
The mStar environment features

an agent-based architecture,

implemented in Java, which

preserves compatibility with 

the dominant Mbone paradigm

for IP multicast. In particular,

mStar supports developers in

creating distributed, real-time

multimedia software

applications such as e-meetings.

mSTAR: 
Enabling Collaborative Applications 
on the Internet

Distributed, real-time multimedia applications on the Internet per-
mit users to cooperate in new and more interesting ways for col-
laborative teamwork and Net-based learning. Missing from these

existing applications, however, is an integrated software toolkit that sup-
ports creating multi-user applications for real-time audio and video. Sep-
arate Mbone components do exist for this purpose, but the lack of a uni-
form interface can confuse users and hinder reuse.

The Java-based mStar shared software environment provides an inte-
grated solution for generating, presenting, storing, and editing media in
collaborative applications. It uses IP multicast to enable scalable distribu-
tion of real-time media and data among many simultaneous users. The
powerful agent architecture that underlies the mStar environment simpli-
fies creating new applications and encourages reuse.1 mStar enhances both
Net-based learning (distance education) and collaborative teamwork by
presenting a uniform user interface for real-time audio and video, shared
whiteboard, chat, voting, and distributed Web-based presentations. The
system also supports on-demand recording and session playback.

Although the immediate focus of this article is the mStar environment,
several distributed applications, created using mStar, are currently in use by
both academia and industry. The success of those applications prompted
us to found Marratech AB (http://www.marratech.com/), which offers
mStar-based products for IP-multicast- and desktop-based conferencing,
and pursues ongoing R&D based on the mStar environment, as well.

REQUIREMENTS
Scalability and decentralized control were basic design requirements for
mStar. Totally distributed applications do not rely on central servers, and
they have no client-server interaction. To serve these needs, we chose IP
multicast for media and data distribution.

IP Multicast Communications
Traditionally, applications have used unicast to distribute multimedia data
to users across the Internet. Each multimedia application either sends one
identical, redundant copy to every receiver or pushes the problem into the
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network using a reflector, which duplicates streams
to every registered receiver. When the path between
sender and receivers shares common network links,
redundant data crosses the network. This redun-
dancy problem is further amplified in a symmetric
environment in which every session member trans-
mits data. 

As Figure 1 shows, on the other hand, IP mul-
ticast’s power is in copying data only where need-
ed in the network. One drawback to IP multicast
is that it requires network router support. Service
providers do not routinely enable IP multicast in
routers because the router implementations are
unstable, and the underlying multicast routing pro-
tocols cannot yet scale globally.

A fundamental problem with today’s multicast
routing protocols is that routers require an extra
state for every active sender in a session. Multicast’s
increasing popularity, therefore, means that routers
will require more memory and processing power.
The IETF is addressing this problem. Deployment
problems aside, however, IP multicast conserves
significant network bandwidth when compared
with point-to-point transmission of media data.

We addressed the deployment problem in mStar
via mTunnel,2 which lets end users of non-IP-mul-
ticast-enabled links connect to a multicast-capable
domain as simply as possible. mTunnel operates at
the application level and is transparent to the
underlying multicast routing protocols. mTunnel
permits modification to the real-time media flow
depending on media type, via frame dropping or
media type conversion, for example. The mTunnel
encapsulation protocol also uses novel header and
data compression techniques to save bandwidth—
up to 15 percent on standard Mbone media flows.

IP multicast traffic uses the best-effort user data-

gram protocol, which can cause packet loss. This
can be a problem when reliable transfer is required,
such as with a whiteboard application. We solved
this problem in mStar by designing the scalable reli-
able real-time transfer protocol (SRRTP), which is
based on scalable, reliable framework principles.3,4

The Mbone tool suite, described in the “Related
Work on Collaborative Environments” sidebar (next
page), has become a de facto standard for IP-multi-
cast media distribution. Many of the IETF’s standard
recommendations concerning IP multicast are based
on the Mbone suite; therefore, we have built upon
this work, insofar as possible, with the mStar design.
Because IP multicast is still fairly new, however, the
standards cover only basic, unreliable audio and video
transport, session management, and session setup.
Simple messaging, reliable multicast, and shared
whiteboard applications are not yet standardized.

