Personalization by Partial Evaluation

Naren Ramakrishnan and Mary Beth Rosson
Department of Computer Science
Virginia Tech, Blacksburg, VA 24061

Email: {naren,rosson}@cs.vt.edu

The central contribution of this paper is to model personalization by the programmatic notion of
partial evaluation. Partial evaluation is a technique used to automatically specialize programs,
given incomplete information about their input. The methodology presented here models a collec-
tion of information resources as a program (which abstracts the underlying schema of organization
and flow of information), partially evaluates the program with respect to user input, and recreates
a personalized site from the specialized program. This enables a customizable methodology called
PIPE that supports the automatic specialization of resources, without enumerating the interaction
sequences beforehand. Issues relating to the scalability of PIPE, information integration, sessioniz-
ing scenarios, and case studies are presented.

1 Introduction

The rapid growth of the World Wide Web (WWW) and the concomitant increase in online con-
tent has greatly exacerbated information overload. Personalization constitutes the mechanisms and
technologies required to customize information access to the end-user. Elements of the Internet per-
sonalization landscape include search engines [45, 75], handcrafted content indices (e.g. yahoo.com)
[49], and recommender systems [58, 71]. Even a cursory survey of the articles in the recent Com-
munications of the ACM issue on the topic [51, 63] reveals that the scope of personalization extends
to many different forms of information content and delivery [15, 23, 36, 48], not just web pages.
The underlying algorithms and techniques, in turn, range from simple keyword matching of con-
sumer profiles, collaborative filtering for E-commerce [4, 41, 74|, to more sophisticated forms of
data mining, such as clustering web server logs [50, 72]. Various dichotomies have been proposed
that classify personalization research according to the philosophies of the underlying domains, the
proposers, and their parent communities. Thus, categorizations such as Content-based vs. Collab-
orative [2, 3, 62], ‘Customization vs. Transformation’ [56], non-destructive vs. destructive, ‘public
transportation vs. hot-rods’ [68] have become widely accepted. In addition, combinations of vari-
ous approaches are also used [8, 21, 32, 55, 73]. Advances in data management [25] and web site
management [24] have fueled many of these developments. Social aspects of personalization are
either exploited or uncovered by research projects [38, 43, 66]. Theories from human-computer
interaction [59] have provided insights into the design of interfaces [9, 37, 42] and ‘information
foraging’ [33].

Limitations of Current Approaches

While impressive levels of functionality are being achieved in personalization, the lack of a so-
phisticated conceptual model for personalization constitutes a serious bottleneck from a designer’s
perspective (and indirectly, to users). Compare and contrast this with the availability of powerful
models for other aspects of online information access, such as querying [25], mining [1, 61], and
navigation [67, 69].

Ezxample 1: We motivate our ideas with a simple example involving personalization using link labels.
(In this paper, we specifically concentrate on web site personalization. Extension of our proposed
methodologies to other domains of personalization are addressed toward the end of the project
description.) Consider a congressional web site, organized in a hierarchical fashion, that provides
information about US Senators, Representatives, their party, precinct, and state affiliations (Fig. 1).
Notice that the site designer has made a somewhat arbitrary partition, with type of politician as
the root level dichotomy, the party as the second level, and so on. Some users think of politicians
primarily by party (and hence will wish to personalize w.r.t. party criteria), while others might be
interested in politicians who serve their geographical area. For example, the circled region in Fig. 1
indicates the result of personalization for the input ‘Democrat Senators.” A designer wishing to
support this form of personalization will likely provide a ‘combination query’ interface that involves
party and the type of politician. To cover all potential scenarios, however, the designer will have to
anticipate every type of partial input (query) beforehand, and implement customization interfaces
(algorithms) for all of them. In the absence of an adequate programming model, many assumptions
and simplifications are embodied in the interfaces to personalization systems, e.g., a prior on the
types and forms of information input that are supported. Such modeling assumptions can be
either due to necessity (“this site is organized in this manner and I can’t help it”), and/or lack of
understanding/appreciation of users’ needs (“I think this is the best way to provide the interface to
my customers”). In either case, it causes serious cognitive and representational frustrations for the
user, since the modes of interaction are hardwired (e.g. ‘This facility will work only if you specify

Senators Representatives

Dem
Rep

Figure 1: Hypothetical web site organization modeling information about US Senators and Rep-
resentatives. Only the first few levels of the site are shown; the lower levels can be visualized as
modeling individual precincts of politicians, the bills they sponsor, constituencies, their addresses,
interests, education etc. The labels on edges represent choices and selections made by a navigator.

both the party and the type of politician’). While the example here involves only content-based
techniques, the limitations apply (and are often compounded) in other personalization scenarios.

What is Required?

A customizable methodology for personalization should support the automatic specialization of web
resources based on user input, without enumerating the interaction sequences beforehand.
In other words, the designer should not have to anticipate and predefine mechanisms for every
conceivable partial input. For example, in Fig. 1, if the user knows only the state of the politician,
but not details for level(s) higher in the hierarchy, personalization should be able to simplify the
lower levels of the hierarchy, thus being responsive to differing levels of input by visitors.
The methodology should be able to exploit structure at varying levels of information access [68].
In addition, a skilled systems engineer should be able to use the methodology in conjunction
with a specific collection of web sites to design a personalization system. The facility should
scale, both with the size of the input sources (web sites being modeled) and with the complexity
of the personalization scenario [64]. This requires that the design of the system be integrated
with the task model(s) underlying the assumed interaction scenario. A functional metaphor for
personalization, in addition, should allow the designer to view the system as a composition of
individual subsystems, supporting information integration [29, 39]. Providing incrementality (when
web sites change content and structure dynamically) without requiring the designer to restructure,
supporting heterogeneity (to enable compelling scenarios), and enabling domain-specific techniques
for making recommendations/selections will be a critical factor in the success of such a framework.

The PIPE Methodology

The central idea here is to model personalization by the programmatic notion of partial evaluation.
Partial evaluation is a technique used to specialize programs, given incomplete information about
their input [34, 46]. The methodology presented here — PIPE — models a collection of web sites

int pow(int base, int exponent) { | int pow2(int base) {
int prod = 1; return (base * base)
for (int i=0;i<exponent;i++) }
prod = prod * base;
return (prod);

}

Figure 2: Illustration of the partial evaluation technique. A general purpose power function writ-
ten in C (left) and its specialized version (with exponent = 2) to handle squares (right). Such
specializations are performed automatically by partial evaluators such as C-Mix.

if (Senators)

M e 't ()
else it (NY) — > |else if (NY)

else if (Rep)

else'if'(Re resentatives)
i f (Den;)

Figure 3: (left) Example input to a PIPE implementation, reflecting the organization of information
at a web site devoted to political officials, and (right) output from partial evaluator, personalizing
w.r.t. ‘Democrat Senators.” The specialized program can be used to recreate web pages, where not
only the pages but their structure is customized for the user.

as a program (which abstracts the underlying schema of organization and flow of information),
partially evaluates the program with respect to user input, and recreates a personalized web site
from the specialized program.

