
Karl Aberer
and Magdalena Punceva
Swiss Federal Institute of Technology

Manfred Hauswirth
and Roman Schmidt
Technical University of Vienna

Improving Data
Access in P2P Systems

The P-Grid approach enables distributed search and replication.

Gridella, a P2P system based on P-Grid, improves on Gnutella’s

search performance while reducing bandwidth requirements.

The limitations of client-server-
based systems become evident in
an Internet-scale distributed envi-

ronment. Resources are concentrated on
a small number of nodes, which must
apply sophisticated load-balancing and
fault-tolerance algorithms to provide
continuous and reliable access. Addition-
ally, network bandwidth must be
increased steadily to handle requests to
and from successful Internet servers.
Caching and replication were introduced
a posteriori to remedy these problems in
a client-server setting when the World
Wide Web, as the most successful Inter-
net service, developed into a network
bandwidth nightmare.

Peer-to-peer systems offer an alterna-
tive to traditional client-server systems
for some application domains. In P2P
systems, every node (peer) of the system
acts as both client and server (servent)
and provides part of the overall informa-
tion available from the system. The P2P
approach circumvents many problems of
client-server systems but results in con-
siderably more complex searching, node
organization, security, and so on. Napster,

which made the P2P idea popular, avoids
some of this complexity by employing a
centralized database with references to
files on peers. Gnutella, another well-
known P2P system, has no central data-
base, but requires a communication-
intensive search mechanism. (See the
sidebar, “The Gnutella File-Sharing Sys-
tem,” page XX, for a discussion of the
Gnutella protocol.)

In this article we present Gridella, our
Gnutella-compatible P2P system. Gridel-
la is based on the Peer-Grid (P-Grid)
approach, which draws on research in
distributed and cooperative information
systems to provide a decentralized, scal-
able data access structure.1 Gridella
improves the highly chaotic and ineffi-
cient Gnutella infrastructure with direct-
ed search and advanced concepts, thus
enhancing efficiency and providing a
model for further analysis and research.

P-Grid: Distributed
Search and Replication
P-Grid is a virtual binary search tree that
distributes replication over a community of
peers and supports efficient search — that

2 JANUARY • FEBRUARY 2002 http://computer.org/internet/ 1089-7801/02/$17.00 ©2002 IEEE IEEE INTERNET COMPUTING

Pe
er

-t
o-

Pe
er

 N
et

w
or

ki
ng

is, search time and number of generated messages
grow as O(log2n) with the number of data items n in
the network.1 Unlike peers in other approaches that
construct scalable, tree-based, distributed indexing
structures,2-4 peers in P-Grid perform construction
and search/update operations without any central
control or global knowledge in an unreliable envi-
ronment.

Distributed Search Structure
P-Grid’s search structure exhibits the following
properties:

� it is completely decentralized;
� all peers serve as entry points for search;
� interactions are strictly local;
� it uses randomized algorithms for access and

search;
� probabilistic estimates of search request suc-

cess can be given;
� search is robust against node failures; and
� it scales gracefully in the total number of nodes

and data items.

In P-Grid, each peer holds only part of the overall
tree, which comes into existence only through the
cooperation of individual peers. Every participat-
ing peer’s position is determined by its path, that
is, the binary bit string representing the subset of
the tree’s overall information that the peer is
responsible for. For example, the path of Peer 4 in
Figure 1 is 10, so it stores all data items whose key
begins with 10.

The paths implicitly partition the search space
and define the structure of the virtual binary
search tree. As Figure 1 illustrates, multiple peers
can be responsible for the same path. Peer 1 and
Peer 6, for example, both store keys beginning
with 00. Such replication improves the P-Grid’s
robustness and responsiveness because we assume
that peers are not always online, but rather with a
certain, possibly low, probability.

