintained.

We are addressing these issues through a variety of
collaborative projects known as the REDUCE sys-
tem (Real-time, Distributed, Unconstrained Col-
laborative Editing). We have reported major theo-
retical and algorithmic work elsewhere.5 In this
article, we focus on our approach to achieving high
responsiveness in the Internet environment in the
face of high concurrency and nondeterministic
communication latency. We begin by outlining the
theoretical and algorithmic background for achiev-
ing high responsiveness, and then describe our
REDUCE prototype and its responsiveness tech-
niques at the system design and implementation
levels. We also present performance measurement
results.

REPLICATION AND
CONSISTENCY MODEL
There are two different system architectures for
storing shared documents: centralized and repli-
cated. Centralized architectures use a single site to
save the shared documents, and all updates to the
shared documents are directed to this single site.
Despite the advantage of simplicity, the centralized
approach exhibits poor responsiveness in the Inter-
net environment. Replicated architectures, on the
other hand, replicate the shared documents to the
local storage of each participating site, so updates
can be performed at local sites immediately and
then propagated to remote sites.

We adopted the replicated architecture for
REDUCE to achieve better responsiveness across
the Internet. Accordingly, we inherit the challenge
of controlling concurrency to maintain consisten-
cy in the replicated documents. Concurrent gener-
ation of operations and nondeterministic commu-
nication latency create three major inconsistency
problems:

■ divergent results, caused by operations arriving
and executing at different sites in different
orders;

■ causality violations, resulting from operations
arriving and executing out of their natural
cause-effect order; and

■ intention violations, caused by an operation’s
actual effect when executed differing from its
intended effect when generated.

To address these inconsistency problems, we have
proposed a consistency model (detailed in Sun et
al.5) that has three corresponding properties:

■ the convergence property, which ensures the
consistency of the final results at the end of a
cooperative editing session;

■ the causality-preservation property, which
ensures that dependent operations are execut-
ed in their natural causal-effect order during a
cooperative editing session; and

■ the intention-preservation property, which
ensures that the effect of executing an operation
at remote sites is the same as executing it at the
local site at the time of its generation, and
which also ensures that the execution effects of
independent operations do not interfere with
each other.

Our consistency model imposes an execution order
constraint only on dependent operations, leaving
independent operations open as long as the con-
vergence and intention-preservation properties are
maintained. This feature lays the theoretical foun-
dation for achieving good responsiveness by per-
mitting local operations to execute immediately
after their generation. Moreover, the intention-
preservation property lets users see the effects of
individual operations immediately while protect-
ing against interference from other operations.

The consistency model specifies what assurance
a cooperative editing system promises to its users
and what properties the underlying concurrency
control mechanisms must support. For causality-
preservation, we used the well-known technique of
state-vector–based time-stamping to selectively
delay some dependent operations if they arrive out
of causal ordering.2,5 To support both convergence
and intention-preservation under the constraints of

The intention-preservation
property lets users see the effects

of individual operations
immediately.
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high responsiveness, we devised an optimistic con-
currency control technique, called operational trans-
formation.2,6,7 The novelty of operational transfor-
mation is that it allows independent operations to
be executed in any order (hence local operations can
be executed immediately) but ensures that their final
effects are identical and intention-preserved. We
have shown elsewhere that some intention-preserved

results achieved by operational transformation are
not achievable by any traditional serialization pro-
tocols.5 For an integrative review of the major issues
and algorithms in operational transformation, read-
ers are referred to Sun and Ellis.7

THE REDUCE PROTOTYPE
We implemented a prototype to support the
REDUCE system’s consistency model. Real-time
responsiveness has been taken into account in the
prototype architecture as well as the system design
and implementation levels.

System Architecture
A REDUCE system consists of multiple cooperat-
ing sites. Each REDUCE site is typically a PC or a
workstation, with user interface facilities for dis-
playing shared documents and generating editing
operations; local storage facilities for storing repli-
cates of shared documents; and computing and
communication facilities for executing, synchro-
nizing, and propagating editing operations.

The REDUCE end-user–related software con-
sists of a signed Java applet; when downloaded, it
runs locally as a REDUCE site server. In addition,
a centralized REDUCE session manager—a Java
application running as a daemon—is used to
implement protocols for cooperating membership
and session management. The session manager is
not involved in executing or propagating editing
operations; it is contacted only when a user joins or
leaves a session. Because communication among
sites for multicasting editing operations is direct,
rather than via the session manager, network laten-
cy is reduced to the minimum. In addition, the ses-

sion manager is replicated in the prototype to
enhance its reliability so that it can tolerate single-
site (session manager) failure.

Fault-Tolerant Session Manager
Figure 1 depicts a REDUCE system consisting of
a replicated session manager (SM) and three edit-
ing sites. The SM has a session manager connector
(SMC) component waiting for connection requests
from the REDUCE Java applets via the (editing)
site server. Once a connection request is accepted,
the SMC creates a new thread, called the site han-
dler (SH), to handle further communications
between the editing site and the session manager.