Real-Time Data Communications
The primary protocol for sending media data over
the Internet with IP multicast is the real-time trans-
fer protocol.5 RTP functions include loss detection
for quality estimation and rate adaptation, data
sequencing, media synchronization, source identi-
fication, and basic membership handling. RTP
operates on any kind of network and is completely
self-contained. Because it does not depend on
information in the network architecture’s lower lev-
els, RTP permits media traffic modification with-
out notification to either sender or recipients. As
RTP is an IETF recommendation and the de facto
standard for media distribution, mStar supports it.

mSTAR AGENT ARCHITECTURE
We designed the mStar environment as an agent
architecture. In mStar, an agent is a software com-

(a) (b)

Figure 1. (a) Unicast media distribution versus (b) multicast distribution. In (a), a single (duplicate) stream
is sent from the sender to every receiver, while in (b) a single stream is sent and duplicated in the net-
work where needed. 
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ponent that resides within an application and is
responsible for specific tasks. An agent can have a
graphical interface, although that is not a require-
ment. Figure 2 shows agents running within Mar-
ratech Pro, a desktop-based, e-meeting application
that lets users interact in real time using different
media. Media examples include real-time live audio
and video, shared Web pages, distributed white-
board, and chat. The application also allows for
generic recording and playback of real-time media. 

We used an agent architecture because it simpli-
fies the reuse of self-contained parts in other appli-
cations, such as the important network agent (com-
mon to all network-aware mStar-based applications)
or the simpler chat agent. The architecture also lets
agents communicate with and directly control
explicit parts of applications.4

mStar also features a special group of agents,
called mediators. These agents translate between
internal messages (formatted in a common control
bus language that all mStar agents use to commu-
nicate with each other, as we explain later) and
external messages specific to the application or
module to which the agent interfaces. For example,
the Web agent controls external browsers while
internally providing a uniform interface. This
allows other agents within an application to con-

trol external Web browsers without having to know
which browser it is or how it is controlled. 

Inter-Agent Message
Communications
Agents communicate in mStar via the control bus,
which is designed for simple, self-contained mes-
saging. Self-contained messages contain all needed
information during agent exchanges; messages
should not depend on underlying data referencing
nor on a predefined interface, which is the case
with, for example, JavaBeans and CORBA. mStar
agents use the control bus to transmit messages
both within applications and between different
instances of applications. The control bus can be
used on any underlying reliable transport protocol.
Also, agent developers can choose to use either the
mStar control bus or a protocol of their own, as we
did with the mStar whiteboard application.4

Agent and Network Communication
The mStar environment allows developers to read-
ily create new connections between the network
and an application agent. Although the underlying
network protocols are not connection oriented, we
use the term connection as a programming
metaphor inside the environment.

Related Work on Collaborative Environments

JETS1 and Habanero2 are two of the best-known Java-based
collaborative environments on the Internet. In a JETS collab-
oration session, multiple users of any Java-enabled Web
browser share, in real time, specialized applications in the
form of Java applets. NCSA Habanero is a groupware appli-
cation and toolkit that lets developers transform single-user
applications into multi-user applications. Neither JETS nor
Habanero supports real-time Internet audio and video com-
munication, nor scalable communication using IP multicast.

The informally named Mbone tool suite is a group of IP-
multicast-based media applications.3,4 The suite includes
VIC for video; VAT, RAT, and FPhone for audio; WB for
whiteboard; and NTE for organized text communication.
Used together, these separate tools create a “scattered”
environment for distributed teamwork and Net-based learn-
ing. The advantage of creating a software environment from
separate tools is that users can easily incorporate new
media or tools. Disadvantages are that the separately cre-
ated tools lack a uniform user interface, and their separate
designs complicate reuse.

Roseman and Greenberg’s5 work on the GroupKit soft-

ware environment focuses on creating distributed Tcl-based
applications. Although they set out to create a complete soft-
ware environment, the researchers later focused on group-
ware widgets, metaphors for session management, and pro-
gramming abstractions for distributed applications. GroupKit
is impressive but lacks support for real-time audio or video.
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After creation, the connection is used
to exchange data and control informa-
tion with the network. Data received
from the network is stored internally
within the application in its original
form with RTP headers, but parsed into
a more usable data structure. In keeping
with the Application-Level Framing
paradigm, network protocol details are
not hidden from the receiving agent.6

With ALF, data handlers are involved in
the network process because they can
best decide how to handle data affected
by packet loss or network jitter.

Application agents open a network
connection by registering with the net-
work agent and providing an appropri-
ate network address and port. Network
data is queued for later handling, which
allows agents in multithreaded applica-
tions to handle incoming data at their
own pace while letting the current net-
work thread continue receiving data. 

