Adaptive Collaboration

for Wired and

Wireless Platforms

A data-centric architecture for collaboration environments

Ivan Marsic
Rutgers University

26

JULY e AUGUST 2001

http://computer.org/internet/

uses XML to adapt shared data dynamically between devices

with widely disparate capabilities.

xpanding the Internet’s reach with

E wireless links and mobile terminals
establishes an infrastructure that
permits not only individual roaming but
also, potentially, interactive collaboration
in a more complex workspace. The classic
example is an expert using a 3D CAD
model on a workstation to collaborate with
someone in the field using a handheld
device. The possibilities for collaboration
will become more elaborate with advances
in visualization technologies for small
portable devices (for example, see the
MiniGL 3D graphics library from Digital
Sandbox, http://www.dsbox.com/minigl.
html, and the Pocket Cortona library
from ParallelGraphics, http:/[www.
parallelgraphics.com/products/cortonace/).
The obstacles to such collaboration
hinge on significant disparities between
the platforms in network capabilities,
interaction modalities, computing power,
and storage. One user might have broad-
band wired service while another has
mere voice-bandwidth wireless, making

1089-7801/01/$10.00 ©2001 1EEE

it difficult to meet any quality-of-service
(QoS) application requirements. Client
equipment might range from high-end
workstations with multimodal interfaces
and elaborate graphics to cell phones,
palmtops, or wearable computers with
small 2D monochrome displays.

To address these issues, the Disciple!
and Manifold? frameworks, developed at
Rutgers Center for Advanced Information
Processing (CAIP), take a data-centric
approach to the development of collabo-
rative multimedia applications. (Disciple
is an abbreviation for Distributed System
for Collaborative Information Processing
and Learning; for related work, see the
sidebar.) This approach represents data
and modifies it in a generic way via a
standard representation medium and a
standard communications protocol. Each
user can obtain a subset of the shared
data that can be visualized differently for
different users (polymorphic views). The
amount of data presented and the visual-
ization technique reflect a user’s interests

IEEE INTERNET COMPUTING

Related Work in Collaboration

Many collaborative systems and toolkits
address application and data sharing across
dissimilar terminals.

Shared Displays

Garfinkel et al.' developed SharedX, which
adapts shared displays to various devices by
degrading image quality, where necessary,
to match the hardware capabilities. The
authors assumed, however, that users
would have the same replicated application
and just apply device-specific color-space
reduction.

Rendezvous,? GroupKit,3 and several
other groupware toolkits employed
model-view separation that would let devel-
opers create distributed data models and
drive different views, but no implementa-
tions with distributed models have been
reported. In some cases (like Rendezvous),
a centralized groupware architecture sim-

plifies development and deployment.

Groupware Interoperability

True heterogeneity requires also interop-
erability between the existing groupware
systems. Dewan and Sharma* focused on
interoperating group systems with differ-
ent policies (concurrency control, cou-
pling) and architectures (centralized ver-

sus replicated), but did not consider how
computing platform heterogeneity affects
semantic consistency.

The Mash project® introduced applica-
tion-level proxies for adaptation between
heterogeneous clients communicating over
heterogeneous networks. The authors
applied their architecture to PDA-based
Web browsing and to collaboration
between desktop and PDA clients. In their
system,a PDA essentially acts as a remote
display for a proxy that maintains shared
application state, making support difficult
for disconnected client operations.

XML-Based Adaptation
Several efforts are under way to realize
XML potential for information exchange
on heterogeneous devices. The Wireless
Application Protocol (WAP) Forum has
standardized the Wireless Markup Lan-
guage (WML),® an XML language optimized
for specifying presentation and user inter-
action on limited-capability terminals such
as cell phones. Companies like Nokia
already offer WAP-compliant devices, but
the WAP architecture does not utilize
XML/XSL separation at this time.

To our best knowledge, there is cur-
rently no published research that uses

Adaptive Collaboration

ross Dissimilar Devices

XML/XSL separation — as Disciple does
— for dynamic runtime adaptation of inter-
active application models and visualizations
to heterogeneous devices.

References
I. D.Garfinkel, B.C.Welti,and .. Yip, “HP SharedX:

A Tool for Real-Time Collaboration,” Hewlett-
Packard J.,vol. 45, no. 2,Apr. 1994, pp. 23-36.

