
UC Santa Cruz
UC Santa Cruz Previously Published Works

Title
Efficient data distribution in a Web server farm

Permalink
https://escholarship.org/uc/item/0b13s6w1

Journal
IEEE Internet Computing, 5(4)

ISSN
1089-7801

Authors
Burns, RC
Rees, RM
Long, DDE

Publication Date
2001

DOI
10.1109/4236.939451

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0b13s6w1
https://escholarship.org
http://www.cdlib.org/

Randal C. Burns
and Robert M. Rees
IBM Almaden Research Center

Darrell D.E. Long
University of California, Santa Cruz

Efficient Data
Distribution in a
Web Server Farm

A novel locking protocol maintains data consistency in

distributed and clustered file systems that are used as scalable

infrastructure for Web server farms.

High-performance Web sites rely
on Web server “farms”—hundreds
of computers serving the same

content—for scalability, reliability, and
low-latency access to Internet content.
Deploying these scalable farms typically
requires the power of distributed or clus-
tered file systems.

Building Web server farms on file sys-
tems complements hierarchical proxy
caching.1 Proxy caching replicates Web
content throughout the Internet, thereby
reducing latency from network delays
and off-loading traffic from the primary
servers. Web server farms scale resources
at a single site, reducing latency from
queuing delays. Both technologies are
essential when building a high-perfor-
mance infrastructure for content delivery.

In this article, we present a cache con-
sistency model and locking protocol cus-
tomized for file systems that are used as
scalable infrastructure for Web server
farms. The protocol takes advantage of
the Web’s relaxed consistency semantics

to reduce latencies and network overhead.
Our hybrid approach preserves strong
consistency for concurrent write sharing
with time-based consistency and push
caching for readers (Web servers). Using
simulation, we compare our approach to
the Andrew file system and the sequen-
tial consistency file system protocols we
propose to replace.

Data Consistency
File system design carries assumptions
about workloads and application consis-
tency needs that, when applied to Web
serving, lead to inferior performance. File
system designers assume that data are
shared infrequently and that such data
require strong (sequential) consistency.2

Consistency describes how processors in
a parallel or distributed system view
shared data; the sidebar on related work
in data consistency presents examples.

For Web serving, data are widely
shared among many servers, as Figure 1
shows, and strong consistency guarantees

56 JULY • AUGUST 2001 http://computer.org/internet/ 1089-7801/01/$10.00 ©2001 IEEE IEEE INTERNET COMPUTING

Sc
al

ab
le

 I
n
te

rn
et

 S
er

vi
ce

s

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on July 29,2020 at 22:25:00 UTC from IEEE Xplore. Restrictions apply.

are irrelevant because they cannot be passed on to
users (or applications) at the Web browser. The
hypertext transfer protocol (HTTP) provides little
consistency, and any guarantees the file system
provides are lost in transit. System designers can
trade consistency for performance in middleware,
databases, and Internet applications,3 and likewise
in file systems.

We introduce a hybrid approach to enhance file
system consistency for Web serving. The publish
consistency model applies to data views that are
stable during a given file’s open/close session. This
model relaxes semantics, permitting data to be
read and written asynchronously, in parallel. We
implement publish consistency in the
producer/consumer locking protocol to replace
callback invalidations—messages from the server
invalidating cached versions—of stale data with
push caching,4 transmitting updates to Web
servers. With push caching, Web server data are
immediately available. However, we preserve
strong consistency for writers, supporting fine-
grained concurrent write sharing for applications
(such as databases) that author Web data.

The producer/consumer (PC) protocol is partic-
ularly appropriate for files likely to be modified
frequently, like stock quotes, weather information,
and live image/data feeds (for example, Web cam-
eras). The protocol does not address a Web site’s
referential (link) integrity; a protocol operating at
file granularity cannot enforce consistency guar-
antees between multiple files that make up a site.

Publish consistency and producer/consumer
locking are effective file system modifications that
increase scalability and performance in Web serv-
er farms. Reduced network overheads allow for the
deployment of more servers on a given network
infrastructure, and lowered latencies allow more
HTTP requests to be served on any given Web
server. File systems give Web servers access to a

rich data-sharing and data-management environ-
ment. By using a customized consistency model
and protocol, file systems provide a scalable infra-
structure for Web server farms without adding
latency.

Locking for Content Distribution
While the sequential consistency (SC) model—in
which all processes see things as if they shared a
single memory—is correct for many applications,
Web servers don’t require sequential consistency
because they serve data through the weakly con-
sistent HTTP protocol. Web-serving performance
benefits from weakened file system consistency.