When the agent opens the connec-
tion, it also requests a quality-of-ser-
vice level. Developers can specify reli-
able or unreliable transport; a third
level—differentiated quality of service
via RSVP7—is currently being added
to the environment in collaboration with the
authors. With unreliable transport, data is pack-
aged into RTP packets and sent over the physical
network. For reliable transport, the mStar network
agent can use any reliable transport mechanism
available. The latter means that the application
agent developer should not take for granted which
protocol will actually be used at runtime. The
developer should instead see the connection as a
reliable transport mechanism where the data will
be delivered to a number of receivers.

The Internet protocol provides only that data
being sent will arrive at its destination. The data
might be out of order, due to packet reordering or
retransmission, but out-of-order problems are not
resolved at the network level. The handling agent
must resolve them, if possible or necessary. Agents
that must receive in-order data can use a software
utility that filters the queue.

mStar agents divide their outgoing data into
appropriate data chunks to preserve the ALF para-
digm. The network agent adds the correct data head-
er—typically a 12-byte RTP header—to outgoing
packets. To minimize the number of copy operations

at the application level, the agent provides the net-
work with a data buffer that can accommodate the
appropriate protocol header. If this extra space is not
available, mStar allocates a new buffer that leads to
a performance penalty, which we describe later.

This division between applications and network
access code functionalities enables fast deployment
of network code modifications without modifica-
tion to other applications using mStar. The separa-
tion also permits the underlying IP transport mech-
anism to change transparently between unicast and
multicast, for instance, as needed. Moreover, with
unicast, separation allows data to be transported
reliably via TCP instead of SRRTP; SRRTP is opti-
mized for reliable transport between a group of
members, whereas TCP is better optimized for
point-to-point traffic.

As IP multicast is not available everywhere, it is
important that end-user applications dynamically
adapt, via a reflector, between unicast and the more
scalable—and preferable, to save bandwidth—mul-
ticast. By introducing a separation between appli-
cation agents and the network agent, as done with
mStar, an application can dynamically switch

Figure 2. A screenshot example of Marratech Pro, an e-meetings application built
with the mStar environment. The participants can be geographically dispersed.
“Meetings” are arranged in several ways: Sessions can be broadcast on a prede-
fined multicast address; a session description file can be uploaded to a Web serv-
er or e-mailed to expected participants; or participants can be invited via a session
initiation protocol. For more details, see http://www.marratech.com.
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between these data distribution paradigms. This in
turn makes the application more adaptable to exist-
ing network conditions.

BANDWIDTH MANAGEMENT
Bandwidth management is essential, though not
easy to achieve, in a distributed-multimedia soft-
ware environment as there are many simultaneous-
ly active media senders. Distributed-media appli-
cations must adapt to different network
environments and different amounts of available
bandwidth. Many existing IP-multicast-based
applications base their bandwidth usage on the net-
work scope; for example, media streams aimed at a
local organization can use more bandwidth than a
media stream transmitted to an entire continent.

Designers of a reusable bandwidth management
mechanism must balance code reusability and
application control. The more the mechanism is
tied into the application, the better bandwidth con-
trol it maintains, although it complicates reuse in
new applications.

The mStar environment balances bandwidth
management with a bandwidth manager agent,
which controls agents and determines how avail-
able bandwidth should be utilized. 

As Figure 3 shows, the bandwidth manager fetch-
es policy information at initialization. This infor-
mation can be predefined for a specific application
and media, or it can be gathered depending on infor-
mation in the session description file8 for the current
session. The bandwidth manager monitors the data
being sent and the bandwidth used, and notifies
agents if bandwidth allocations must change.

Notifying agents of different bandwidth alloca-
tions might result in different behaviors from agent
to agent. For example, if the new allowed band-
width is less than the amount requested by a user,
the video sender agent would set its target band-
width to the allowed bandwidth. Alternatively, if
the allowed bandwidth is greater than the amount
requested, the agent sets the target bandwidth to
the requested level. To avoid agent starvation, the
value of the allowed bandwidth is never accepted
by the bandwidth management agent below a cer-
tain threshold. These steps are repeated regularly to
let the application adapt to the session.

As Figure 4 shows, the bandwidth policy might
span numerous scenarios in a session:

� Case A: one media, local user (local scope). The
bandwidth manager fulfills the user-requested
static bandwidth.

� Case B: one media, all users (session scope). The
bandwidth manager maintains constant media
bandwidth but adapts local target bandwidth to
serve other senders and tries to maintain a con-
stant bandwidth usage for that specific media. 