2.).FPatterson etal.,“Rendezvous: AnArchitecture for
Synchronous Multi-user Applications,” Proc. ACM Conf.
Computer-Supported Cooperative Work (CSCW 90),
ACM Press, New York, 1990, pp.317-328.

3. M.Roseman and S. Greenberg,“Building Real-Time
Groupware with GroupKit,a Groupware Toolkit,”
ACM Trans. Computer-Human Interaction, vol. 3, no.
I, Mar. 1996, pp. 66-106.

4. P.Dewan and A. Sharma,“An Experiment in Inter-
operating Heterogeneous Collaborative Systems,”
Proc. éth European Conf. CSCW (ECSCW 99),
Kluwer, Copenhagen, 1999, pp. 371-390.

5. A Fox etal,“Adapting to Network and Client Vari-
ation Using Active Proxies: Lessons and Perspectives,”
IEEE Personal Comm. (Special Issue on Adapting to
Network and ClientVariability), vol. 5,no.4,Aug. 1998.

6. Wireless Application Protocol:Wireless Markup Lan-
guage Specification, v. |.3, approved specification
WAP-19 [-WML,WAP Forum, Feb.2001; available
for download at http://www.wapforum.org/

what/technical.htm.

and, more important, a device’s computing and
communications capabilities.

This article begins by introducing a data-centric
architecture that abstracts collaborative tasks as
editing of data repositories, followed by descrip-
tions of the role of XML in managing heterogene-
ity and intelligent software agents in discovering
network and computing environment conditions.
Finally, I present an instantiation of a furniture
arrangement application used to test the approach.

A Data-Centric

Groupware Architecture

The Disciple architecture uses structured data and
defines a universal format for representing it in a
way that gives developers finer-grained control
over data adaptation. Specifically, Disciple uses
XML for data representation and exchange’ and
XSL (Extensible Stylesheet Language)* for data
presentation and cross-domain adaptation.

IEEE INTERNET COMPUTING

This data-centric method of application sharing
is the key to application interoperability and adap-
tation. In essence, the task is supported by the data,
and the user-data interaction is tailored to the
device — rather than adapting the task to the
device. Collaboration centers on a shared data set
stored in repositories on distributed servers, and
structured data represent hierarchically organized
semantic objects. For example, a data set could rep-
resent an engineering drawing, text document,
spreadsheet, or virtual world. For simplicity’s sake
we assume that the data are structured into a tree
or, in a more general case, a directed acyclic graph.
The tree structure might not be the most efficient
data type for all applications, but settling on one
data type simplifies groupware design considerably.

A collaborative application renders data objects
and allows the user to interact with the renderings
using textual, graphical, or multimedia commands.
We designed an abstract data type, called a uni-

http://computer.org/internet/

JULY e AUGUST 2001

27

Wireless Platforms

Users

JavaBeans |

Information transformers/transducers |

(%]
]
c
8o
«
o
c
@
.00
5]
=

Collaboration bus |

()

Intelligent agents

(b)

Information transformer

Wired collaborator

Network fabric

Beans

Internet
protocol
multicast

Intelligent agents

cBus

Information transformer

cBus

Wireless gateway

Beans

Information transformer

Intelligent agents

Wireless collaborator

Figure I. Architecture of the Disciple collaboration framework. (a) Framework components (yellow) do not include JavaBeans
and applets, which are supplied by the application developer. (b) Distribution of components in a heterogeneous environment
shows wireless clients constituting some or all of the yellow-colored components, depending on the access device’s capabilities.

28

JULY e AUGUST 2001

versal form, or UForm, to model the shared objects.
This basic data unit consists of a globally unique
identifier and a keyed list of properties, as also
proposed for Visage.® Only three operations apply:

m create UForm,
m delete UForm, and
m modify UForm property.

The properties can be geometric (dimensions, color,
or texture), but they can also be the IDs of other
UForms, thus forming a hierarchical data structure.
Our data-centric approach follows the World
Wide Web model of using a standard medium for
representation (HTML/XML) and a communication
protocol (HTTP) that does not prescribe client or
server specifics. In our case, Disciple universally
represents data as repositories of UForms, and the
communication protocol permits accessing the
UForms and performing the primitive operations
on them. Both repositories and messages are rep-
resented in XML. Any client or server application
that understands these representation and com-
munication standards can communicate with any
other such application. Developers or users can
then tailor each application to a device type’s
available computing and network resources.