Performance concerns aside, sequential consis-
tency is the wrong model for updating Web data,
as it can result in errors when Web clients parse
HTML or XML content. When a reader (Web serv-
er) and a writer (content publisher) share a
sequentially consistent file, the reader sees each
change to file data, including files in the process
of being modified. The Web server distributes
these files to its clients where parsing errors occur
when files are incompletely written. However,
before the writer begins and after the writer fin-
ishes, the file contains valid content. A more suit-
able publish-consistency model has the Web serv-
er continue to serve the old version of the file
until the writer finishes.

More formally, publish consistency is based on
the concepts of sessions and views. In file systems,
open and close function calls define a file session.
Associated with each session is a view, or image,
of the file data. Data is publish-consistent if (1)
write views are sequentially consistent, (2) a read-
er’s view does not change during a session, (3) a
reader creates a session view consistent with the
close of a recent write session, and (4) readers
become aware of all write sessions within a
bounded amount of time.

IEEE INTERNET COMPUTING http://computer.org/internet/ JULY • AUGUST 2001 57

Data Distribution

Content
switch

Web
client

Web
client

Web
client

File
server

File
server

Web server farm Hierarchical Web caching

Web
server

Web
server

Web
server

Web
client

Web
client

Web
cache

Web
cache

Web
cache

Web
cache

Web
cache

Web
cache

Web
cache

Figure 1. Server farms and hierarchical caches in the Web.

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on July 29,2020 at 22:25:00 UTC from IEEE Xplore. Restrictions apply.

When opening a file, a reader obtains and uses
a view for an entire session. File modifications are
not propagated to all readers instantaneously.
Leases,5 which are used to detect and recover from
failures, bound the time until changes are propa-
gated, similar to the delta consistency6 and hierar-
chical leasing7 models.

Sequential Consistency
For Web data distributed from one writer to multi-
ple readers, SC produces lock contention, loading
the network and slowing application progress.
Contention increases with the number of servers
in a Web server farm configuration, as in Figure 2,
of many hundreds of Web servers integrated with
a database management system (DBMS). Data
updates to database tables, inserted through an
interface like Structured Query Language (SQL),
trigger Web content creation. The file system
ensures that the content’s new version is consis-
tent at all Web servers.

The SC locking protocol performs poorly when
active files are modified, which occurs when a file is
read by multiple Web servers before, during, and
after new results are written. The system’s initial
configuration has all Web server clients holding a
shared lock (S) for reading the file. Figure 3a displays
the locking messages required to update file data.

SC locking performs best when the file system
client at the database is not interrupted while
updating. In this case, the writing client requests
an exclusive lock (X) on the file. The exclusive
lock revokes all concurrently held shared locks.

After the writer completes, Web server clients
must request a shared lock on the file to read and
serve the Web content. All messages occur for
every Web server. In the best case, four messages—
revoke, release, acquire, and grant—are transmit-
ted between each Web server and the file system
server.

Performance is worse when the DBMS file sys-
tem is interrupted during file updating. In file sys-
tem protocols, data locks are preemptible so that
the system is responsive when multiple clients
share file data. Lock contention can stall updates
indefinitely.

Web serving presents the file system with a
nontraditional workload, which lacks the proper-
ties a file system expects and therefore operates
inefficiently. Specifically, the workload lacks client
locality8—the file’s affinity to a single client.
Instead, all clients are interested in all files.

AFS consistency. Among existing systems, the
Andrew file system (AFS) comes closest to publish
consistency. AFS does not implement sequential
consistency but synchronizes file data between
readers and writers when files are closed. The AFS
protocol fails to implement publish consistency
because it lacks session and view concepts.

As shown in Figure 3b, all Web servers first hold
the file open for read. Then an open instance reg-
isters a client for callbacks. The DBMS opens the
file for writing, writes the data to its cache, closes
the file, and then writes the cached-file copy back
to the server. The file server notifies other clients

58 JULY • AUGUST 2001 http://computer.org/internet/ IEEE INTERNET COMPUTING

Scalable Internet Services

FS server

FS cache

Locking protocol

Write

Post

Trigger

Locking protocol

FS cache FS cache

FS client

Web server

FS client

Web server

Read Read

FS client

Web server

Read

FS cache

Structured
query language

(SQL)

HTTP HTTP HTTP

FS client

Database
management

system
(DBMS)

FS File system

Figure 2. Example configuration for updating data among many Web servers.