For each cooperative editing session, the session
manager maintains a session table with one entry for
each potential editing site. When a new connection
request arrives to join an existing session, the session
manager searches the corresponding session table for
a free entry, allocates the free entry’s index to the new
site as its session identifier, and creates a site handler
to handle further communications with the new site.
When an editing site leaves a session, the corre-
sponding session table entry is reclaimed.

The session manager plays a central role in look-
ing after the joins and leaves of team members.
With a single session manager server, no new team
member can join the cooperative editing session,
and no proper notification can be propagated to
other members regarding the leave of a team mem-
ber if the server is down. To increase REDUCE reli-
ability in the Internet environment, we have used
a variation of the primary-backup model (see Bud-
hiraja et al.8) to tolerate the single server failure as
depicted by the backup session manager in Figure
1. The twin session manager servers are located at
different sites over the Internet and connected to
each other via twin listener and connector threads.
If the primary session manager server is down, the
backup session manager site will automatically
replace the primary site to manage the editing ses-
sions, and vice versa.

Site Server
The editing site server is implemented as a Java
applet that can be downloaded by any team mem-
ber joining an editing session, as shown in Figure 1.
When the applet is downloaded, the site server will
contact the session managers—the twin servers for
primary and backup SMs—to make a connection
with other team members in the same session and
thereafter will be notified by the active session man-
ager when any team member joins or leaves the ses-

The REDUCE session manager is
replicated in the prototype to

enhance its reliability.
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sion. The site server consists of the following major
components:

■ A session management handler (SMH), which
is a thread inside the site server process that han-
dles all messages related to the session manager.

■ A site server connector (SSC), which is a thread
responsible for accepting connection requests
from new editing sites and for creating a new
remote site handler (see the next item) for each
new connection.

■ Multiple remote site handlers (RSH), which
are concurrent threads corresponding to mul-
tiple remote sites in the current cooperative
session. Each remote site handler is responsi-
ble for receiving messages from the corre-
sponding remote site. An RSH may be creat-
ed by the SMH thread if the local site is newly

joined, or by the SSC thread if the local site is
an existing site.

■ A local site handler (LSH), which is a thread
responsible for handling some miscellaneous
issues, such as the local timers for flushing the
input string buffer and for multicasting local
status messages to remote sites to facilitate
garbage collection if the local user has been
silent for a certain period of time.

■ A user interface handler (UIH), which runs
inside the main thread of the site server process
and implements the local graphics interface.
This component is conceptually divided into
two parts: one is the UIH Input (UIH-I) for
handling input events generated from the local
keyboard and mouse; the other is the UIH
Output (UIH-O) for handling requests (from
the REDUCE engine (see the next item) for
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Figure 1. REDUCE architecture and components. Primary-backup servers provide fault-tolerant session management,
and site server components enable dynamic cooperative editing sessions.



F E A T U R E

22 MAY • JUNE 2000   h t tp ://computer.org/in terne t/ IEEE INTERNET COMPUTING

updating the local editing window (that is, the
shared document state).

■ A REDUCE engine (RE), which is the central
component shared by all other components
inside the site server process. It realizes the
REDUCE consistency model, takes care of
communication with remote site servers, and
provides a synchronized point of access to the
local UIH-O and to other local site status infor-
mation by multiple concurrent threads (that is,
RSHs, UIH-I, LSH, and SMH) inside the site
server process. The RE is implemented as a
monitor, so there can be only one active thread
inside it at any instant of time.

Implementation-Level
Responsiveness Strategies
In the context of text editing, good responsiveness
means that the effect of a so-called character-wise
operation—that is, hitting a key to insert or delete a
character—is reflected immediately on the local
interface. Propagating each character-wise opera-
tion to remote sites over the Internet is not com-
munication-efficient, so REDUCE uses an auto-
matic character-to-string conversion scheme. When
a character-wise operation is generated, it is exe-
cuted immediately and saved in an internal buffer

at the local site; the accumulated character-wise
operations will be converted into a so-called string-
wise operation under the following circumstances:

■ A newly generated character-wise operation can-
not be combined with the accumulated opera-
tions as a single string-wise operation. For exam-
ple, if after executing a sequence of consecutive
character-wise insertions the user moves the cur-
sor to a nonconsecutive position or starts issuing
a different type of operation (such as deletion),
the accumulated operations should be propagat-
ed, since they cannot be merged with forthcom-
ing operations into a single string-wise operation.

■ A newly generated character-wise operation
cannot share a common state-vector time stamp
with the accumulated operations.5 After pro-
cessing a remote operation, for example, the
accumulated local operations must be propa-
gated, since future local operations will carry
different time stamps.

■ The number of accumulated operations has
reached the system/user-selected space/time
limits. This happens when, for instance, the
buffer is about to overflow or when a timer
expires after the user interface has been idle for
a certain period of time.

Figure 2. User interface to the REDUCE prototype.
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■ The user has initiated a synchronization/check-
point operation from the interface to flush accu-
mulations in the local buffer to remote sites.

The thread that handles local operations has been
assigned a higher priority than threads for handling
remote operations, so that whenever a local opera-
tion has been generated, the local thread is guar-
anteed to seize the REDUCE engine for executing
this operation as soon as the current thread (if any)
inside the REDUCE engine finishes. With this pri-
ority scheme, the local thread’s longest possible
waiting time is bound to the time for completing
a single remote operation, regardless of how many
remote operations have been waiting.