How does Partial Evaluation Work? The input to a partial evaluator is a program and (some)
static information about its arguments. Its output is a specialized version of this program (typi-
cally in the same language), that uses the static information to ‘pre-compile’ as many operations as
possible. A simple example is how the C function pow can be specialized to create a new function,
say pow2, that computes the square of an integer. Consider for example, the definition of a power
function shown in the left part of Fig. 2 (grossly simplified for presentation purposes). If we knew
that a particular user will utilize it only for computing squares of integers, we could specialize
it (for that user) to produce the pow2 function. Thus, pow2 is obtained automatically (not by a
human programmer) from pow by precomputing all expressions that involve exponent, unfolding
the for-loop, and by various other compiler transformations such as copy propagation and forward
substitution. Automatic program specializers are available for C, FORTRAN, PROLOG, LISP, and
several other important languages. The interested reader is referred to [34] for a good introduc-
tion. While the traditional motivation for using partial evaluation is to achieve speedup and/or
remove interpretation overhead [34], it can also be viewed as a technique for simplifying program
presentation, by removing inapplicable, unnecessary, and ‘uninteresting’ information (based on user
criteria) from a program.

We illustrate the basic idea with the site in Fig. 1. The labels for the links in Fig. 1 can be obtained

from the text anchoring the hyperlinks via ‘<a href>s’ in the web pages, or from XML tags [22].
A web crawler employing a depth-first search can then be used to obtain a program, that models
the links such that the interpretation of the program refers to the organization of information in
the web sources. For example, the data in Fig. 1 produces the program in the left part of Fig. 3,
where the link labels are represented as program variables. The mutually-exclusive dichotomies of
links (more on this issue later) at individual nodes (e.g. ‘A Democrat is not a Republican’) are
modeled by else ifs. Notice that while the program only models the organization of the web site,
other textual information at each of the internal nodes can be stored/indexed alongside by associ-
ating augmented data structures with the program variables. Furthermore, at the ‘leaves’ (i.e., the
innermost sections of the program), variable assignments corresponding to the individual URLs of
the Senator/Representative home pages can be stored. To personalize this site, for say, ‘Democrat
Senators,” the above program is partially evaluated with respect to the variables Senators and Dem
(setting them to 1). This produces the simplified program in the right part of Fig. 3 which can be
used to recreate web pages, thus yielding personalized web content (shown by the circular region
in Fig. 1). In addition, this approach allows personalization even when variable values for certain
level(s) are available, in the absence of values for level(s) higher in the hierarchy. For example, if
the user desires information about a NY politician (but is unsure whether he/she is a Senator or
Representative or a Democrat/Republican/Independent), then a partially evaluated output (with
respect to NY and setting other variables such as CA to zero) will simplify the lower levels of the
hierarchy, thus being responsive to varying levels of user input.

Early Results: The PIPE methodology has been utilized in three diverse domains: (i) person-
alizing information about politics (specifically, the VoteSmart web site http://www.vote-smart.
org), (ii) personalizing recommendations about mathematical software on the web (http://gams.
nist.gov and http://www.netlib.org), and (iii) personalizing the Blacksburg Electronic Village
(BEV) [20] (http://www.bev.net) for tourists. The reader is referred to the publication [60] for
details of the approach and to the web site http://pipe.cs.vt.edu for demos of these and other
applications. Evaluations against benchmark problem sets as well as user feedback are very en-
couraging. In addition, PIPE can accommodate individual recommender systems by modeling their
invocation as program statements that abstract the control flow of the recommendation algorithm.
It supports information integration by cascading individual web resources as functions pipelined in
succession from a main subroutine/program.

Preliminary Analysis of PIPE

PIPE models and exploits structural cues to provide flexibility in personalization (in a manner sim-
ilar to that proposed by Rus and Subramanian [68]). Currently, the above three implementations
assume that (i) the link labels represent choices made by a navigator, (ii) it is possible to ascertain
the values for such labels (program variables) from user input, and (iii) the web sites are predom-
inantly hierarchical with the leaves containing most of the information sought. Such assumptions
are often validated by the existence of ontologies (e.g. in the mathematical software and the BEV
studies) that help guide the personalization process. In our implementations, we realized early that
personalization will only be as effective as the ease with which the link labels could be determined or
supplied by the user. For example, partially evaluating a beverages site with respect to ‘Coke’ will
not yield any benefit if the link label says ‘Coca-Cola.” Thus, information mediation (for handling
synonymy and polysemy) becomes important in this setting. Currently, PIPE implementations
also do not personalize within a web page; formatting and support for document structures, DTDs
etc. are hence not addressed.

What PIPE is NOT

¢ Query Optimization by Partial Evaluation. While query processing/optimization can
benefit from partial evaluation [16, 46], this is not the underlying model here. PIPE provides
the notion of a ‘single program’ whose control models the flow of information. In a database
setting (or in languages like WebSQL, WebOQL, and Florid [25]), the information is dispersed
across multiple tables, and it is the responsibility of the programmer to write queries that do
personalization. To achieve similar results by query processing, extra care has to be taken
either while modeling the data in database tables and/or formulating the SQL queries. In
addition, the results from a personalization run might require new links to be created that
are not originally present in the schema which, in turn, have to be reformatted into a web
structure. There exists no automatic way to design the SQL query from the user input, and
intimate knowledge of the database schema (such as the levels at which the labels appear,
via path expressions) is required. In contrast, partial evaluation can specialize segments of
the program even if they fall on disjoint subtrees, does not require knowledge of the levels at
which the labels appear, and can automatically provide an integrated view of the specialized
content.

e A General Purpose System. PIPE is a designer’s tool for a particular domain and is not
intended to substitute for search engines. It provides a programmatic framework to design
personalization systems by a skilled systems engineer and requires a careful identification
of ‘starting points,” a tight methodology for information integration [27], and an adequate
understanding of the problem domain to be effective. We do not posit that PIPE constitutes
a silver bullet; many web resources are not hierarchical, many use links for purposes other
than narrowing on an information source, and structure exists at other granularities that
should be modeled. However, PIPE does provide a systematic conceptual methodology to
study the design, implementation, and evaluation of personalization systems. For example, a
facility to personalize travel information for visitors to the Grand Canyon can be constructed
by modeling various web resources (pertaining to this domain), and using PIPE to customize
content for visitors, based on travel preferences and attributes. The creation of a composite
program and integration need only be performed once (offline); every user session will result
in a customized partial evaluation (online). The underlying philosophy is that the investment
in making the offline design would provide great advantages for personalization scenarios.

Reader’s Guide

Section 2 proposes how this methodology can be extended to larger web sites by incorporating
domain specific constraints and mining semistructured data. We will utilize the three prototype
implementations of PIPE to illustrate the basic ideas. Section 3 outlines a fundamental approach
to ‘design for personalization,” discusses information integration in personalization systems, and
draws parallels to scenario-based design. Broadening aspects of the PIPE methodology, including
application to non-traditional domains are presented in Section 4. Some application domains that
will benefit from this idea are introduced in Section 5.