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on July 29,2020 at 22:25:00 UTC from IEEE Xplore. Restrictions apply.

of the changes by sending invalidation messages
to clients that have registered for a callback.

AFS uses only one fewer message between
client and server than the SC protocol, but this
belies the performance difference. In AFS, opera-
tions between one client and a server never wait
for actions on another client. Another significant
AFS advantage is that the old file version is avail-
able at the Web servers concurrently with its being
updated at the DBMS. Callback invalidations,
however, prevent data from being continuously
available.

A disadvantage of the AFS protocol is that it
does not correctly implement publish consisten-
cy. The actual policy is to forward file changes to
reading clients whenever a client writes data.
Sometimes, however, AFS writes data before the
file is closed. This occurs first, when a file has
been open longer than 30 seconds and a timer
writes back cached data, and second, when a
client’s cache becomes full and it writes data to a
server to free memory. In either case, reading
clients can see partial updates, which violates
publish consistency.

Implementing publish consistency. The PC lock-
ing protocol implements publish consistency cor-
rectly and also improves performance. PC locking
eliminates almost all protocol latency. Initial data
access carries a onetime cost, but subsequent reads
are immediate. Furthermore, for the Web-serving
workload, our protocol lessens network utilization
by minimizing the messages needed to keep a file
consistent, as Figure 3c shows. In PC locking, a
single update message pushes changes to clients.
In contrast, the AFS and SC protocols require data
to be revoked and then later re-obtained, which
incurs latency as HTTP requests await the data’s
arrival.

We capture publish consistency in two data
locks: a producer (P) and a consumer (C) lock. A
producer lock can be held by only one client at a
time and lets a client write and cache data for
write. A consumer lock lets a client read and cache
data. It can be obtained by any client.

Push caching improves PC locking perfor-
mance. In push caching, the P lock holder sends
an explicit publish message, and the server noti-
fies all clients holding C locks of the updated file.
Push caching keeps data publish-consistent and
obviates callback invalidation. Therefore, readers
always have valid cache data and never incur
latency while waiting for data to arrive. PC locking
also reduces the number of protocol messages by

eliminating the messages needed to re-obtain data
after a callback.

PC locking implements the session-and-view
model of publish consistency. During a view, a
reading client sees data consistent with the end of

IEEE INTERNET COMPUTING http://computer.org/internet/ JULY • AUGUST 2001 59

Data Distribution

acquire(X)

acquire(S)

release(data)
grant(S,data)

grant(X,data)

Write file

DBMS

File
system
server

Web
server

revoke

revoke

release

DBMS

File
system
server

Web
server

respond(data)

invalidate
close(data)

respond(data)

Discard cache

open(W)

reacquire(R)

Write file

DBMS

File
system
server

Web server
Lock held = C

update(data)

acquire(P)

Write file

grant(P,data)

publish(data)

(a)

(b)

(c)

Figure 3. Locking protocols for distributing updates
in a file system.

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on July 29,2020 at 22:25:00 UTC from IEEE Xplore. Restrictions apply.

a previous write session. To achieve this, PC lock-
ing isolates reading clients from current writers.
C and P locks dissociate updating readers’ cache
contents from writing data; the P lock holder can
write data at the file system server without releas-
ing updates to reading clients. On closing a file,
the writing client sends an explicit publish mes-
sage. Clients receiving an update replace the old
file view with the new view. However, current
reader sessions continue to access the view the
client opened; only new clients see the most
recent view.

PC locking requires support from both the file
system client and server to implement views and
guarantee session semantics. Different views must
be open and served concurrently. To permit this,
we allow for multiple instances of our file data
structures at both the client and server. We asso-
ciate a monotonically increasing view number
with each instance. Clients, servers, and the client-
server protocol perform operations in the context
of this view number so that the file system can
bind requests to the appropriate data. Old views
are reclaimed by reference counting when no open

instances remain and all clients have been updat-
ed to newer views.

Multiple versions of the same file must coexist
on stable storage to support views. Clients aren’t
required to cache all data for open files; therefore,
clients might need to read data from an old view
even after the file has been updated. To support
multiple versions of a stored file, not just in
caches, our file system employs out-of-place writ-
ing, or copy-on-write. This technique writes file
updates to new storage, rather than the storage
from which they were read. Different views of the
same file keep data in different storage addresses.

