
University of South Carolina University of South Carolina

Scholar Commons Scholar Commons

Faculty Publications Computer Science and Engineering, Department
of

2000

Sensors + Agents + Networks = Aware Agents Sensors + Agents + Networks = Aware Agents

Michael N. Huhns
University of South Carolina - Columbia, huhns@sc.edu

Sreenath Seshadri

Follow this and additional works at: https://scholarcommons.sc.edu/csce_facpub

 Part of the Computer Engineering Commons

Publication Info Publication Info
Published in IEEE Internet Computing, Volume 4, Issue 3, 2000, pages 84-86.
http://ieeexplore.ieee.org/servlet/opac?punumber=4236
© 2000 by the Institute of Electrical and Electronics Engineers (IEEE)

This Article is brought to you by the Computer Science and Engineering, Department of at Scholar Commons. It has
been accepted for inclusion in Faculty Publications by an authorized administrator of Scholar Commons. For more
information, please contact digres@mailbox.sc.edu.

https://scholarcommons.sc.edu/
https://scholarcommons.sc.edu/csce_facpub
https://scholarcommons.sc.edu/csce
https://scholarcommons.sc.edu/csce
https://scholarcommons.sc.edu/csce_facpub?utm_source=scholarcommons.sc.edu%2Fcsce_facpub%2F54&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=scholarcommons.sc.edu%2Fcsce_facpub%2F54&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ieeexplore.ieee.org/servlet/opac?punumber=4236
mailto:digres@mailbox.sc.edu

Software agents are being deployed in
increasing numbers to help users find
and manage information, particularly
in open environments such as the
Internet. For the most part, they
operate independently and are typi-
cally designed to be aware only of
their users and the environment in
which they perform their tasks. Thus,
they fail to take advantage of each
other’s abilities or results.

For example, a shopping agent
might periodically access several
online databases to find the best price
for a music CD and then purchase it
if the price falls below its user’s thresh-
old. Other agents might be tracking
prices for the same CD, duplicating
each other’s work. Similarly, if your
agent and an agent for the person in
the next cubicle are both browsing the
same Web site, two identical data
streams arrive on your LAN, using
twice the bandwidth actually needed.

To be more effective, agents must
be aware of each other; therefore, they
must acquire models of each other.
One way to do this is by exchanging
messages. (“Hi, agent 25 knows about
CD prices.”) A second form of aware-

ness involves the state of the agent’s
own environment, including charac-
teristics of the computer on which it
is executing and its network connec-
tion. (“How many bytes can I send in
one second?”) A third involves self-
awareness—knowing its name, age,
ontology, goals, areas of expertise and
ignorance, and reasoning abilities.
Finally, the agent should be aware of
its physical environment.

A Physical Agent Scenario
Let’s consider a vacuum-cleaning agent
in a room containing some furniture
and assume at first that the agent has
no sensing or modeling capabilities.
Thus, its best strategy is to wander
continuously throughout the room,
sucking up dirt wherever it finds it. To
an observer the agent would appear to
be very single-minded, pursuing just
one goal. It might occasionally crash
into the furniture or the walls, but if its
wandering were truly random, it
would not get stuck and would even-
tually clean all accessible parts of the
room. Because it might clean some
areas more than others, it would not
be efficient or optimum.

Now let’s begin increasing the
agent’s capabilities and see what
ensues. First, we add a sensor (possi-
bly ultrasonic) so that the agent can
tell when it is about to bump into
something. This will save wear and
tear on the agent and the furniture,
but it won’t make the agent any better
at cleaning up dirt.

Next, we add the ability to con-
struct a model of the room based on
the agent’s encounters with walls, fur-
niture, and dirt. As it wanders, it
refines the model until it includes all
the accessible areas. This won’t help
the agent in any way, however, unless
we also add an ability to use the model
for planning its movements. With
such a planning ability, the agent can
figure out how to clean the room
methodically and can potentially min-
imize the time needed for the task.

At this point, the agent is maximal-
ly effective: adding more sensors or
planning abilities will not improve its
cleaning performance (although bet-
ter sensing and planning might enable
the agent to construct a model or
plan more quickly). Now let’s intro-
duce a second mobile agent into the
room, as shown in Figure 1, without
telling the first agent about it.