Disciple Framework
Figure 1 shows the architecture of the Disciple

framework. Figure 1a shows the framework com-

http://computer.org/internet/

ponents. Figure 1b shows a simplified view of the
architecture distributed in a heterogeneous envi-
ronment, where wired clients belong to one class
and wireless clients to another.

The servers use the same components as the
clients except that server JavaBeans have some
administrative functionality and, unlike client
beans, do not support user interaction. The wire-
less gateway, an optional component, acts as a
proxy that deals mainly with nonstructured data
such as images and video. The intelligent agents
plane ensures that its client can participate effec-
tively in a heterogeneous collaboration session. It
uses a knowledge base to track the client’s inter-
ests, computing capabilities, and QoS requirements
and translates them into a client profile that
defines the type and level of information abstrac-
tion needed. The agents use the information trans-
former module based on the profile to adapt the
incoming data for visualization and outgoing data
for network transmission.

To transform data across diverse platform capa-
bilities and user needs, the information trans-
former/transducer module maintains a suite of
media-specific information abstraction algorithms.
Information abstraction aims to reduce informa-
tion content while maintaining semantics, ensur-
ing fundamental object integrity even on band-
width- and display-disadvantaged mobile wireless
clients. Examples of information abstraction
include level-of-detail variation, image-to-text,

IEEE INTERNET COMPUTING

text summarization, text-to-speech, and speech-
to-text conversions.

Disciple’s central component is the Collaboration
Bus,® or cBus, which handles all common group-
ware processing that can be abstracted away from
specific applications and built into the infrastruc-
ture. The cBus consists of named communication
channels to which the applications can subscribe
and publish information; it is the key to replicating
state changes of the shared data repositories.

Servers maintain data repositories, which clients
access as XML documents. A client joining a ses-
sion accesses the repository contents it needs and
stores them locally to allow offline work. While
client and server are connected, the local and serv-
er repositories are maintained in synchrony. The
system can, however, support synchronous and
asynchronous collaboration simultaneously, which
is important to associates working in different time
zones or otherwise unable to participate in syn-
chronous sessions. Unlike a proxy-based approach,
the Disciple framework does not require continu-
ous connectivity; users can continue their work
even when the link temporarily goes down, for
example, during a wireless connection. We might
include proxies for data transformation, but the
application logic (JavaBeans) always resides on a
client rather than on its proxy.

Sharing JavaBeans

Disciple is an application framework, that is, a
semicomplete application that guides the creation
of customized applications. End users (conference
participants) complete their applications at run-
time by selecting and importing task-specific Jav-
aBeans into the Disciple workspace, a shared con-
tainer that permits group sharing.

Each bean represents an application plug-in
that enhances Disciple’s generalized application-
sharing abilities, much as Java applets enhance
Web browser functionality. Collaborators select
plug-ins based on the task at hand and import the
selected bean into the workspace by drag-and-
drop manipulation. The imported bean becomes a
part of a multiuser application and all conferees
can interact with it. Objects in the bean are not
aware of distributed services or sharing. They
interact with Disciple through the JavaBeans event
model as with any other event source or listener,
and Disciple distributes the data they generate.

Manifold Beans
Disciple handles heterogeneity primarily at the

communication/networking level” but not at the

IEEE INTERNET COMPUTING

Adaptive Collaboration

Behavior

*

+observes/acts-on <

+describes <

Property

Repository

0.% +contains >

UForm
uuid : long
roperty : Hashtable
+acts-on > RIGREIY
+acts-on >

. + ing <

User action contains
0.*

Figure 2. Conceptual model of a generalized editor, represented in

Action history

Unified Modeling Language notation. Collaborative tasks are

abstracted as editing of repositories of generic data units, UForms.

application logic and interaction levels. We there-
fore created the Manifold framework” to facilitate
the development of collaborative applications,
which exist as JavaBeans, for heterogeneous com-
puting environments. Manifold follows the Model-
View-Controller design pattern and includes the
base package with Java interfaces for an applica-
tion’s basic structure, along with default imple-
mentations for some of these interfaces to assist
application developers.