Copy-on-write is increasingly prevalent in mod-
ern file systems, like those choosing a log-struc-
tured9 data layout. Distributed file systems10 sup-
port copy-on-write as part of a snapshot facility
for backup-restore, which is how we implement
out-of-place writing.

PC locking has a potential performance prob-
lem in overpublishing, which occurs in write-dom-
inated workloads when the server pushes versions
that clients don’t read. Push caching assumes that
clients read each version of the file. If so, the band-

60 JULY • AUGUST 2001 http://computer.org/internet/ IEEE INTERNET COMPUTING

Scalable Internet Services

Although Lamport introduced sequential
consistency,1 subsequent work on multi-
processors and shared memories intro-
duced many related models. Most modern
file systems implement sequential consis-
tency. Less-strict consistency models
include NFS, which updates data based on
time.2 AFS3 updates data when a server is
aware of changes but does allow inconsis-
tencies.We’re unaware, however, of any
file systems that propagate updates based
on session views as producer/consumer
locking does.

The publish consistency model and
producer/consumer locking protocol -
described in the main text have adapted
Web-caching concepts to file systems.
Many Web-caching protocols have ex-
plored trade-offs between consistency and
performance. However,Web caches form
multilevel hierarchies, so Web caching dif-
fers substantially from file systems, which
are usually organized as client-server or
peer-to-peer systems. Many Web proto-
cols, such as those used by the Harvest
cache4 and Internet Cache Protocol
(ICP),5 cause data objects to expire on the

basis of time-to-live (TTL). Client-acquired
data are cached until they’re invalid, then
discarded. No server callbacks occur.Tech-
niques to extend TTL include adaptive
timers to reduce bandwidth and inconsis-
tency.6 Some researchers believe that the
Internet requires stronger consistency
guarantees, which can be achieved through
callback-invalidation protocols similar to
those used in file systems.7

Our work is more closely related to
protocols employing push caching8 with
relaxed consistency, including those based
on hierarchical leasing9 and multicasting
updates.10 Researchers are currently com-
bining these concepts into a standard pro-
tocol for the Internet.11

References
1. L. Lamport,“How to Make a Multiprocessor Com-

puter that Correctly Executes Multiprocess Pro-

grams,” IEEE Trans.Computers, vol.C-28,no.9,1979.

2. D.Walsh et al.,“Overview of the Sun Network File

System,” Proc.1985 Winter Usenix Tech.Conf.,Usenix

Assoc., Berkeley, Calif., Jan. 1985.

3. M.L. Kazar,“Synchronization and Caching Issues in

the Andrew File System,” Proc. Usenix Winter Tech.

Conf., Usenix Assoc., Berkeley, Calif., Feb. 1988.

4. A. Chankhunthod et al.,“A Hierarchical Internet

Object Cache,” Proc. 1996 Usenix Tech. Conf.,

Usenix Assoc., Berkeley, Calif., Jan. 1996.

5. D.Wessels and K. Claffy,“ICP and the Squid Web

Cache,” IEEE J. Selected Areas in Comm., vol. 16, no.

3, Apr. 1998.

6. J.S.Gwertzman and M. Seltzer,“World-Wide Web

Cache Consistency,” Proc. Usenix Ann.Tech. Conf.,

Usenix Assoc., Berkeley, Calif., Jan. 1996.

7. P.Cao and C. Liu,“Maintaining Strong Cache Con-

sistency in the World Wide Web,” IEEE Trans. Com-

puters, vol. 47, no. 4,Apr. 1998.

8. J.S.Gwertzman and M.Seltzer,“The Case for Geo-

graphical Push-Caching,” Proc. Fifth Workshop Hot

Topics in Operating Systems, IEEE Computer Soc.

Press, Los Alamitos, Calif., May 1995.

9. J. Yin et al., “Volume Leases for Consistency in

Large-Scale Systems,” IEEE Trans. Knowledge and

Data Eng., vol. 11, no. 4, July/Aug. 1999.

10. D. Li and D.R. Cheriton,“Scalable Web Caching of

Frequently Updated Objects Using Reliable Multi-

cast,” Proc. 2nd Usenix Symp. Internet Technologies,

Oct. 1999.

11. D. Li, P. Cao, and M. Dahlin, “WCIP:Web Cache

Invalidation Protocol,” tech. report draft-danli-

wrec-wcip-01.txt, Internet Draft, Mar. 2001.