� Case C: all media, local user. The bandwidth
manager sets the total available bandwidth to
span all media for the local user. The resulting
policy keeps the local total target bandwidth con-
stant over all media (that is, bandwidth infor-
mation about other senders will be ignored).

� Case D: all media, all users. Although basically
the same as scenario C, the bandwidth manag-
er here adapts the target bandwidth to satisfy all
senders in the session.

The bandwidth policy information can be further
controlled remotely via the mManager framework.4

mStar’s bandwidth management architecture
enables agents to monitor many other parameters
besides utilized bandwidth, including reported
packet loss and propagation jitter. In our current
implementation, however, this information is not
used to calculate the target bandwidth.

MOBILE-DEVICE SUPPORT
Increasingly, collaboration today takes place away
from the office, which accounts for the growing
popularity of mobile devices—pocket PCs or palm-
top PCs like 3Com’s PalmPilot. The mStar envi-
ronment, via its runtime library, enables develop-
ers to transparently move client applications to the
limited platform of mobile devices. The devices’
network access capacity is of particular concern

Bandwidth manager

Policy

Agent 2Agent 1

Network

Other senders

1
4

55

2 2
3 3

Figure 3. The bandwidth management process: (1) On initializa-
tion, the bandwidth manager fetches bandwidth policy informa-
tion. (2) Agents start to transmit. (3) The bandwidth manager mon-
itors the amount of data agents are transmitting. (4) At the same
time, the manager monitors the bandwidth used by other senders
in the session. (5) If necessary, the bandwidth manager notifies the
agents to modify their notion of allowed bandwidth.
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because, although some handheld devices support
high-speed connection such as Ethernet or high-
speed wireless LAN, the devices’ CPU power lim-
its them from sending and receiving at full speed.

Scalability requires that software applications
adapt to different runtime platforms and operating
systems, and to varying resources: memory, com-
puting power, screen size, and screen color depth,
for example. These requirements are more acute
with handheld devices because the devices’ limited
capabilities require modifications to real-time data
before the receiving devices can display it.

Figure 5 shows our solution, in which a media
gateway (proxy) transcodes—modifies—the data
as close to the final recipient as possible. The
transcodings take place on either the network level
or the media level, depending on application type.

Network Level
At this level, a media gateway built using mStar
modifies the traffic flow independently of the media
being transported. The media gateway also acts as a
gateway between multicast and unicast. Multicast is
typically not supported by handheld devices nor the
dial-up connection they use to access the Internet.

Most real-time applications handle packet loss,
which typically results from unreliable UDP data, in
media flows. Similarly, a sending device drops pack-
ets if network congestion occurs, as the sender does
not immediately have to adapt its transmission rate.
High-speed flows can be transported over low-band-
width links without involving the original sender.

A special problem occurs with the TCP/IP stack
on the PalmPilot, which handles TCP-only traffic,
with built-in data retransmission. This situation
puts extra constraints on the transcoder to trans-

mit exactly the right amount of data to the hand-
held device. Many applications require a pull-archi-
tecture, in which devices fetch data on an as-need-
ed basis. The amount of transmitted data also
depends on the device’s user interface: Unlike PCs,
the limited screen resolution typically prevents the
simultaneous display of different media interfaces.

The overhead of using IP, UDP, and RTP is sig-
nificant, so mStar resolves both RTP and real-time
transfer control protocol (RTCP) issues via the con-
trol bus. More typically, however, developers handle
specific RTP and RTCP issues in the gateway, not
in the handheld device. As the agent metaphor lets
agents communicate independently of the applica-
tion they are running in, the media gateway archi-
tecture can be used both within, and between,
applications.

Scope

Media

Session

Local

One Many

A

B

C

D

Figure 4. Different policy scenarios. Case A: one
media, local user; Case B: one media, all users;
Case C: all media, local user; and Case D: all
media, all users.

High bandwidth
Media gateway

Media
gateway

Network

Low bandwidth

Handheld
device

Network
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Media
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(a) (b)

Figure 5. The media gateway:  (a) media scaling to accommodate a small handheld device; (b) internal
architecture of the media gateway.
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Media Level
Because real-time media, such as video, cannot be
displayed on handheld devices in original form, data
transcoding is performed at the media level, a step
above the network level. Real-time video is typical-
ly converted into lower resolution (grayscale) or
lower color depth. With enough CPU power avail-
able, the device could make the conversion; typical-
ly, however, a media transcoder does the decoding
and re-encoding of the video flow for device display.
Other real-time media types are handled similarly.