2 Scaling up PIPE

2.1 Research Issues

The basic methodology presented thus far is content-based, works at the level of web site organiza-
tion, and does not mine/model the textual content or formatting within individual pages, beyond

associating them with the appropriate nodes in a tree/graph-based framework. Moreover, for the
purposes of personalization, the schema obtained by simple recursive depth-first crawling can get
unwieldly for even medium sized sites. Our preliminary studies [57] have shown that even sites
that are unequivocally judged by the average web surfer to be a highly structured site are best
abstracted by semistructured models. The causes include lack of apriori schema, cross-references
(that violate a tree taxonomy), duplication of common page sets, and constantly evolving standards
(e.g., in bioinformatics resources). Such semistructure should be factored into the representation
by compressions; e.g. factoring commonalities in tree building. The scalability factor depends on
the ability to extract succinct schema from semistructured sources and page layouts (a problem
studied in considerable depth [28, 31, 53]) and to incorporate domain-specific restrictions into the
partial evaluation process. Extra care should be taken however, in this process, since
termination of the partial evaluator shouldn’t be compromised. Research in binding-time
analysis, program transformation, and compiler generation show that one of the main issues in
automatic specialization is ensuring that the evaluator doesn’t run into an endless loop (perhaps
by introducing infinitely many auxiliary code segments) and that the semantic interpretation of
the program is not affected (e.g. in terms of the effects of code segments). Web sites that possess
recursive links (for navigational and cross-indexing purposes) are especially difficult.

2.2 Solution Methodology

Considerable attention has been devoted to extracting schema from semistructured data. The pri-
mary motivation has been to obtain approximate representations in situations where there is no
prior schema, to drive query processing, and/or for use in data mining. Our goal here is to obtain
a good starting point for personalization. Research on typing semistructured data and inferring
constraints involves characterizing the forms of typing/inference supported [1], choosing an appro-
priate representation for modeling schema [17], and designing efficient algorithms for extracting
schema [53]. The first activity is typically driven by the goals of accuracy, approximation, com-
pression, completeness, and storage efficiency. The representations vary from datalog rules [53] to
description logics [17]. Algorithms appropriate for mining schema are based on simulation, con-
straints, and the minimum description length (MDL) principle. Nestorov et al. [53] provide one
of the widely used approaches that employs fixed-point semantics to obtain compact representa-
tions for semistructured data (see Fig. 4). The result of mining is a set of Datalog rules whose
interpretation refers to the schematic organization of information in the web resources. The cost of
the mining algorithm is double-quadratic in the size of the web site (the original algorithm in [53]
ignores pre-leaf nodes). For web sites that are purely hierarchical and that do not contain cycles,
more simplifications are available that enable efficient implementations of the mining algorithm [53].

Characterizing Sources of Semistructure: Our proposed solution is to characterize specific
sources of semistructure and model them to yield compressions that are especially appropriate for
personalization. Arguably, the work in [53] is in part motivated by this consideration: the authors
explore two basic forms of reductions typically arising from semistructure: (i) using the minimal
number of internal nodes (types) to model the resource, and (ii) collapsing and using superim-
posed roles to arrive at size reductions (see the bottom two graphs in Fig. 4). These reductions,
however, operate on a graph-based OEM-type schema supplied by crawlers, which frequently miss
many important domain-specific sources of semistructure. A web crawler provides simple forms of
URL indexing and pattern matching that can help remove purely navigational links that do not
yield any benefit in modeling. However, many important types of links (and consequently, sources
of semistructure) can only be uncovered by a careful examination of a web site (a one-time cost
justifiable for the creation of a personalization system). While it is difficult to address this issue
in all generality, we illustrate the basic idea using the GAMS (Guide to Available Mathematical

Figure 4: Four stages in mining schema from a semistructured data source, with slight adaptations
of the algorithm presented in [53]. The input is assumed to be a graph with labeled and directed
edges (top left). Commonalities encountered in tree-building are factored first (top right). At this
stage, multiple internal nodes may possess the same input and output labels (for example, P1 and
P2) to the same nodes. The algorithm of Nestorov et al [53] then proceeds to type the data, thus
collapsing P1 and P2 (bottom left). Finally, per [53], nodes are allowed to belong to multiple types,
rendering P3 to be redundant and expressable as a superposition of P1,2 and P4 (bottom right).

Software) taxonomy of mathematical software (http://gams.nist.gov).

Ezample 2 (Mining GAMS Schema): GAMS is a tree-structured taxonomy that indexes nearly
10,000 algorithms (from over 100 software packages at 4 repositories) for most areas of scientific
software. It is used in an interactive manner, guiding the user from the top of a classification tree
to specific software modules as the user describes the problem in increasing detail. During this
process, many features of the problem are determined, indirectly from the user. Closer inspection
of GAMS reveals at least four different sources of semistructure: (i) GAMS organizes its taxonomy
into a hierarchy consisting of Classes, Subclasses, Packages, and Modules. However, not all levels
of the hierarchy contain the same type of pages. For example, some Subclass pages link to not
only other Subclasses, but also directly to Packages. (ii) For certain problem types, more than one
category in GAMS is pertinent. For example, optimization software reside not only in the subtree
rooted at G (‘optimization’), but also K (‘approximation’), and L8 (‘regression’). Some of this
information is provided via “Search also” labels on the corresponding links. Modeling this aspect

Subclass Number of Types | Compression Ratio
A (Arithmetic, Error Analysis) 58 13 %
C (Elementary and Special Functions) 268 12 %
D (Linear Algebra) 763 14 %
H2a (1-D Quadrature) 69 14 %
I2bla (Linear, 2nd Order, Elliptic PDEs) 24 11 %
L (Statistics, Probability) 1330 51 %
| Entire GAMS Site | 2793 | 60 % |

Table 1: Summary results of mining semistructure from various GAMS (http://gams.nist.gov)
subtrees. The number of types denotes the number of program entities (variables) necessary to
model the subtree. The compression ratio denotes the savings obtained vis-a-vis a naive recursive
depth first crawl of the web sites.

with graph-based schema introduces additional links that aid in the mining process. (iii) We also
create a virtual page for every instance of a distinct set of modules associated with a package and
pointed to by a non-leaf node. For example, different subsets of the CMLIB package are reproduced
multiple times at various leaves. Mapping these into a virtual entry provides an additional source
for commonalities at the lower levels of the taxonomy. And finally, (iv) web pages separated by
two consecutive links, with no branching choices in between, can be collapsed as follows:

if aif b ..=1if a and b ...