Manifold has a multitier architecture that con-
sists of vertical presentation, application or domain
logic, and storage tiers. Manifold’s presentation tier
is virtually free of application logic and simply
visualizes the domain data and accepts user input.
The domain tier handles the semantics of data
manipulation tasks and rules. Manifold’s third tier
manages the collaboration functionality, which is
mainly provided by the Disciple framework but
also partially resides in the Manifold bean.

The framework’s data-centric focus permits
abstracting user activity as data repository editing,
a conceptual model shown in Figure 2. We can
describe any task’s application logic as a set of
primitive UForm operation sequences. In addition
to passive editing, a generalized editor could per-
mit behavior objects triggered by UForm changes.
Such behaviors include collision detection in 3D
worlds, spreadsheet cells with formulas, or coordi-
nated manipulation of several UForms. Other pos-
sible tasks include data searches and sorting,

The user does not, however, issue primitive
UForm operations. To facilitate user interaction, the
presentation tier visualizes the UForms and provides

http://computer.org/internet/

JULY e AUGUST 2001

29

Wireless Platforms

-~

2a:processCommand ()

Manifold bean

u%

Presentation bean

o
oceeic/
3".9'£ 3: /

)
%

>

-

uFormsSet ()
uFormRemoved ()
propertyChanged ()

Domain bean

Figure 3. Event exchange and interception in a Manifold bean. Com-
mands generated by the local user affect the domain bean. Action
2a passes the command to the collaboration bus, which broadcasts
it to the remote peers.

30

JULY e AUGUST 2001

tools for modifying them. The UForm’s graphical
representation is called a Glyph, and if a UForm ref-
erences a subtree of UForms, it corresponds to a
composite Glyph or PolyGlyph. Users modify
Glyphs via property editors that expose UForm
properties, similar to JavaBean property editors, or
by directly “grasping” the Glyph and rotating, trans-
lating, or otherwise manipulating it. The manipula-
tion process is sampled, and at each step the corre-
sponding primitive UForm operation is generated
and passed to the domain tier for execution.

Both property editing and direct manipulation
encapsulate one or more primitive UForm opera-
tions in a Command object. The Command class
implements the Command pattern® and must track
the argument values to invoke operations on the
repositories so that operations can be undone or
redone. All Disciple and Manifold components
communicate by passing Command messages. The
presentation tier of a Manifold bean communicates
with the domain tier by passing a Command, as
does a Disciple client communicating with anoth-
er Disciple client or server. The Command mes-
sages focus on data manipulation rather than
event propagation and thus maintain indepen-
dence between the clients and the servers.

The domain and presentation beans must be
glued together because the execution environ-
ments assume single beans. The third bean, the
Manifold bean, interacts with the collaboration bus
to send and receive collaboration commands. Fig-
ure 3 shows how the beans interact. The Manifold
bean dispatches a command either to the local
domain bean and the collaboration bus simulta-
neously or first to the bus and then locally after
the command is reflected back, depending on the

http://computer.org/internet/

concurrency control algorithm used (optimistic or
pessimistic).

Implementing presentation and domain as dis-
tinct beans rather than the whole package as a sin-
gle bean permits mixing and matching more or
less complex beans for each. Domain beans can
implement complex behaviors and the presenta-
tion beans can implement visualizations with
varying degrees of realism. Depending on the con-
text, users can download different domain/pre-
sentation pairs on demand. The control module (a
Manifold bean equipped with the information pro-
vided by Disciple) downloads the domain bean
based on the computing and network environment
characteristics.

XML Data Transformations
Visualizing objects on devices with different com-
puting and communication capabilities requires
some content transformation. Desktop clients can
represent objects in great detail, with each part
represented as an independent object, whereas
handheld wireless clients will likely permit only
simple representations. If some clients visualize
objects in 3D and others in 2D, the 3D coordinates
must be converted into 2D, and vice versa. The
simple solution of just discarding or adding a z
coordinate would not work because the rotations
around the x or y-axis would be difficult to han-
dle. Multimedia objects such as images and video
represent a particular problem.

Figure 4 illustrates the basic process of data
adaptation. Let’s assume the user interaction at
client o results in a command cq, carrying the
information about the user’s activities. A com-
mand consists of a sequence of primitive opera-
tions on the UForm graph G:

m (Op,), create a vertex u;,
m (Op,), delete a vertex u;, and
m (Op,), modify vertex property.