Effect on the Environment
Model
The second agent will affect both the
cleaning agent’s model of the room
and the execution of its plan.
Wherever the cleaning agent
encounters the mobile agent, it will
incorporate an obstacle at that loca-
tion into its model. Depending on
whether the model is deterministic
or nondeterministic, it will have
either inaccurate or uncertain ele-
ments, owing to the presence of the
second agent. In either case, the
agent can improve its model by
exploring its environment and using
what it discovers to adjust the proba-
bilities or verify the locations of
obstacles. However, as long as the
model is not perfect—incorporating
only fixed obstacles—the agent will
miss cleaning part of the room.

Effect on Plan Execution
As before, using its model of the
room, the cleaning agent can con-

Sensors + Agents +
Networks =

Aware Agents
Michael N. Huhns • University of South Carolina • huhns@sc.edu
Sreenath Seshadri • University of South Carolina • sree@sc.edu

84 MAY • JUNE 2000 h t tp ://computer.org/in terne t/ IEEE INTERNET COMPUTING

A
G

EN
TS

 O
N

 T
H

E
W

EB

struct a plan for cleaning the room
and devise a strategy that is methodi-
cal and minimizes the time required.
However, as it follows this strategy, it
will occasionally and unexpectedly
encounter the mobile agent, causing
it to deviate from its plan and thus
from optimality.

How can the cleaning agent
improve its performance? Besides
spending even more time exploring its
environment, it can construct a
model of the mobile agent and then
incorporate this model into its plans. 1

Modeling Other Agents
A model of an agent can have many
possible forms and amounts of detail,
and it can be used in many ways—for
example, to plan a route that mini-
mizes encounters with the other agent
or to decide on a course of action
once the other agent is actually
encountered. In the latter case, if the
second agent is modeled as being
slow, the cleaning agent can plan a
path around it, confident that it can-
not interfere. If the second agent is
thought to be fast, the cleaning agent
can simply resume its current plan
after a short pause that allows the
other agent to move on.

These example strategies are appro-
priate if the other agent is treated as
merely an obstacle in the room. But
what if the other agent is discovered
to be the source of the dirt? Then the
cleaning agent could adopt a strategy
of simply following the mobile agent
everywhere and cleaning up after it—
there would be no need to clean any-
where else—and the cleaning agent
would again be maximally effective.

What if the other agent rearranges
the furniture? Knowing when or how
this happens can help the cleaning
agent decide when and how to re-
explore or replan.

What if more agents enter the
room—too many for the cleaning
agent to model during planning and
too many to account for during clean-
ing? The cleaning agent might discov-
er and then act in accordance with
social conventions, learning, perhaps,
that “agents always pass each other on
the right.” Another possibility, if the
other agents are organized, is for the
cleaning agent to learn their organiza-

tion. This could simplify its modeling
task because it would need to model
only a subset of the agents—those
with which it interacts and those that
are representative of a particular agent
role. Moreover, it would know a pri-
ori something about the agents on the
basis of their role in the organization.
For example, it would expect subordi-
nate agents to try to satisfy its requests
and commands, and it would expect
to receive commands from managers
or superiors.

Representations of Other
Agents
How should one agent represent
another, and how should it acquire
the information it needs to construct
a model in that representation? This
has, I believe, a simple and elegant
answer: The agent should presume that
unknown agents are like itself, and it
should choose to represent them as it
does itself. As it learns more about
them, it has only to encode any dif-
ferences it discovers. This can make
the resultant representation concise

and efficient. Here are some other
advantages:

■ An agent has a head start in con-
structing a model for an unknown
or just-encountered agent.

■ An agent has to manage only one
kind of model and one kind of
representation.

■ The same inference mechanisms
used to reason about its own
behavior can reason about the
behavior of other agents. An
agent trying to predict what
another will do has only to imag-
ine what it would do itself in a
similar situation.

One ramification of such representa-
tion is that an agent constructed with a
belief-desire-intention (BDI) architec-
ture would attribute intentions to other
agents even if they lacked a BDI archi-
tecture or any explicit intentions at all.

ANTS
An agent’s awareness of its physical
environment is the domain of the

A G E N T S

85IEEE INTERNET COMPUTING h t tp ://computer.org/in terne t/ MAY • JUNE 2000

Furniture

Mobile agentVacuum-cleaning agent

Figure 1. The vacuum-cleaning agent and its working environment.

System of the Bimonth
Taalee (http://www.taalee.com) uses an interesting sys-
tem of information agents to automatically extract infor-
mation from a variety of sources and produce the components needed for a
corporate Web portal. The agents both use and extend an ontology during
their interactions and enable the portal to support third-generation semantic-
based search.