Related Work on Data Consistency

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on July 29,2020 at 22:25:00 UTC from IEEE Xplore. Restrictions apply.

width cost of pushing data is less than that of a
client later requesting data from the server. Over-
publishing is not a Web-serving concern because
reads dominate the workload. Although PC lock-
ing is not a general solution, it improves Web-
serving performance.

Simulation Results
We constructed a discrete-event simulation that
models a configuration of our system similar to
that shown in Figure 2 to verify our locking design
and to examine performance in a Web-serving
workload. To compare the network usage and
latency of SC, AFS, and PC locking protocols in
Web-server farms, we studied two sample work-
loads: a stock ticker and a Web camera.

We built the discrete-event simulation with the
YACSIM toolkit (http://www-ece.rice.edu/~rsim/
rppt.html). We simulated the locking protocols
through four components—a reading client, a writ-
ing client, a network, and a protocol server—con-
forming with the configuration in Figure 2.

We modeled the network component as an ideal
Ethernet, conducting experiments for both Fast
Ethernet and Gigabit Ethernet. An ideal network
is fair—messages are delivered in the order that
computers present them to the network—and car-
ries its full bandwidth up to the channel capacity.
In reality, a network is not guaranteed to be fair,
but this is the expected behavior, particularly
when network load is light. Furthermore, unfair
behavior varies in type and frequency depending
on the network hardware. The locking protocols
themselves can be run on any network. We fac-
tored hardware specifics out by modeling the net-
work as ideal and restricted our studies to low net-
work utilization.

We modeled the workload at reading clients,
corresponding to HTTP requests at Web servers,
according to a heavy-tailed distribution (a Pareto
random variable). Statistical studies have shown
that heavy-tailed distributions characterize well
the bursty nature of Internet traffic. While desir-
able for their accuracy, heavy-tailed distributions
can lead to simulation instabilities,11 so we also
verified simulation results against more stable
workloads, like Poisson read processes.

For write workloads in our system, we used
data (stock ticker and Web camera) updated at
fixed intervals.

Our choice to drive the simulation with an arti-
ficial workload reflects suitable trace-data avail-
ability. While many Web studies use traces to drive
simulations,7 we know of no Web traces correlat-

ing reads and writes across a large installation.
Other consistency studies have used synthetic
workloads for similar reasons.12 In all experiments,
we focused on the network usage and latency
associated with keeping a single file consistent in
a Web farm. Simulation and a synthetic workload
let us model large-scaled systems; however, with-
out suitable traces, it is unreasonable to infer an
overall system workload and study interactions
between files.

Web Cameras
For the Web camera workload, PC locking elimi-
nates substantial latencies for Web serving. The
workload was moderately sized, consisting of 64-
Kbyte files updated relatively infrequently: one-
minute intervals, 10 hits per second at each Web
server. Many Internet data sources have these
change semantics, most containing larger data sets
that would exacerbate latency problems. Two large
classes of such data are geographic information
and live images.

The latency results in Figure 4
(next page) describe the time
interval between an incoming
read request and the file’s avail-
ability at the client. When the
file was not immediately avail-
able, the client was assessed the
time required to communicate
with the server, the server to
revoke locks (this step is proto-
col-specific), and respond to the
clients. When data were already
at the client, the read occurred
immediately. The latency results include average
latencies (all requests) and latencies for cache
misses (all reads with nonzero latency).

For the PC locking protocol, latency is always
negligible. A read lock is obtained once at the sim-
ulation’s start and never revoked. A reading client
always has data available; consequently, this result
is trivial. When the writing client modifies data,
the server sends an update to the reading client,
replacing the old version. The client always holds
a valid copy of a file.

For the SC and AFS protocols, latency increas-
es superlinearly with the number of reading
clients. When the writing client modifies the file,
each reading client must have its cache invalidat-
ed and request a new lock to re-obtain data. All
messages share the same network resource and use
it simultaneously. More clients increase both
resource contention and latency.

IEEE INTERNET COMPUTING http://computer.org/internet/ JULY • AUGUST 2001 61

Data Distribution

An ideal network

carries its full

bandwidth up

to the channel

capacity.

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on July 29,2020 at 22:25:00 UTC from IEEE Xplore. Restrictions apply.

Latency reductions significantly affect end-to-
end latencies in the Web. Previous research indi-
cates that average Web latencies range from 100
to 200 milliseconds throughout the cache hierar-
chy.13 On Fast Ethernets, we save approximately
20 milliseconds at just the highest level of this
hierarchy for server farms of 500 computers. For
cache misses, we reduce latency by almost a full
second. Even on Gigabit networks, we reduce
latency by 50 milliseconds for cache misses. These
latency results are for single files. As server farms
expand and the files to be kept consistent multi-
ply, savings become more significant.