The commands must be transformed to a platform-
specific format before being delivered remotely.

The transformation fo renders the command
co, to cp for delivery to site B in two stages. First,
the transformer decides whether a particular prim-
itive operation in the command applies at the
remote site. The operation will not apply if the
remote site’s local repository does not contain the
particular UForm. The decision is binary: true or
false. For example, if cg, is as follows:

co, = Op, ° Op, ° Op; ° Op, ° Op, ° Ops

IEEE INTERNET COMPUTING

Adaptive Collaboration

Cp= Fop(Co)

Repository graph G

Figure 4. Command transformations to adapt data to client profiles.The structure of the repository graph G with UForms u; is

on the right.

Applications

NAS daemon

NAS agent f==r-----------oooooooooooo-

=
SNMP SNMP
manager agent
NAS daemon

NAS data
repository

NAS
manager

Inference
engine

Figure 5. Network Awareness Service architecture.The awareness tasks are distributed from the NAS agent at the mobile

host to the NAS manager at the wireless proxy/gateway, thus preserving wireless bandwidth and computing resources.

then cg might be

c'B =f'aplco) = Op: ° Ops ° Op: ° Ops

The decisions follow rules, programmed into the
data adaptation agents, which reflect different
users’ interests and platform capabilities.

In the second stage, the properties associated with
type Op_ operations must be converted to match the
remote (3iomain. For example, Java for small devices
(J2ME) does not support floating-point numbers, so
the coordinates must be converted to integer num-
bers, making it impossible to keep the same data for-
mat on all clients. The final result will be

of = Fop(c') = 0pP, ° 0pP, = 0pB, © 0pP,
The data adaptation agents transform the data
according to user- or developer-specified XSL

rules, and the transformer uses the XSLT proces-

1EEE INTERNET COMPUTING

sor for information transformation. An XSLT-
based transformer has the significant advantage
of being compliant with the XML markup lan-
guage. We also plan to consider expert-system-
based agents for more powerful rules description
and possible automatic learning,.

Maintaining consistency between the distrib-
uted repositories represents a graph isomorphism
problem. Due to the platform-specific adaptation,
the graphs are not isomorphic. In a general case,
a client state is consistent if its repository graph is
approximately isomorphic with a subgraph of the
server’s repository graph. Our current research
focuses on determining the exact conditions for
mapping faB and focB'l to maintain state (reposi-
tory) consistency.

Intelligent Agents

and Network Awareness

To deploy this data-centric scheme, the system must
build the environment profiles, a task for intelligent

http://computer.org/internet/

JULY e AUGUST 2001

31

Wireless Platforms

Time
NAS) l Activated . :
manager o
NAS CE 5
service Reglsttjgtl'on Agent Manager
advertisement | Subscription query reply
message
NAS I Agent Agent
agent Interest reply reply
activated Application Application
query query ;
Application Case | Case 2 Case 3

Figure 6. Communication procedure between network applications and network awareness agent.

32

JULY e AUGUST 2001

agents. As Figure 1 showed, agents span all archi-
tectural layers because they need information from
each to make intelligent decisions. Agents sense the
networking environment and determine how to
transform information exchanged between confer-
ees to match diverse data representation domains
and computing and network capabilities. Agents
also dynamically determine Manifold bean compo-
sition based on client device capabilities and other
profile components.

Intelligent agents determine communication
link characteristics, for example, by measuring
throughput or wireless link transmission quality.
The Disciple framework then automatically adjusts
to the environment by applying different infor-
mation transformations for data adaptation. A
brief overview of our network awareness architec-
ture will show how network applications can be
optimized for heterogeneous communication envi-
ronments where both wired and wireless links
exist. Further details are available elsewhere.”

Network Awareness Architecture

Adaptive network applications need to be aware of
network parameters. Figure 5 shows a network-
awareness service (NAS) designed to provide such
information to applications. It uses four main com-
ponents: the NAS daemon, NAS data repository,
NAS manager, and NAS agent. Unlike a tradition-
al end-to-end network awareness framework in
which measurement tasks occur solely at mobile
hosts, the NAS framework measures end-to-end
network conditions piece by piece.