User Interface
The screen snapshot in Figure 2 depicts a
REDUCE text editor launched from the Sun Hot-
Java Web browser:

■ The text-editing panel allows the team mem-
ber to edit the document from any position at
any time.

■ Buttons for file access and editing operations
(copy, cut, paste, and so on) let team members
prepare text in a private window before putting
it in the shared editing panel.

■ A display panel indicates the cooperating sites
in the current session.

■ Control buttons (on the right in Figure 2) allow
users to select different buffer sizes for saving
character-wise operations and different time
intervals for automatically converting charac-
ter-wise operations into string-wise ones and
flushing them to remote sites. These buttons
are normally used only by REDUCE develop-
ers for experimental purposes, such as control-
ling network delay parameters for different
sites, selecting various combinations of consis-
tency properties, and so forth.

PERFORMANCE EVALUATION
Research has shown that users do not notice delays
when response times are less than 0.10 seconds in
interactive user interfaces.9 We conducted perfor-
mance tests on the REDUCE prototype, which
showed its response times to be well below this
threshold of noticeable delay.

Our performance tests were conducted on a Sun
workstation running Solaris 2.6 with a 100-MHz
CPU. The time measurement is accurate to mil-
liseconds. Each specific time interval is measured

by recording and subtracting two CPU times
immediately before and after the related task or task
sequence. For example, the CPU time consump-
tion for processing a local insert is the time inter-
val starting with the key event and ending when the
character displays on the screen.

As shown in Figure 3, on average, the perfor-
mance curves for local single-character insert and
delete operations are far below the user noticeable
delay mark of 0.1 seconds. This is true even if
characters are typed at a very fast pace. Note that
the local deletion time is a bit longer than the
local insertion time. This is because a REDUCE
delete operation must collect and save the delet-
ed text for future operational transformation
against remote operations, while an insert opera-
tion has already had the inserted character when
the key is pressed.

We also measured the execution time of remote
string-wise operations to evaluate the benefits of
propagating and executing them. In Figure 3, the
performance for remote operations processing
(including the time of operational transformation
and execution) is depicted for string lengths of one
character and 50 characters. As shown, the time for
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processing a remote operation (either a one-char-
acter or a 50-character string) is very short (less
than 50 ms), and the difference between process-
ing a one-character string and a 50-character string
is very small. If the propagation strategy for the
string-wise operation was not used, a 50-character
string would cause 50 multicasting messages over
the Internet and 50 one-character operation trans-
formations and executions, which would be nearly
50 times slower than processing a single 50-char-
acter string-wise operation. In other words, the
string-wise strategy is very effective in reducing the
number of communication messages, transforma-
tions, and executions.

Based on the measurement of processing times
for both local and remote operations, it is
straightforward to evaluate the effectiveness of the
scheme for setting a higher priority to the local
operation-handling thread in REDUCE. With-
out such a priority strategy, the user would easily
notice the delay of a local operation whenever
remote operations were waiting in the queue, as
illustrated in Figure 4. Under these circum-
stances, the response time for a local operation
would be proportional to the number of remote

operations waiting in the queue, and would cross
the user-noticeable delay line when up to two
remote operations were waiting.

With a higher priority scheme in REDUCE,
however, a local edit operation waits, in the worst
case, only for the processing of one ongoing remote
operation, regardless of how many remote opera-
tions are waiting in the queue. This strategy results
in a flat worst-case performance curve as shown in
Figure 4, which is well below the user-noticeable
delay line. In other words, it is essential to grant a
higher priority for local operations, particularly
when a large number of remote operations have
accumulated in the queue.

In reality, the response time of a local operation
depends on the current load of the workstation as
well as the CPU time consumed inside the
REDUCE prototype. However, computers are nor-
mally operated by single users with relatively light
loads. When we measured the CPU time, we also
measured the real-world time for editing opera-
tions. It is clear that only a fraction of extra time is
added to the CPU time as the real response time.
Therefore, the conclusions drawn from the perfor-
mance results shown in Figures 3 and 4 remain
valid in real-world situations.

CONCLUSIONS
AND FUTURE WORK
The prototype performance evaluations indicate
the effectiveness of the REDUCE strategies for
delivering real-time response to users in the face of
high concurrency and the nondeterministic com-
munication delays characteristic of the Internet.
Because the prototype is implemented in Java, it
can run on any platform that supports the standard
Java 1.1 virtual machine.

Our work on REDUCE continues in several
directions among multiple collaboration teams.
Ongoing research includes formalization and veri-
fication of the consistency model and concurren-
cy-control algorithms as well as development of
support for group awareness in cooperative editing
environments. We are investigating the application
of REDUCE collaborative technologies and sys-
tems to graphics editing, distance education, and
collaborative programming (for links to different
projects and prototypes, see http://www.cit.gu.edu.
au/~scz/reduce).

Under another umbrella, we are working on a
process-centered, Web-based, teamwork environ-
ment that integrates REDUCE as a brainstorming
and co-design tool. ■
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