These rules are modeled declaratively and used in conjunction with the mining algorithm presented
earlier. A tabulation of results for various GAMS subtrees is provided in Table. 1 and a detailed
view of one of the subtrees is provided in Fig. 5. As can be seen, this methodology is very pow-
erful and scales to the full scope of the GAMS site which houses tens of thousands of web pages.
Notice further that the mining process only serves to reduce the schema (for partial evaluation),
and individual web pages that get factored together will have to be indexed (by a hash, say) so
that personalization could reproduce them if necessary. By this approach, we hope to gain insight
into typical sources of semistructure and use experiences from one case study to leverage in newer
application domains. The XTRACT system proposed in [28] addresses the issue of extracting
DTDs and schema within individual pages and documents. Such techniques can be included in our
methodology if the problem domain requires the modeling of information at this granularity.

Clustering and Topical Compression: A final variety of schema compression involves using
clustering techniques and approximations [53, 61] to ‘collapse’ together types and labels that satisfy,
say, a certain distance metric. Various suggestions based on geometrical considerations are provided
in [53]. The BEV case study, discussed in [60], shows that for some domains, it is acceptable (and
even desirable) to be less strict in variable assignments, thus yielding more false positives. Personal-
izing for ‘galleries’ might benefit from setting related variables such as ‘museums’ and ‘showrooms.’
Such assignments are facilitated by the availability of orthogonal decompositions (such as singular
value decompositions of the term-document matrix [26], or Lanczos decompositions [14]) that geo-
metrically reveal semantic relationships. These approximations identify hidden structures in word
usage, thus enabling searches that go beyond simple keyword matching (see, for example [14]).
Rank reduction techniques (SDD [40], SVD [11, 12, 47, 10]) for type clustering are applicable here
as they have been shown to be especially appropriate for latent semantic indexing in information
retrieval.

Figure 5: The L subtree of the GAMS site (software modules relating to statistics and probability)
after modeling domain-specific sources of semi-structure. The leaves correspond to software modules
and the internal nodes represent groupings of mathematical software according to a classification
taxonomy. The schema depicted here is 40% of the size of the schema obtained by using naive web
crawling. The blue links connect to subtrees that provide related software modules and the red
links identify duplicated module sets; together, they form the primary source of compression.

Controlling the Complexity: While reducing the schema for partial evaluation, the computa-
tional complexity of partial evaluation should not be allowed to render the overall process ineffective.
Partial evaluation is, in general, a costly operation because of the need to unroll loops and complex
control structures in programs. However, such features are almost always absent in the kinds of
structures considered here (web sites). Even links that point back to higher levels of the hierarchy
do not cause code blowups since they typically connect otherwise disjoint subtrees and can be
factored out by partial evaluation (using program point specialization, a technique that embeds
smaller-sized functions for particular arguments). In addition, it can be easily shown by simple
binding time analysis that the above compressions all guarantee termination of the partial evaluator
(with respect to hierarchical sites).

Other Forms of Partial Evaluation: Recall from Fig. 3 that the mutually exclusive dichotomies
of link labels are modeled by using an else if construct. While this has the advantage of support-
ing disjunctions and conjunctions in personalization scenarios, the automatic determination of such
constructs is an important open question. Automating this aspect in the crawling process requires
either apriori meta-data, explicit user direction, and/or mining browsing patterns (to see that user
sessions that retrieved documents pertaining to Republicans did not retrieve documents pertaining
to Democrats, for instance). We believe that this leads to the more important issue of personaliz-
ing (partially evaluating) w.r.t. ‘collaborative features,” as opposed to simple content-based labels.
Navigation-based personalization, such as ‘footprints’ [78] and XML-based description formats [23]
are promising frameworks in which to conduct such studies.

Systems, Algorithms, and Tools: The techniques outlined so far do not require any sophisti-
cated facilities for implementation. The framework proposed to carry out the experiments include

10

Perl (Perl provides hashes indexed by strings, useful when the same web page is encountered mul-
tiple times), the C-Mix partial evaluator, and the text processing capabilities of the 1ynx browser
(used to populate individual hash table entries). We can customize wrappers for individual ap-
plication domains. Various solutions have been proposed, notably induction of wrappers [44] and
automatic generation by specification of formatting and conversion routines [7]. PIPE, by design
and intention, is most appropriate when ‘multiple views’ of a site are requested by visitors (ref. the
politicians example). Techniques such as those presented in [76] are also motivated by the same
goal. To restructure web sites based on results of partial evaluation, we intend to explore the use
of approaches such as WebStrudel [5, 24] that use declarative specifications to automatically gen-
erate pages. With the above implementation choices, the online time taken for partial evaluation is
within design limits: O(2 seconds) for a typical personalization scenario in the politics case study
(which involves thousands of pages). This is crucial from both the usability and efficiency points
of view. The ability to rapidly transform web sites is increasingly gaining attention in industry
— several commercial web sites already use XML to specify site constraints, structure and quickly
reorganize their layouts to retain customer interest. Related ideas are covered in [6].

3 Design for Personalization

The discussion thus far has concentrated on hierarchical sites where designers and users of web sites
find it intuitive to simplify information presentation by specifying information selection attributes.
In addition, a taxonomy is typically available that supports a primary browsing paradigm. It
can be argued that the PIPE methodology is a natural in this case, where functional modeling
of the information resource corresponds to the evaluation of a program. This provokes various
interesting questions — What types of information resources are particularly amenable to the PIPE
methodology of personalization? Can more amorphous domains such as social networks within an
organization fit this framework? Under what conditions will PIPE not work? Are there web sites
and scenarios that are more personable than others? Can the design of an information resource
be architected for personalization [70] (in contrast to querying or navigation)? If so, does PIPE
provide the appropriate metaphor for reasoning about this aspect? In order to answer such more
general questions of usefulness, we must develop a more complete understanding of the processes
by which an online information resource is created, expressed, validated, and communicated.

3.1 Research Issues

There are two critical perspectives to be considered — that of the designer of a web site and of the
subsequent users of the resource [42, 54]. A key issue for the designer is the inherent uncertainty
about what individual users will be seeking when they begin interacting with the resource. As
Example 1 reveals, the design process must be flexible and extensible, as the web site designer learns
about user needs from the many paths of information access followed. From the user’s perspective,
the personalization process must map well to the pre-existing mental models that people bring to
the information retrieval task. Again this points to a strong requirement for flexibility, because
different users will have different needs. This means that a single set of personalization parameters
(and corresponding procedures for applying them) must satisfy a wide range of information retrieval
goals.