Network awareness includes discernment of the
network’s mobile wireless and fixed wired seg-
ments. The NAS manager or NAS agent integrates
the intermediate measurements on these two parts

http://computer.org/internet/

and provides the final result to the application. The
NAS agent can implement different awareness
techniques or delegate the measurements to other
agents, such as the SNMP (simple network man-
agement protocol) agent. The minimum configu-
ration contains only the inference engine, making
the architecture lightweight and deployable to
small devices.

This piecewise NAS framework is useful because
it not only distributes the NAS components
between the mobile device and the proxy/gateway
but also shifts the awareness tasks from the NAS
agent at the mobile host to the NAS manager at
the proxy/gateway. This preserves wireless band-
width and computing resources, a feat proven by
analytical and experimental results.’

Disciple deploys network awareness by query-
ing the network awareness agent according to the
application bean’s QoS requirements or by sub-
scribing to the information broadcast by the agent.
Figure 6 illustrates the generic procedure for
agent-application interaction, which can be used
in network application startup and runtime phas-
es. In the startup phase it is used in the proactive
mode, while in the runtime phase it can be used in
both proactive and reactive modes.

Bandwidth Awareness Example

As an example, let’s look at how Disciple charac-
terizes the communication channel by measuring
the available bandwidth. We conceptualize avail-
able bandwidth as the bottleneck link bandwidth;
Disciple therefore uses interpacket spacing to esti-
mate the bottleneck link’s characteristics. If two
packets travel together and are queued as a con-
tiguous pair at the bottleneck link, their inter-
packet spacing is proportional to the processing

IEEE INTERNET COMPUTING

time required for the bottleneck link to transmit
the second packet. We modified a technique pre-
sented elsewhere® to apply it to asymmetric wire-
less links as well.”

Information on available bandwidth proves
important in an application presented below,
Palmscape. The wireless cellular link that con-
nects Palm Pilots to the network has a narrow
bandwidth and large latencies (2-15 seconds),
which makes it impossible to broadcast direct
object manipulation events to such collabora-
tors. Disciple queries the WAS framework about
the link bandwidth and delay and, if they appear
unfavorable, buffers the manipulation events for
such links. The collaborators see only a busy
icon for the manipulated object. When the
manipulation is completed, Disciple delivers the
buffered events to the collaborators so they can
see an animation of what happened during the
manipulation.

Testing Disciple and Manifold
In testing our framework, we sought to answer
two practical questions:

m How well does it generalize to arbitrary appli-
cations?
m Can users collaborate equitably?

Manifold offers a lightweight, scalable, extensi-
ble architecture for building any collaborative
application that operates as a generalized struc-
tured data editor. The application logic needed
to edit the data repositories remains the same
across tasks and platforms. Whereas data para-
meters such as amount, type, fidelity, and accu-
racy differ across domain beans for disparate
platforms, the processing machinery remains
consistent, and most Java classes are reused
across platforms.

Applications implemented and tested to date
include text-based chat, whiteboard, 3D collabo-
rative virtual environment (CVE), collaborative sit-
uation map, speech signal acquisition and pro-
cessing, image analysis, and a medical
image-guided diagnosis system for the diagnosis
of leukemia. The applications sampled below use
Manifold to create graphics editors with 2D versus
3D object representations.

Trial Applications

The cWorld JavaBean, developed using Java3D,
enables synchronous, multiuser creation of col-
laborative virtual environments (CVEs), as shown

IEEE INTERNET COMPUTING

Z7X testuser2 19 [=] B3

8| Dlz(aale| & x| |=|a| =
8] @ #|o|e|E@wlm] 3]e[c] of
Document Folder

Figure 7. Sample collaborative virtual environment
(CVE), built using cWorld.The 3D telepointer fol-
lows the user’s current location and line of sight.

-Iox

P R —————..

Bl |- e =) 2

‘ Room l

Figure 8. Floor plan rendered in Flatscape.This
plan corresponds to the room shown in Figure 7;
the 2D telepointer follows the user’s view.

in Figure 7. CWorld does not require special hard-
ware and can be operated via keyboard and
mouse; it also supports the Magellan Space Mouse
that provides the six-degrees-of-freedom move-
ment used for navigating 3D spaces.