Stock Ticker
In the stock ticker workload, the PC locking proto-
col reduces the network overhead of keeping data
consistent. The workload consisted of frequently

updated files containing minimum data. We mod-
eled files of about 100 bytes (so that with packet
overheads and metadata, update messages were
256 bytes). These files were rewritten every second
and hit one hundred times per second on each Web
server. Many Internet data sources—stock and
financial quotes, sports scores, statistical sources,
and so on—have these change semantics.

While latency results still showed performance
improvements, the benefit of PC locking on this
workload lay elsewhere. Again, PC locking exhib-
ited no latency, as Figure 5 shows, where AFS and
SC showed superlinear growth. However, the
latency’s absolute values were so small that the
savings were not important to overall perfor-
mance. Average latency for 100-megabit networks
was less than 40 microseconds for a Web farm of
200 machines, and miss latency was less than 3

62 JULY • AUGUST 2001 http://computer.org/internet/ IEEE INTERNET COMPUTING

Scalable Internet Services

0 100 200 300 400 500
 –2

0

2

4

6

8

10

12

14

16

18

Average latency (100 megabit)

Number of clients

L
at

en
cy

 (
se

co
nd

s)

0 100 200 300 400 500
 –0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Miss latency (100 megabit)

Number of clients

L
at

en
cy

 (
se

co
nd

s)

0 100 200 300 400 500

x 10–5

x 10–3

Average latency (gigabit)

Number of clients

L
at

en
cy

 (
se

co
nd

s)

0 100 200 300 400 500
–0.005

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

14

12

10

8

6

4

2

0

Number of clients

L
at

en
cy

 (
se

co
nd

s)

Miss latency (gigabit)

(a) (b)

(c) (d)

Sequential consistency protocol
Andrew file system
Producer/consumer locking protocol

Sequential consistency protocol
Andrew file system
Producer/consumer locking protocol

Sequential consistency protocol
Andrew file system
Producer/consumer locking protocol

Sequential consistency protocol
Andrew file system
Producer/consumer locking protocol

Figure 4. Read latency results on Fast and Gigabit Ethernets for the Web camera workload.

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on July 29,2020 at 22:25:00 UTC from IEEE Xplore. Restrictions apply.

milliseconds. For end-to-end latencies estimated
to be in the hundreds of milliseconds, these val-
ues are negligible.

Because the data in update messages are small,
the reduced message complexity of PC locking
results in significant network savings. The results
in Figure 5 describe network resource utilization
shared by Web servers. Utilization is the fraction of
the network’s total capacity that a protocol uses or
equivalently, for an ideal network, the percentage
of time that the network is busy. For all locking
protocols, network usage increases linearly with the
number of reading clients. Unlike latency, con-
tention is not a factor in network utilization.

Network utilization limits the scalability of con-
sistency protocols. For Fast Ethernet, 200 Web
servers require more than 1.5 percent of all band-
width to keep a single file consistent. Network

usage scales linearly with the number of files (a
best-case assumption), and 70 such files would
saturate the interconnect. Similarly, 700 files
would saturate a gigabit network with 200 servers.
PC locking extends the number of files that can be
kept consistent to more than 300 and 3,000,
respectively. We are concerned with scalability in
number of files and in number of Web servers, for
which network usage also scales linearly. In any
case, plausible combinations of files and servers
saturate even gigabit networks, an effect that PC
locking can mitigate.

For larger files, like our Web camera workload,
PC locking offers only a minor utilization advan-
tage. The network savings of PC locking are from
saving messages; however, inspection of the pro-
tocols in Figure 3 reveals that the saved messages
contain no data. For larger data, the cost of send-

IEEE INTERNET COMPUTING http://computer.org/internet/ JULY • AUGUST 2001 63

Data Distribution

0 50 100 150 200
–1

0

1

2

3

4
L

at
en

cy
 (

se
co

nd
s)

0 50 100 150 200
 0.5

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
Miss latency (100 megabit)

Number of clientsNumber of clients

L
at

en
cy

 (
se

co
nd

s)

0 50 100 150 200
0

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018
Utilization (100 megabit)

Average latency (100 megabit)

Number of clients

U
ti

liz
at

io
n

0 50 100 150 200 250 300 350
0

0.5

1.0

1.5

2.0

2.5

3.0

Number of clients

U
ti

liz
at

io
n

Utilization (gigabit)

x 10–5 x 10–3

x 10–3

(a) (b)

(c) (d)

Sequential consistency protocol
Andrew file system
Producer/consumer locking protocol

Sequential consistency protocol
Andrew file system
Producer/consumer locking protocol

Sequential consistency protocol
Andrew file system
Producer/consumer locking protocol

Sequential consistency protocol
Andrew file system
Producer/consumer locking protocol

Figure 5. Read latency and network utilization results on Fast and Gigabit Ethernets for the stock ticker workload.