EXAMPLE: MOBILE E-MEETINGS
The mStar environment is ideally suited for appli-
cations, notably e-meetings, that can be conduct-
ed with handheld devices such as the mPocketPro
prototype that we are developing. mPocketPro per-
mits real-time-audio, full-duplex conferencing and
renders several live video streams coded with ITU
H.261, which is the most common video format
for Mbone applications. The underlying hardware
is a Casio Cassiopeia E-115, which has a color
screen resolution of 240 × 320 pixels in 16-bit
color. Figure 6 shows the user interface.

Access Modes
The mPocketPro runs in both direct network and
media gateway access modes. In direct network
mode, the device connects directly to the Internet,
receiving and transmitting media streams directly.
The application receives all data but filters out parts
of the stream that it cannot handle. For example, the
mPocketPro receives and displays a maximum of 100
to 150 Kbps of video before it depletes its CPU
resources and starts dropping parts of the video
stream. In contrast, a 700-MHz Pentium III run-

ning Windows 2000 can easily
display several Mbps of video. An
application that receives too much
video will display block artifacts,
as Figures 6b and 6c show. 

The video codec design lets
mPocketPro display video, which
allows for parts of the stream to
be decoded despite the whole
stream’s not being received. Most
existing codecs lack this quality.
If mPocketPro receives too much
video, of course, its ability to
handle other real-time media is
diminished; that is, the more
important media—audio—will
suffer quality loss.

In gateway access mode, mPocketPro receives
modified media streams transcoded by a media gate-
way, instead of receiving media streams directly as
Figure 5a showed. The multicast GateWay (mGW),
which runs on a more powerful server computer,
scales the media streams to the bandwidth request-
ed by the mPocketPro application. Scaling is done
by recoding the active streams into a lower band-
width and/or a lower frame rate. The mGW
decodes all active video streams (just as the mPock-
etPro would do in direct network access mode) and
re-encodes each stream. The disadvantage, of course,
is the optionally reduced image quality and the low-
ered frame rate of the displayed video.

Benefits
The mPocketPro and the mGW designs are based
on the mStar agent architecture and so communi-
cate with each other using the common control
bus. Because the device and the gateway need not
know where they run in the network or in which
application they operate, the mPocketPro can be
readily embedded into a larger application without
changes to its gateway communication.

An additional benefit of media gateway access
mode is that the client can request that the server
recode active media streams differently depending on
the user. For instance, when viewing a full-screen
video image of one active video stream, the user prob-
ably wants to receive that stream in higher bandwidth
(and thus higher quality) instead of bandwidth even-
ly allocated to each active stream. The client (mPock-
etPro) will thus request the gateway to change its
encoding allocation priorities accordingly.

The recoding also lets the mPocketPro receive
video streams in other codes that can then be decod-

(a) (b) (c)

Figure 6. The mPocketPro prototype user interface. (a) Corridor mode showing several
active video streams; (b) full video mode showing one video stream with bandwidth
adaptation turned off; and (c) full video mode with bandwidth adaptation turned on.
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ed and re-encoded into H.261. To test this behavior,
we integrated an MPEG4 decoder (using the DivX
codec) into the gateway. To handle video streams with
resolutions too high to display on the mPocketPro,
we let users scroll the video images on-screen in pan-
scan mode. As users scroll, commands are sent to the
gateway, which then “scrolls” its encoder accordingly,
sending only the displayed part of the video to the
mPocketPro. This “remote scrolling” allows the end
user to select parts of a video stream to view.

FUTURE WORK
Work with the distributed-media mStar environ-
ment continues, in both academia and industry.
The current research focus is on extending mStar
with generic functionality that is essential for a com-
plete media software environment. For example,
researchers are investigating how to provide a more
robust and stable IP-multicast environment, known
as ubiquitous multicast access. In this environment,
the underlying network software should adapt to
either unicast or multicast, transparently to users.

Another research area involves the original
sender of the media streams (primarily video) in the
scaling process for adapting to mobile devices.
Researchers are determining how to require the
original sender to transmit the media data divided
into several connected streams (layers), which lets
the receiver choose how many layers to receive
depending on available bandwidth.

Investigators are also evaluating a generic, seman-
tic-reliable multicast protocol for use by applications
that operate on distributed data, which can be
divided into semantic building blocks. Finally, dig-
ital video broadcast combined with Internet con-
ferencing is yet another research topic. �
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