Check it out!

on the on the
eb eb

Autonomous Networked Tactical
Sentries (ANTS) project at Raytheon
TI Systems and the University of
South Carolina.2 The project’s pur-
pose is to combine miniature sensors
and software agents. The sensors can
listen, sniff, see in the infrared and
visible spectrums, and feel seismic
vibrations. The resultant sensors and
agents will be deployed on a battle-
field to detect the position and move-
ment of enemy forces with minimal
risk to friendly forces. Detection
results would be communicated to
appropriate personnel, who would
make strategic and tactical battlefield
decisions.

The project uses Java as the high-
level development language for sig-
nal processing, command, and con-
trol, with agent behaviors encoded
as Java threads. Figure 2 visualizes
an instance of these networked sen-
sors at work.

How Does Agent Awareness
Relate to ANTS?
Time-critical battlefield decisions
require conclusive evidence about tar-
gets, which can be provided only by a
variety of sensors. Every sensor has a
software agent that gathers data about
happenings in the physical environ-
ment. It interprets the data and sends
strategic information to a controller.
If the agents know not only about
their surroundings but also about
themselves and other agents, entire
system effectiveness multiplies.

Transforming agent-gathered data
into useful information requires

awareness beyond one’s current envi-
ronment or state. Awareness in ANTS
agents involves, first, awareness of self.
This means knowing, for example,
how much computing power it has
left, how long it would take to com-
plete a task, and what resources are
needed to do so. Second, it involves
awareness of other agents so that it
can answer questions such as

■ Where is the nearest agent that
could provide additional informa-
tion about the target vehicle?

■ Which agent can garner details
about the target that I am miss-
ing?

■ Which agent has enough battery
power left to transmit what I have
discovered to the controller?

Agents that know their own capabili-
ties and those of their peers stand a
better chance of acquiring additional
details about the target than unaware
agents. Studies indicate that people
who are more successful have faster
networks of more capable experts,3 so
we shouldn’t be surprised that the
principle also applies to agents.

What else can agents do by know-
ing the capabilities of their neighbors?
Well, given a target’s characteristics,
they can focus their collective efforts
on locating it. Aware agents can feder-
ate and track down specific targets,
just as certain carnivores benefit from
pack hunting. As part of a federation,
an agent can obtain information
about a target even though the target
may be well out of its sensing range.

Thus, a sensor’s capabilities are
extended by the presence of software
agents that can socialize with other
agents.

Resource Management
through Awareness
Since these networked sensors are to
be deployed in battlefields, battery
power is a scarce resource to be used
with discretion. Here again, agents
have an advantage. Since they know
each other’s physical location, they
can predict the path of a vehicle from
the information they have and then
alert other agents of the vehicle’s
speed and coordinates. For example, a
seismic sensor could pick up vibra-
tions, calculate the coordinates of the
source, predict the probable path of
the object, and notify an infrared
camera along the path. This would
help the camera compute when it
should turn itself on, saving valuable
battery power. In another scenario,
two agents at a specific location run-
ning low on battery power might take
turns performing their duties.

Whether providing critical tactical
information for battlefield decision-
making or vacuuming our floors
without endangering our furniture (or
each other), agents with awareness of
self and others hold the key to accom-
plishing a wide range of tasks in our
increasingly complex world. ■

REFERENCES
1. M. Tambe and P.S. Rosenbloom, “RESC:

An Approach for Real-Time, Dynamic
Agent Tracking,” Proc. Int’l Joint Conf.
Artificial Intelligence, Morgan Kaufmann,
San Francisco, 1995, pp. 103-110.

2. M.N. Huhns, “Networking Embedded
Agents,” IEEE Internet Computing, vol. 3,
no. 1, Jan./Feb. 1999, pp. 91-93.

3. R.E. Kelley, “How To Be a Star Engineer,”
IEEE Spectrum, Oct. 1999, pp. 51-58.

Michael N. Huhns is a professor of computer
science and engineering at the University
of South Carolina, where he also directs
the Center for Information Technology.

Sreenath Seshadri is a graduate student of
computer science and engineering at the
University of South Carolina, where he is
conducting research in embedded and dis-
tributed computing.

C O L U M N

86 MAY • JUNE 2000 h t tp ://computer.org/in terne t/ IEEE INTERNET COMPUTING

Figure 2. Sensors coordinating to detect vehicles.

A = Acoustic array
S = Seismic array
M = Magnetic sensor
IR = CameraM

IR

M

M

S

A

	Sensors + Agents + Networks = Aware Agents
	Publication Info

	Sensors + Agents + Networks = Aware Agents - Internet Computing, IEEE