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on July 29,2020 at 22:25:00 UTC from IEEE Xplore. Restrictions apply.

ing the data dominates any savings. The only way
to reduce network costs for large files is to update
them less frequently.

Overpublishing
PC locks exploit the properties of the Web-serving
workload to reduce latency and network utiliza-
tion. However, as discussed earlier, when workload
assumptions are incorrect, PC locks overpublish
(using more network bandwidth than AFS or SC).
Overpublishing occurs when the server pushes data
that clients don’t read. The update message has
network costs that are never recovered by avoid-
ing future data requests.

To simulate overpublishing, we varied the rate
at which client read requests were serviced, focus-
ing on read rates slower than the rate at which a
file was written and published. We ran the simu-
lation for a file system with 100 reading clients.
Figure 6 shows that when reads occurred less fre-
quently than writes, PC locking more heavily uti-
lized the network resource. SC and AFS locking’s
network usage grew proportionately with the
increasing read rate, whereas PC locking’s network
usage was about the same for all read rates.

This finding matched our intuition. For a given
write rate and a fixed number of clients, the
amount of network bandwidth should be the same.
This effect is noticeable for the substantial update
size of the Web camera workload. Alternatively,
the stock ticker workload did not exhibit signifi-
cant overpublishing, because data were small and
publishing incurred minimal network costs.

PC locking does not perform well on all work-
loads, particularly for workloads dominated by

write. Exploring overpublishing helps us to under-
stand PC locking’s properties, but overpublishing
has little effect on our system, which targets the
read-dominated, Web-serving workload.

Conclusions
Our next step is to validate our simulation results
against an implementation of this protocol. Pub-
lish consistency and producer-consumer locking
are key technologies for scalable Web hosting. We
are deploying these technologies in the Storage
Tank file system project at IBM research
(http://www.almaden.ibm.com/cs/storage.html).

Publish consistency is only one of many con-
sistency options we are implementing. We also
provide protocols specific to the needs of transac-
tion processing, data mining, and write-sharing
workloads.

Consistency is only one aspect of customizing a
file system. We are exploring other elements of file
system architectures for application-specific seman-
tics and workloads. In particular, requirements vary
for replication, data placement, and fault tolerance.
Considering all of these elements jointly will allow
file systems to provide a convenient and efficient
infrastructure for emerging and future applications
in addition to Web serving.

References

1. D. Li, P. Cao, and M. Dahlin, “WCIP: Web Cache Invalida-

tion Protocol,” tech. report draft-danli-wrec-wcip-01.txt,

Internet Draft, Mar. 2001.

2. L. Lamport, “How to Make a Multiprocessor Computer that

Correctly Executes Multiprocess Programs,” IEEE Trans.

Computers, vol. C-28, no. 9, 1979.

64 JULY • AUGUST 2001 http://computer.org/internet/ IEEE INTERNET COMPUTING

Scalable Internet Services

1 2 3 4 5
1

2

3

4

5

6

7

8

9

Web camera

Read rate/write rate

U
ti

liz
at

io
n

00 1 2 3 4 5
0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5
Stock ticker

Read rate/write rate

U
ti

liz
at

io
n

(a) (b)

Sequential consistency protocol
Andrew file system
Producer/consumer locking protocol

Sequential consistency protocol
Andrew file system
Producer/consumer locking protocol

x 10–3x 10–3

Figure 6. Overpublishing (network utilization).

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on July 29,2020 at 22:25:00 UTC from IEEE Xplore. Restrictions apply.

3. H. Yu and A. Vahdat, “Combining Generality and Practi-

cality in a Conit-Based Continuous Consistency Model for

Wide-Area Replication,” Proc. Int’l Conf. Distributed Com-

puting Systems, (ICDCS 21), IEEE Computer Soc. Press, Los

Alamitos, Calif., 2001.