CWorld performs the following primitive oper-
ations on the UForm tree:

m Op, creates simple geometric figures (box,
cylinder, cone, sphere) and lights (directional,
point, spotlight). The furniture objects (desk,
cabinet, bookcase), which are composite
UForms, can be imported from files. The tele-
pointer is also a composite UForm (cylinder +
cone).

http://computer.org/internet/

JULY e AUGUST 2001

Adaptive Collaboration

33

Wireless Platforms

34

JULY e AUGUST 2001

m Op, deletes any of the above-listed UForms.

m Op, sets UForm properties such as color, tex-
ture, position, dimensions, and manipulation
constraints (for example, furniture objects can-
not “fly”). The lights have additional properties
such as direction, attenuation, and spread
angle. The user can also apply 3D affine trans-
formations to UForms by manipulating the cor-
responding Glyphs or PolyGlyphs.

User commands result in one or more primitive
operations. For example, moving a figure to back-
ground or foreground, or grouping or ungrouping
figures, requires several primitive operations.

Each user has a unique 3D telepointer (Figure
7) that functions as a primitive avatar and
appears at the user’s discretion. The telepointer
reflects the position and orientation of the user’s
line of sight.

Figure 8 shows another application bean, the
Flatscape editor, which we developed using Java2D.
As an example, the UForm for the desk shown in
Figure 8 has the following characteristics:

ID: 92600832

type: “desk”

file: “icons/desk.gif”
width: “51”

height: “28”

Flatscape operations on the UForm tree include

m Op, creates simple geometric figures (line, rec-
tangle, ellipse, polygonal line, spline) and
bitmap images. The figures can be grouped into
composite UForms.

m Op, deletes any of the above-listed UForms.

m Op, sets UForm properties such as contour
color, thickness, and dash; fill color; position;
dimensions; visibility; and manipulation con-
straints (for example, movement only along the
x-axis). The lines also have arrow styles, and
the splines have other properties. The user can
apply 2D affine transformations to UForms by
manipulating the corresponding Glyphs or
PolyGlyphs.

Flatscape telepointers appear as 2D arrows point-
ing toward the user’s current view. This differs
from typical telepointers, such as that found in
GroupKit (see the sidebar on page 27), that show
only position and not orientation. In our 2D imple-
mentation, the telepointer’s owner, not the recipi-
ent, controls its visibility.

http://computer.org/internet/

Using J2ME CLDC 1.0 (Java 2 Micro Edition —
Connected, Limited Device Configuration), we
developed a simpler version of Flatscape that runs
on PalmPilots. Palmscape, as it is called, has most
of Flatscape’s basic functionality (create, delete,
move, and rotate objects, for example) but accepts
user input via the Palm stylus and buttons.

Human Factors Experiments
How does device heterogeneity affect human
performance?

We explored this question using an instantia-
tion of this approach in a furniture arrangement
application. The application presents collaborators’
task views consistent with their platform capabil-
ities. We conducted experiments to measure how
display differences would affect collaboration.!®
The results showed that, rather than being hin-
dered by platform differences, a reduced-display
user (2D) performed well in collaboration with an
information-rich display user (3D). We also
observed that users are willing to sacrifice speed
and visualization fidelity in exchange for univer-
sal access and timeliness of information.

Future Work

By abstracting the collaborative tasks as editing
the data repositories, our approach to synchronous
collaboration preserves the application logic across
platforms and tasks. The main difference across
groupware applications is in the presentation logic.
We address this difference, along with differences
in the visualization and interaction tools available
on diverse platforms, by custom-designing a pre-
sentation module for each platform.

The current Disciple framework lacks such fea-
tures as group awareness, concurrency control,
and access control. The design and implementa-
tion of these features will likely follow the pattern
established thus far: consistent application logic
across platforms combined with platform-specific
presentation logic. Application-level proxies could
complement our approach for nonstructured data
(such as images and video), and we plan to explore
this in the future. Also, because mobile device CPU
and memory resources will likely outpace their dis-
play and network capabilities, stand-alone full
applications are feasible on small devices. Because
our approach — unlike a proxy-based approach —
does not require continuous connectivity, it lets the
user continue working even when the link goes
down temporarily. We may include proxies for
data transformation but the application logic
always resides on a client rather than on its proxy.