P-Grid’s routing approach is simple but effi-
cient: For each bit in its path, a peer stores the
address of at least one other peer that is respon-
sible for the other side of the binary tree at that
level. Thus, if a peer receives a binary query string
it cannot satisfy, it must forward the query to a
peer that is “closer” to the result. In the example
P-Grid, Peer 1 forwards queries starting with 1 to
Peer 3, which is in Peer 1’s routing table and
whose path starts with 1. Peer 3 can either satisfy
the query or forward it to another peer, depend-
ing on the next bits of the query. If Peer 1 gets a

query starting with 0, and the next bit of the
query is also 0, it is responsible for the query. If
the next bit is 1, however, Peer 1 will check its
routing table and forward the query to Peer 2,
whose path starts with 01.

The P-Grid construction algorithm (described
later) guarantees that peer routing tables always
provide at least one path from any peer receiving
a request to one of the peers holding a replica so
that any query can be satisfied regardless of the
peer queried. Figure 2 illustrates this property for
the P-Grid in Figure 1. In the P-Grid network
shown, no path between Peer 3 and Peer 1 exists,
but there is a path from Peer 3 to Peer 6, which
holds the same data as Peer 1.

Search requests in P-Grid are sent to arbitrary
peers. In Figure 1, a query for 100 is sent to Peer
6. Because Peer 6 is responsible for keys starting
with 00, it checks its routing table for the longest
common prefix, which is 1, and forwards the
query to Peer 5. In a real setup, multiple peers
would be listed for each prefix in the routing
table, and the peer receiving the query would for-
ward it to a peer randomly selected from this set.
Without constraining general applicability, we
assume in this simple example that each prefix is
serviced by one peer entry in the routing table.
Upon receiving the query, Peer 5 does the same
checks as Peer 6 and forwards the query to Peer
4, which has the longest common prefix in its
routing table. Because Peer 4 has no longer com-
mon prefix in its routing table, it searches its local
data store for data with the key 100. If the key

IEEE INTERNET COMPUTING http://computer.org/internet/ JANUARY • FEBRUARY 2002 3

Improving Data Access

Routing table (route keys with prefix P to peer X)
Legend: Peer X

Data store (keys have prefix P)

Query(6, 100)
Query(5, 100)

Stores
data

with key
prefix 00

Stores
data

with key
prefix 00

Stores
data

with key
prefix 01

Stores
data

with key
prefix 10

Stores
data

with key
prefix 10

Stores
data

with key
prefix 11

1 :3
01 :2

"Virtual binary
search tree"

0

00 01 10 11

1

Query(4, 100), found!

X

P
P:X

1 6 2 3 4 5

1 :5
01 :2

1 :4
00 :6

0 :2
11 :5

0 :6
11 :5

1 :6
10 :4

Figure 1. Example P-Grid. Each peer is responsible for part of the over-
all tree.When a peer receives a query it cannot answer, it refers to its
routing table to find the appropriate peer to forward the request to.

exists, Peer 4 returns a reference to the associat-
ed data to the original requester, Peer 6, which can
then request the data. Thus, the search order is
equivalent to a binary tree search regardless of the
query’s entry point.

Search Algorithm
Figure 3 shows P-Grid’s search algorithm. The
parameter peer indicates the address of the peer

to send the query to, query is the search string,
and index indicates search progress — that is, how
many bits of the query have already been
processed. Initially, index is 0. Functions used in
the algorithm are

� sub_path(string, from, to) — returns the
substring of string that starts at position from
and ends at position to.

� common_prefix_of(str1, str2) — returns the
common prefix of strings str1 and str2.

� get_refs(index) — returns the list of address-
es in the routing table for a prefix of length
index.

� random_select(refs) — returns an address
from the address list and removes it from refs.

� online(ref) — returns true if the referenced
peer is online.

The algorithm first compares the common prefix of
the peer’s path to the query submitted. Because the
first index bits have already been truncated from
the query string, the algorithm must also adapt the
peer’s path. This is an optimization because at level
index of the virtual search tree, the equality of the
first index bits is guaranteed. Only the subsequent
bits are relevant (line 3 in Figure 3) and must be

4 JANUARY • FEBRUARY 2002 http://computer.org/internet/ IEEE INTERNET COMPUTING

Peer-to-Peer Networking

Legend:
Peer X

Data store
(keys have prefix P)

X

P

00

00

Routing of prefix P

1

01

01 10

10

11

1
0

11

01

00

1

0

0

10

11

P

4

5

1

2

6

3

Figure 2. Example P-Grid network. Peer routing tables provide at
least one path from any peer receiving a request to one of the peers
holding a replica so that any query can be satisfied regardless of the
peer queried.