4. J.S. Gwertzman and M. Seltzer, “The Case for Geographical

Push-Caching,” Proc. Fifth Workshop Hot Topics in Oper-

ating Systems, IEEE Computer Soc. Press, Los Alamitos,

Calif., May 1995.

5. R. Burns, R. Rees, and D. Long, “An Analytical Study of

Opportunistic Lease Renewal,” Proc. Int’l Conf. Distributed

Computing Systems, (ICDCS 21), IEEE Computer Soc. Press,

Los Alamitos, Calif., Apr. 2001.

6. A. Singla, U. Ramachandran, and J. Hodgins, “Temporal

Notions of Synchronization and Consistency in Beehive,”

Proc. 9th ACM Symp. Parallel Algorithms and Architec-

tures, ACM Press, New York, 1997.

7. J. Yin et al., “Volume Leases for Consistency in Large-Scale

Systems,” IEEE Trans. Knowledge and Data Eng., vol. 11,

no. 4, July/Aug. 1999.

8. M.L. Kazar, “Synchronization and Caching Issues in the

Andrew File System,” Proc. Usenix Winter Tech. Conf.,

Usenix Assoc., Berkeley, Calif., Feb. 1988.

9. M. Rosenblum and J.K. Ousterhout, “The Design and Imple-

mentation of a Log-Structured File System,” ACM Trans.

Computer Systems, vol. 10, no. 1, Feb. 1992.

10. M.L. Kazar et al., “DEcorum File System Architectural

Overview,” Proc. Summer Usenix Conf., Usenix Assoc.,

Berkeley, Calif., June 1990.

11. M. Crovella and L. Lipsky, “Long-lasting Transient Condi-

tions in Simulations with Heavy Tailed Workloads,” Proc.

Winter Simulation Conf., Soc. for Computer Simulation,

San Diego, Calif., 1997.

12. J.S. Gwertzman and M. Seltzer, “World-Wide Web Cache

Consistency,” Proc. Usenix Ann. Tech. Conf., Usenix

Assoc., Berkeley, Calif., Jan. 1996.

13. P. Cao and C. Liu, “Maintaining Strong Cache Consistency

in the World Wide Web,” IEEE Trans. Computers, vol. 47,

no. 4, Apr. 1998.

Randal C. Burns is a research staff member at IBM’s Almaden

Research Center in San Jose, California. He earned PhD and

MS degrees in computer science from the University of

California, Santa Cruz, and a BS in geophysics from Stan-

ford University. His research interests include distributed

data management, storage systems, concurrency control,

data placement, and I/O scheduling. He is a member of the

IEEE and the ACM.

Robert M. Rees is a senior member of the technical staff at

IBM’s Almaden Research Center in San Jose, California. He

was the chief architect for the Adstar Distributed Storage

Manager, now known as the Tivoli Storage Manager, and is

currently the leader and chief architect for the Storage

Tank project. He earned a BS in computer science from the

University of California, Santa Cruz, in 1995.

Darrell E. Long is a professor of computer science, and director

of the Storage Systems Research Center at the Jack Baskin

School of Engineering, at the University of California, Santa

Cruz. He is also a consultant to IBM Research. He earned

MS and PhD degrees in computer science and engineering

at the University of California, San Diego, and a BS in com-

puter science from San Diego State University. He has

authored more than 80 research publications and holds four

patents. He is a member of the ACM, a senior member of

the IEEE, and the Chair of the Scholars for the Usenix Asso-

ciation. His research interests include storage systems, reli-

ability, mobile computing, and multimedia distribution.

Readers can contact Randal Burns at K56/B3 IBM Almaden

Research, 650 Harry Road, San Jose, CA 95120,

randal@almaden.ibm.com.

For further information on this or any other computing topic,

please visit our Digital Library at http://computer.org/

publications/dlib/.

IEEE INTERNET COMPUTING http://computer.org/internet/ JULY • AUGUST 2001 65

Data Distribution

computer.org/publications/computer.org/publications/

Transactions on

� Computers

� Knowledge and Data Engineering

� Multimedia

� Networking

� Parallel and Distributed Systems

� Pattern Analysis and Machine Intelligence

� Software Engineering

� Very Large Scale

Integration Systems

� Visualization and

Computer Graphics

Nine good reasons
why close to 100,000
computing professionals
join the IEEE Computer
Society

Nine good reasons
why close to 100,000
computing professionals
join the IEEE Computer
Society

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on July 29,2020 at 22:25:00 UTC from IEEE Xplore. Restrictions apply.