IEEE INTERNET COMPUTING

Some issues we've addressed here pertain also
to pervasive or ubiquitous computing applications
that must be downloaded and run on different
platforms. Again, our focus on data and commu-
nication protocols liberates developers to tailor
applications to particular access device.

Our continuing work concentrates on develop-
ing more real-world applications while improving
performance of data transformation and repository
synchronization, network monitoring, and data
adaptation. For more information about the Disciple
project and heterogeneous collaboration, see the
Web site at http://www.caip.rutgers.edu/disciple/.[3

Acknowledgments

Research contributors to this project include professors James
Flanagan, Marilyn Tremaine, and Allan Meng Krebs, and grad-
uate students Mihail Ionescu, Liang Cheng, and Bogdan Doro-
honceanu. The research is supported by NSF KDI contract no.
11S-98-72995 and DARPA contract no. N66001-96-C-8510 and
by the Rutgers Center for Advanced Information Processing
(CAIP) and its corporate affiliates.

References

1. I Marsic, “DISCIPLE: A Framework for Multimodal Col-
laboration in Heterogeneous Environments,” ACM Comp.
Surveys, vol. 31, no. 2es, June 1999.

2. L Marsic, “An Architecture for Heterogeneous Groupware
Applications,” Proc. 23rd IEEE/ACM Int’l Conf. Software
Engineering (ICSE 2001), IEEE Press, Piscataway, N.J., May
2001, pp. 475-484.

3. World Wide Web Consortium, Extensible Markup Language
(XML) home page, http://www.w3.org/XML/.

4. W3C, Extensible Stylesheet Language (XSL) home page,
http:/[www.w3.org/Style/XSL/.

Adaptive Collaboration

5. S.A.Roth et al., “Visage: A User Interface Environment for
Exploring Information,” Proc. Information Visualization,
IEEE Press, Piscataway, N.J., 1996, pp. 3-12; available
online at http://www.maya.com/visage/base/technical.html.

6. C. Francu and I. Marsic, “An Advanced Communication
Toolkit for Implementing the Broker Pattern,” Proc. 19th
IEEE Int’l Conf. Distributed Computing Systems (ICDCS 99),
IEEE Press, Piscataway, N.J., 1999, pp. 458-467.

7. L. Cheng and L. Marsic, “Piecewise Framework for End-to-
End Network Awareness Service in Heterogeneous Data
Networks,” submitted for publication.

8. E. Gamma et al., Design Patterns: Elements of Reusable
Object-Oriented Software, Addison-Wesley, Reading, Mass.,
1995.

9. R.L. Carter and M.E. Crovella, “Measuring Bottleneck Link
Speed in Packet-Switched Networks,” tech. report BU-CS-
96-006, Computer Science Dept., Boston Univ., Mar. 1996.

10. 1. Marsic et al., “Designing and Examining PC-to-Palm Col-
laboration,” to appear in Proc. 35th Hawaiian Int’l Conf.
System Sciences (HICSS-35), IEEE Press, Piscataway, N.J.,
Jan. 2002.

Ivan Marsic is an assistant professor of electrical and com-
puter engineering at Rutgers University. He is chief archi-
tect of the Disciple system. His current research interests
include groupware, mobile computing, computer net-
works, and human-computer interfaces. Marsic is a mem-
ber of the IEEE and the ACM and has been a consultant to
industry and government.

Readers can contact the author at marsic@caip.rutgers.edu.
For further information on this or any other computing topic,

please visit our Digital Library at http://computer.org/
publications/dlib/.

How toWrite for IC...

IEEE Internet Computing is a bimonthly magazine focused on Internet-based applications and supporting technologies.We seek
articles on the use and development of Internet applications, services, and technologies that let practitioners leverage them
in engineering and applying the Internet toolset.We aim to support individual engineers, as well as groups, in collaborative and
coordinated work.

All articles will be peer reviewed and should be submitted in PDF or PostScript. Submissions should be relevant to the typical
professional subscriber of IC and should illustrate the applicability or effect of a specific Internet-based technology. Fielded, tested
applications with hard results are preferred. Prototypes must at least include test results. Submissions should be no longer than
6,000 words.

For detailed instructions, see our Author Guidelines at http://computer.org/internet/author.htm

Internet Computing

IEEE INTERNET COMPUTING http://computer.org/internet/ JULY ® AUGUST 2001 35