3.2 Solution Methodology

Our idea is to use scenario-based design (SBD) methods to analyze, design, and refine personal-
ization design and usage tasks in three application domains (described in Section 4) [18, 65]. SBD

11

| Sremarios far: Finandlal vestments ME
Jim decigas Lo reglster with Scwab

P En R s relars s 10 make FEr e sy e m el
Eilll follows up on the recommendslion from guake yasoo com
P nadd and L6C S Canisara ratas an ulililies stocks L3
Srasrror sdpe s e curreed e i porLfodio s, Forgen Slaniey
s | main() {
Far the pasl manth, Bill kag Baem 3 member of Slackscam, & ' /*mined schema from stocks.com */ .
wab-hasad invastient company. Evary day he Iogs el the /* transforms from company name to ticker symbol */
=ilp Lp check Lheir perrenl recommendations, and Loday he /* mined schema from Yahoo! cross-index */
ralbias Uhat Microsadl s & Lep-racommendiad stock. He has /* model connections to company web sites */
Sk 1h 'I-|r|_| e & whi e LY hie Ehisld invEel ik MISraeagtl Snd /* identify StOCk charts, profiles, annual reports */
wandars |1 Lodoy |5 Uha right do 1o do 1his He has researched
Bl R quasliong Dalode. a0 Efows wWhat 10 dic irsl nd ugds Lha }
MEFT 1o gel Lo lee oprment indes in e Yahoa! indss. 11 looke
SO DZ, OUL I KW 5 ek & Suzid will want more rationals
Licall This a0 Fe Usag Kk Sy Dodkmirks Lo wiEil oLhér sl i

Lhat puslish slack charls and profile Information. He prints
il @ Fers of Thesd B cadis Suzie Lo discues whather and mw [
e g iresd :'

Figure 6: (left) Using a scenario editor to define and write narratives for a personalization scenario.
(right) Programmatic representation of Bill’s scenario in a PIPE implementation.

emphasizes the central role of work context in designing useful and usable interactive systems. The
methods involve a combination of analytic and empirical activities — descriptions of use are ob-
served, analyzed, transformed, refined, and evaluated in a continuing cycle of design and analysis.
The final result will be three case studies of information personalization, including design rationale
that explains how designers and users think about complex information resources, and how the
new PIPE personalization services can be used to respond to their needs. This rationale is a
key research result, because it will serve as an initial basis for understanding what it
means to design and use partial evaluation techniques for information personalization.

Ezample 3 (Problem Scenario Development): This constitutes the beginning of SBD where narra-
tives of use are designed to synthesize and highlight the difficulties and opportunities of current
practice. Such problem scenarios are developed through field work that includes observation of work
sessions, interviews or surveys of domain experts, and collection and analysis of work artifacts. Con-
sider a finance domain of personalization. Users typically obtain recommendations of stocks from a
brokerage firm, navigate to, say, the Yahoo! finance cross-index at [quote.yahoo.com] to conduct
a ticker symbol lookup, and finally access the web pages of companies by using the profiles, stock
charts, and financial statistics (see left part of Fig. 6). Such a recurring scenario could be modeled
by observing users’ analysis activities for several hours, followed by an interview and subsequent
analysis of the design documents or other artifacts generated. The automatic sessionizing of user
access patterns to demarcate individual sessions is an area of active research [52]. Methodologies for
data preparation and gathering for this activity are covered in [50]. Traditionally, the integration of
software design with such interaction scenarios is achieved by symbolic modeling techniques, such
as motivated by OO and languages such as UML. PIPE addresses this requirement for SBD rather
elegantly, since (i) the personalization scenario can be modeled programmatically, thus serving as
input to the partial evaluator, and (ii) modes of information integration exploited by the user are
identified early in the process and can be modeled as assertions in the control program. For in-
stance, an online brokerage might refer to its recommendations by company name (‘Microsoft’),
whereas the Yahoo! cross-index uses the ticker symbol (‘MSFT’). The control flow of the scenario
(modeling such transforms) is then partially evaluated, where the final program is structured as
shown in the right of Fig. 6. Analogously, information search logs would be collected for a set of

12

representative users, on some occasions complemented by ‘think aloud’ protocols as information
retrieval goals are pursued. Relevant artifacts such as notes, printed pages, or other online docu-
ments would also be collected.

In SBD, field data such as these are summarized to characterize the users and their tasks. Claims
analysis is used to identify tradeoffs that implicit in the current situation — features that have
both positive and negative consequences for the web site designers or the site’s users [19]. The im-
plicit assumption is that these are the features that will provide the most leverage in a new design.
The tradeoffs provide the motivation for scenarios that convey the concerns and opportunities of
current practice. Thus it is the identification and discussion of tradeoffs that is accumulated as
design rationale in scenario development.

Iterative Refinement of Scenarios: During scenario re-design, the scenarios of current practice
are transformed by introducing new functions and interaction techniques. These transformations
are grounded in the original tradeoff analysis and the specific techniques are inspired by relevant
metaphors or technology [64]. Here, we can explore a range of personalization metaphors (e.g.,
the auditorium metaphor of Terveen et al. [73] that partitions the problem domain into spheres
of interest, the footprints idea of Wexelblat and Maes [78] that gathers ‘collaborative’ features
implicitly) with web site designers and users, and demonstrate how PIPE can be used to sim-
plify a complex information model. Focus will be first on basic functionality — the kinds of tasks
that a personalization system should support rather than the details of user interaction. The con-
ceptual task scenarios that result are again analyzed for the tradeoffs they imply, identifying the
features of the new situations that are most likely to have a mixture of positive and negative effects.

As the new design is refined, specific proposals for interaction techniques are introduced and con-
sidered with respect to any new tradeoffs implied. Prototypes will be developed to gather empirical
data about these tradeoffs; the scenario context (e.g., user characteristics, work setting, task goals
assumed) serves as a specification for usability data collection. As these data are collected, they
are used to argue for refinements or transformations of the design scenarios and become part of the
cumulating rationale for design decisions. Thus at the end of the process, the features of the final
scenarios can be traced back to issues that were highlighted in the scenarios of current practice, and
then addressed via the iterative refinement that takes place during design and usability evaluation.

4 Broadening Aspects

The usefulness of methodologies such as PIPE relies on the expressiveness of their representation(s)
and their ability to reason efficiently with such representations [55]. In this section, we show how
PIPE achieves these objectives with respect to incrementality (for dynamic web resources) and
non-traditional applications. Ethical and privacy implications of the PIPE methodology are also
summarized here.

Incrementality in PIPE: When web sites change form and content dynamically, PIPE must be
able to seamlessly adapt to variations in structure without requiring the designer to redo the entire
offline aspect of program creation. We intend to explore the use of program slicing techniques [13]
and other transformation-based approaches that identify program segments that have to be restruc-
tured. For example, if a stock value is updated in a financial web site, program slicing (a forward
analysis) can help identify program line segments (and web pages, correspondingly) that will be
affected by the change and/or pages that must be remodeled to ensure consistency. Slicing is more
powerful than partial evaluation (for personalization) since it doesn’t constrain the form of partial

13

information and is also useful for mining dynamically generated web pages (by modeling the code
segments generating the pages). The complementary technique of backward slicing enables ‘inverse
personalization scenarios’ such as ‘Under what criteria will this site recommend this apartment for
me?’ — a feature very useful for cost-benefit analysis.

Non-Traditional Applications of PIPE: Personalization is increasingly recognized as not merely
a value-added facility, but a fundamental driver of acceptance in domains such as wireless and hand-
held computing [35]. In such resource-bounded environments, personalization serves to identify the
most appropriate subsets of information that should be presented to the user, taking into account
bandwidth and time considerations. Typically personalization in such domains is achieved by the
use of proxies (and ‘agents’) that transcode web access by a form of functional indirection. PIPE
can be used to compose individual proxy modules programmatically to customize information ac-
cess. A first step in this direction has been the evolution of standards for specifying properties and
attributes, such as the UIML (http://www.uiml.org) programmatic markup language for user in-
terface design and resource description formats, such as RDF [23]. Other examples of applications
that involve fairly extensive modeling, but are nevertheless amenable to PIPE-like approaches are
personalizing information streams (e.g. for news-on-demand), and personalizing TV schedules for
users. Symbolic modeling of constraints (‘Certain shows have to be watched in sequence,” ‘It is
okay to skip this program since repeats are aired every Tuesday’ etc.) within an online TV web
guide can serve as a starting point for partial evaluation.

PIPE also reinforces connections with other aspects of information presentation, such as web site
re-organization (using, say, browsing patterns). If the partially evaluated control flows for typical
user sessions correspond to disjoint subtrees of a web site, this is a potential indicator for web site
restructuring. Dead code identification is another technique that can help identify bad site design
choices [72] and help improve site organization. PIPE also emphasizes the functional approach to
designing information systems, a feature that is highly desirable when composing individual sub-
systems to yield large-scope and large-scale solutions. Traditionally functional approaches to IR
[30] have emphasized the use of methods in OO models, rule processing, and deductive databases.
PIPE constitutes a novel paradigm for functional modeling of personalization systems.

Ethical and Privacy Aspects: PIPE can be construed as a destructive form of personalization,
since it can effectively circumvent any original navigation flow intended by the web site designer.
However, by emphasizing a transformation-based approach to web site organization, it also serves
as a valuable tool in identifying ‘copy cats.” In addition, various rules underlying privacy could be
embedded in a PIPE implementation (for example, ‘never divulge the address of a person unless
the personalization criteria partially evaluates code block C34’). Thus, increasing levels of security
could be built in programmatically within an implementation of PIPE.

5 Application Case Studies

We now outline three case studies that can validate and provide insights into the design of person-
alization systems using PIPE. They are chosen to illustrate different aspects of information access
that exercise various important features of the proposed methodology.

Rapidly Evolving Hierarchies: Several prominent web resources are hierarchical with rapidly
evolving subtrees and dynamic links. Interaction aspects of users with hierarchies is well-understood
from the navigation [69] and visualization viewpoints [77]. However, personalization entails that
the organization of the resource mirror the user’s understanding of the hierarchy (see Section 1).

14

We anticipate that SBD in this context will help identify the multiple views of the site typically
requested by users and ensure that control segments are in place that model the flow of information
in these scenarios. Information integration among subtrees of a hierarchy are especially crucial, and
it is under these circumstances that the advantages of PIPE become evident. Possible candidates in
the commercial sector include the MedlinePlus health information site (http://www.nlm.nih.gov/
medlineplus), music indices, encyclopedias, and business directories (e.g. http://www.hoovers.
com). Sites with a scientific flavor include bioinformatics resources, digital libraries of mathemat-
ical functions (e.g. http://dlmf.nist.gov/Contents), and the ACM Computing Classification
System.

Scenarios with Multiple Modes of Information Flow: In this category, we explore situations
where effective personalization requires the integration of information from recommender systems,
cross-indices, resource lists, and individual web pages. We have entered into preliminary discus-
sions with the designers of a site that uses pigment analysis catalogs to identify and reveal the
palettes of painters in different eras and genres. The web site (http://www.webexhibits.org/
pigments/) currently provides a power search facility where the interaction scenario is hardwired.
Users can search for paintings by artist, style, period, or by membership in a particular pigment
group. However, even a simple query such as ‘What are the neo-classic styles of paintings that
used colors similar to those in the baroque area?’ cannot be accommodated. With PIPE, this
amounts to partially evaluating with respect to the variables neo-classic and baroque, using a
similarity function to model the information flow. We intend to abstract four different sources of
information in PIPE: (i) the catalog contents (which contains paintings from 950 to 1981), (ii) a
palette similarity table, (iii) citations of paintings, and (iv) auxiliary information such as images,
histories, where the painting is housed, and other legends. The specific sources of semistructure
in this domain arise from overlaps of painting styles. SBD in this case will involve users who are
attempting to understand artistic influences and expose color families. Each of these will likely
produce a different scenario that will be modeled by PIPE. Such scenarios with multiple modes of
information flow are also pertinent in community-wide efforts, such as the Blacksburg Electronic
Village (BEV; http://www.bev.net). The BEV provides a resource for the New River Valley in
Southwest Virginia where nearly 70% of the population use the Internet actively. In its seventh
year, BEV offers a wide array of services — information pertaining to arts, religion, sports, educa-
tion, tourism, travel, museums, health etc. The lack of ‘global controls’ in such a setting will likely
provide opportunities for compression by grouping topically related links (as identified in Section 2).

Sites Based on Social Network Navigation: A surprising number of web sites base their design
on a social metaphor of navigating links through a multi-mode network to identify information. The
Internet Movie Database at http://www.imdb.com while providing basic search facilities, models
the network connecting actors, actress, movies, directors, songs etc. Users are able to systematically
‘jump connections’ to find answers to queries such as ‘Which was the movie that first introduced the
lead actor in Titanic?’ Another well known example is the DBLP bibliography web site that models
the network of authors, papers, journals, and conferences. The naive programmatic rendition of
such sites will yield spaghetti code, but we anticipate that SBD will reveal recurring scenarios
which can help unroll the program to just the right level of indirection, so as to enable partial
evaluation. For example, if queries involve not more than two jumps of the ‘actor-movie’ chain,
then the offline program creation can be simplified to model only these extensions, and not a more
generic navigational structure. The domains considered here are ones where SBD techniques are
most appropriate and together with partial evaluation will help illustrate the benefit of PIPE.

15

References

[1]

2]

3]

[4]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

S. Abiteboul, P Buneman, and D. Suciu. Data on the Web: From Relations to Semistructured
Data and XML. Morgan Kaufmann Publishers, 2000.

G. Adomavicius and A. Tuzhilin. User Profiling in Personalization Applications Through Rule
Discovery And Validation. In Proceedings of KDD-99, 1999.

G. Adomavicius and A. Tuzhilin. Expert-Driven Validation of Rule-Based User Models in
Personalization Applications. Data Mining and Knowledge Discovery, Vol. 5, 2001.

C.C. Aggarwal, J.L. Wolf, K.-L. Wu, and P.S. Yu. Horting Hatches an Egg: A New Graph-
Theoretic Approach to Collaborative Filtering. Proc. ACM SIGKDD Conference on Knowledge
Discovery and Data Mining (KDD’99), 1999.

C. Anderson, A. Levy, and D. Weld. Web-Site Management with Tiramisu. In Proceedings of
the Web/DB Workshop, SIGMOD 1999, 1999.

V. Anupam, Y. Breitbart, J. Freire, and B. Kumar. Personalizing the Web using Site Descrip-
tions. In DEXA — Workshop on Internet Data Management (IDM), pages 732-738, 1999.

N. Ashish and C. Knoblock. Wrapper Generation for Semi-Structured Internet Sources. ACM
SIGMOD Record, December 1997.

M. Balabanovié¢ and Y. Shoham. Fab: Content-Based, Collaborative Recommendation. Com-
munications of the ACM, Vol. 40(3):pp. 66-72, 1997.

N.J. Belkin. Helping People Find What They Don’t Know. Communications of the ACM, Vol.
43(8):pp. 59-61, August 2000.

M.W. Berry, Z. Drmac, and E.R. Jessup. Matrices, Vector Spaces, and Information Retrieval.
SIAM Review, Vol. 41(2):pp. 335-362, 1999.

M.W. Berry, S.T. Dumais, and G.W. O’Brien. Using Linear Algebra for Intelligent Information
Retrieval. STAM Review, Vol. 37(4):pp. 573-595, 1995.

M.W. Berry and R.D. Fierro. Low-Rank Orthogonal Decompositions for Information Retrieval
Applications. Numerical Linear Algebra with Applications, Vol. 3(4):pp. 301-328, 1996.

D. Binkley and K. Gallagher. Program Slicing. Advances in Computers, Vol. 43, 1996.

A. Booker, M. Condliff, M. Greaves, F.B. Holt, A. Kao, D.J. Pierce, S. Poteet, and Y.-J.J.
Wu. Visualizing Text Data Sets. IEEE Computing in Science and Engineering, Vol. 1(4):pp.
26-34, July/August 1999.

S. Boykin and A. Merlino. Machine Learning of Event Segmentation for News On Demand.
Comminications of the ACM, Vol. 43(2):pp. 35—41, 2000.

P. Buneman, S. Davidson, G. Hillebrand, and D. Suciu. A Query Language and Optimiza-
tion Techniques for Unstructured Data. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, pages pages 506-516, 1996.

D. Calvanese, G. Giacomo, and M. Lenzerini. What can Knowledge Representation do for
Semi-Structured Data? Proc. 15th National Conference on Artificial Intelligence (AAAI’98),
1998.

16

18]

[19]

28]

[29]

32]

33]

J.M. Carroll. Making Use: Scenario-Based Design of Human-Computer Interactions. MIT
Press, Cambride, MA, 2000.

J.M. Carroll and M.B. Rosson. Getting Around the Task-Artifact Cycle: How to Make Claims
and Design by Scenario. ACM Transactions on Information Systems, Vol. 10(2):pp. 181-212,
1992.

J.M. Carroll and M.B. Rosson. Developing the Blacksburg Electronic Village. Communications
of the ACM, Vol. 39(12):pp. 69-74, 1996.

S. Chakrabarti, B.E. Dom, D. Gibson, J. Kleinberg, R. Kumar, P. Raghavan, S. Rajagoplan,
and A. Tomkins. Mining the Link Structure of the World Wide Web. IEEE Computer, Vol.
32(8):pp. 60-67, August 1999.

S.S. Chawathe. Describing and Manipulating XML Data. Bulletin of the IEEE Technical
Committee on Data Engineering, Vol. 22(3):pp. 3-9, 1999.

I. Cingil, A. Dogac, and A. Azgin. A Broader Approach to Personalization. Communications
of the ACM, Vol. 43(8):pp. 136-141, August 2000.

M. Fernandez, D. Florescu, J. Kang, A. Levy, and D. Suciu. Catching the Boat with Strudel:
Experience with a Web-Site Management System. Proc. ACM International Conf. on Man-
agement of Data (SIGMOD’98), 1998.

D. Florescu, A. Levy, and A. Mendelzon. Database Techniques for the World-Wide Web: A
Survey. SIGMOD Record, Vol. 27(3), September 1998.

P.W. Foltz and S.T. Dumais. Personalized Information Delivery: An Analysis of Information
Filtering Methods. Communications of the ACM, Vol. 35(12):pp. 51-60, 1992.

H. Garcia-Molina, Y. Papakonstantinou, D. Quass, A. Rajaraman, Y. Sagiv, J. Ullman, and
J. Widom. The Tsimmis Approach to Mediation: Data Models and Languages. In Proceedings
of Second International Workshop on Next Generation Information Technologies and Systems,
pages 185-193, 1995.

M. Garoflakis, A. Gionis, R. Rastogi, S. Seshadri, and K. Shim. XTRACT: A System for
Extracting Document Type Descriptors from XML Documents. Proc. ACM International
Conf. on Management of Data (SIGMOD’2000), 2000.

C.H. Goh, S. Bressan, S. Madnick, and M. Siegel. Context Interchange: New Features and
Formalisms for the Intelligent Integration of Information. ACM Transactions on Information
Systems, Vol. 17(3):pp. 270-293, 1999.

P. Gray, P. King, and L. Kerschberg. Functional Approach to Intelligent Information Systems.
Journal of Intelligent Information Systems, 2000. to appear.

J. Hammer, H. Garcia-Molina, J. Cho, A. Crespo, and R. Aranha. Extracting Semistructured
Information from the Web. In Proceedings of the Workshop on Management for Semistructured
Data, 1997.

H. Hirsh, C. Basu, and B.D. Davison. Learning to Personalize. Communications of the ACM,
Vol. 43(8):pp. 102-106, August 2000.

B.A. Huberman, P. Pirolli, J. Pitkow, and R.J. Lukose. Strong Regularities in World Wide
Web Surfing. Science, Vol. 280:pp. 95-97, 1998.

17

[34]

[35]

[36]

37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

N.D. Jones. An Introduction to Partial Evaluation. ACM Computing Surveys, Vol. 28(3):pp.
480-503, September 1996.

A. Joshi. On Proxy Agents, Mobility, and Web Access. ACM Baltzer Journal of Mobile
Networks and Applications (MONET), 2000. to appear in the Special Issue on Software Ar-
chitectures for Mobile Applications.

P.B. Kantor, E. Boros, B. Melamed, V. Menkov, B. Shapira, and D.J. Neu. Capturing Human
Intelligence in the Net. Communications of the ACM, Vol. 43(8):pp. 112-115, August 2000.

J. Karat, C.-M. Karat, and J. Ukelson. Affordances, Motivation, and the Design of User
Interfaces. Communications of the ACM, Vol. 43(8):pp. 49-51, August 2000.

H. Kautz, B. Selman, and M. Shah. Referral Web: Combining Social Networks and Collabo-
rative Filtering. Communications of the ACM, Vol. 40(3):pp. 63-65, 1997.

C.A. Knoblock, S. Minton, J.L. Ambite, N. Ashish, P.J. Modi, I. Muslea, A.G. Philpot, and
S. Tejada. Modeling Web Sources for Information Integration. In AAAI 1998, The Fifteenth
National Conference on Artificial Intelligence, 1998. Madison WI.

T.G. Kolda and D.P. O’Leary. A Semidiscrete Matrix Decomposition for Latent Semantic
Indexing in Information Retrieval. ACM Transactions on Information Systems, Vol. 16(4):pp.
322-346, 1998.

J.A. Konstan, B.N. Miller, D. Maltz, J.L.. Herlocker, L.R. Gordon, and J. Riedl. GroupLens:
Applying Collaborative Filtering to Usenet News. Communications of the ACM, Vol. 40(3):pp.
77-87, March 1997.

J. Kramer, S. Noronha, and J. Vergo. A User-Centered Design Approach to Personalization.
Communications of the ACM, Vol. 43(8):pp. 45-48, August 2000.

S.R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins. Trawling the Web for Emerging
Cyber-Communities. In Proceedings of the Eighth World Wide Web Conference. 1999. Toronto,
Canada.

N. Kushmerick, D.S. Weld, and R.B. Doorenbos. Wrapper Induction for Information Extrac-
tion. In Proceedings of 1IJCAI’97, pages 729-737. 1997.

S. Lawrence and C. Lee Giles. Searching the World Wide Web. Science, Vol. 280(5360):pp.
98-100, 1998.

L. Lei, G.-H. Moll, and J. Kouloumdjian. A Deductive Database Architecture Based on Partial
Evaluation. SIGMOD Record, Vol. 19(3):pp. 24-29, 1990.

T.A. Letsche and M.W. Berry. Large-Scale Information Retrieval with Latent Semantic In-
dexing. Information Sciences - Applications, Vol. 100:pp. 105-137, 1997.

P. Maglio and R. Barrett. Intermediaries Personalize Information Streams. Communications
of the ACM, Vol. 43(8):pp. 96-101, August 2000.

U. Manber, A. Patel, and J. Robison. Experience with Personalization on Yahoo! Communi-
cations of the ACM, Vol. 43(8):pp. 35-39, August 2000.

B. Mobasher, R. Cooley, and J. Srivastava. Automatic Personalization Based on Web Usage
Mining. Commaunications of the ACM, Vol. 43(8):pp. 142-151, August 2000.

18

[61] M.D. Mulvenna, S.S. Anand, and A.G. Buchner. Personalization on the Net Using Web Mining.
Communications of the ACM, Vol. 43(8):pp. 123-125, August 2000.

[52] O. Nasroui, H. Frigui, A. Joshi, and R. Krishnapuram. Mining Web Access Logs Using Rela-
tional Competitive Fuzzy Clustering. Proc. of the Eighth International Fuzzy Systems Associ-
ation World Congress, August 1999.

[63] S. Nestorov, S. Abiteboul, and R. Motwani. Extracting Schema from Semistructured Data.
Proc. ACM International Conf. on Management of Data (SIGMOD’98), 1998.

[54] Jakob Nielsen. User Interface Directions for the Web. Comminications of the ACM, Vol.
42(1):pp. 65-72, 1999.

[55] E.P.D. Pednault. Representation is Everything. Communications of the ACM, Vol. 43(8):pp.
80-83, August 2000.

[56] M. Perkowitz and O. Etzioni. Adaptive Web Sites. Communications of the ACM, Vol. 42(8):pp.
152-158, 2000.

[67] S. Perugini, P. Lakshminarayanan, and N. Ramakrishnan. Web Mechanics: Personalizing the
GAMS Cross-Index. IEEE/AIP Computing in Science and Engineering, 2000. Invited Paper.
To appear.

[58] B.J. Pine, S. Davis, and B.J. Pine II. Mass Customization. Harvard Business School Press,
Boston, MA, April 1999.

[59] P. Pirolli, J. Pitkow, and R. Rao. Silk from a Sow’s Ear: Extracting Usable Structures from
the Web. In Proceedings of CHI’96. 1996. Vancouver, Canada.

[60] N. Ramakrishnan. PIPE: Personalization is Partial Evaluation. IEEE Internet Computing,
Vol. 4(6), Nov-Dec 2000. Accepted for Publication. to appear.

[61] N. Ramakrishnan and A.Y. Grama. Data Mining: From Serendipity to Science. IEEE Com-
puter, Vol. 32(8):pp. 34-37, August 1999.

[62] P. Resnick and H.R. Varian. Recommender Systems. Communications of the ACM, Vol.
40(3):pp. 56-58, 1997.

[63] D. Riecken. Personalized Views of Personalization. Commaunications of the ACM, Vol. 43(8):pp.
26-28, 2000.

[64] M.B. Rosson. Integrating Development of Task and Object Models. Communications of the
ACM, Vol. 42(1):pp. 49-56, 1999.

[65] M.B. Rosson and J.M. Carroll. Usability Engineering: Scenario-Based Development of Human-
Computer Interaction. Morgan Kaufmann, Redwood City, CA, 2001. in press.

[66] J. Rucker and M.J. Polano. Siteseer: Personalized Navigation for the Web. Communications
of the ACM, Vol. 40(3):pp. 73-75, 1997.

[67] D. Rus and J. Allan. Does Navigation Require More than One Compass? In Proceedings of
the 1996 Pacific Rim Conference on Artificial Intelligence, 1996.

[68] D. Rus and D. Subramanian. Customizing Information Capture and Access. ACM Transac-
tions on Information Systems, Vol. 15(1):pp. 67-101, 1997.

19

[69] G.M. Sacco. Dynamic Taxonomies: A Model for Large Information Bases. IEEE Transactions
on Knowledge and Data Engineering, Vol. 12(3):pp. 468-479, May /June 2000.

[70] B. Schneiderman. Designing Information-Abundant Web Sites: Issues and Recommendations.
International Journal of Human-Computer Studies, Vol. 47(1), 1997.

[71] C. Shapiro and H. Varian. Information Rules: A Strategic Guide to the Network Economy.
Harvard Business School Press, Boston, MA, November 1998.

[72] M. Spiliopoulou. Web Usage Mining for Web Site Evaluation. Communications of the ACM,
Vol. 43(8):pp. 127-134, August 2000.

[73] L. Terveen, W. Hill, and B. Amento. Constructing, Organizing, and Visualizing Collections of
Topically Related Web Resources. ACM Transactions on Computer-Human Interaction, Vol.
6(1):pp. 67-94, March 1999.

[74] L. Terveen, W. Hill, B. Amento, D.W. McDonald, and J. Creter. PHOAKS: A System for
Sharing Recommendations. Communications of the ACM, Vol. 40(3):pp. 59-62, March 1997.

[75] B. Thomas. URL Diving. IEEE Internet Computing, Vol. 2(3):pp. 92-93, 1998.

[76] J.D. Ullman. Information Integration Using Logical Views. Proc. Int. Conf. Database Theory
(ICDT’97), 1997.

[77] L.C. Vroomen. Graphical User Interfaces For Hierarchies: Workshop Summary. SIGCHI
Bulletin, Vol. 30(2), April 1998.

[78] A. Wexelblat and P. Maes. Footprints: History-Rich Web Browsing. In Proceedings of the
Conference on Computer-Assisted Information Retrieval (RIAQ), pages 75-84. 1997.

20