The Gnutella File-Sharing System

Gnutella is a decentralized file-sharing sys-
tem whose participants form a virtual net-
work and communicate peer-to-peer via
the Gnutella protocol (http://www.
clip2.com/GnutellaProtocol04.pdf) for dis-
tributed file search.

To participate, a peer first connects to
a known Gnutella host. Gnutella has five
basic message types:

� Ping — announcement of availability
and probe for other servents.

� Pong — response to a ping.
� Query — search request.
� QueryHit — returned by servents that

have the requested file.
� Push — file download requests for

servents behind firewalls.

Upon receiving a message, the servent
decrements the message’s time-to-live
field. If the TTL is greater than 0 and the
servent has never seen the message’s iden-

tifier (loop detection), it resends the mes-
sage to all known peers.The servent also
checks whether it should respond to the
message. If it receives a Query, for example,
it checks its local file store and responds
with a QueryHit if it can satisfy the request.
Responses are routed along the same path
as the originating message.

In a simplified Gnutella session, servent
A connects to servent B and sends a Ping
message. B responds with a Pong and for-
wards the Ping to its peers C and D, who
respond with another Pong. After some
time, A knows a number of servents and
vice versa. It routes messages as described
above and may initiate queries. When it
receives a QueryHit, it tries to connect
directly to the specified servent and runs a
simplified HTTP GET interaction to retrieve
the file. If the requested servent is behind a
firewall,A might send a Push message (along
the path of the QueryHit).The Push message
specifies where the firewalled servent can

contact the requesting servent to run a pas-
sive GET session. If both servents are behind
firewalls, the download is impossible.

Technical Problems
From a user’s perspective, Gnutella is sim-
ple and effective because hit rates for
search queries are reasonably high, it is fault
tolerant toward servent failures, and it
adapts well to dynamically changing peer
populations. From a networking perspec-
tive, however, the price is very high band-
width consumption. Search requests are
broadcast over the network and each node
receiving a search request scans its local
database for possible hits.

Assuming a typical TTL of 7 and an aver-
age of four connections C per peer (that is,
each peer forwards messages to three oth-
ers), the total number of messages origi-
nating from one Gnutella message (includ-
ing the responses) can be calculated as:

continued on p. 5

compared to the query to find their common pre-
fix (line 4). If the common path (compath) is as
long as the query or the remaining path, the peer
responsible for this query is found (line 5).

Otherwise the query must be forwarded. This is
only possible if the peer is sufficiently specialized
(line 8). If so, it strips the common prefix off the
query (line 9), queries the routing table for the list of
peers to forward the query to (line 10), and forwards
the remaining new_query recursively to a random

peer from the list (if the peer is online) until the list is
exhausted or the search succeeds (lines 11-14).

Constructing a P-Grid
With no global control, P-Grid construction is by
local interactions only. The idea is that whenever
peers meet, they refine the access structure. Peers
might meet randomly because they are involved
in other operations or because they systematically
want to build the access structure. Assuming that

IEEE INTERNET COMPUTING http://computer.org/internet/ JANUARY • FEBRUARY 2002 5

Improving Data Access

1 search (peer, query, index) {
2 found = NULL; /* found: the address of the responsible peer */
3 rempath = sub_path(path(peer), index+1, length(path(peer)));
4 compath = common_prefix_of(query, rempath);
5 IF length(compath)=length(query) OR length(compath)=length(rempath) THEN
6 found = peer;
7 ELSE
8 IF length(path(peer)) > index + length(compath) THEN
9 new_query = sub_path(query, length(compath) + 1, length(query));
10 refs = get_refs(index + length(compath) + 1);
11 WHILE |refs| > 0 AND NOT found
12 ref = random_select(refs);
13 IF online(ref)
14 found = search(ref, new_query, index + length(compath));
15 RETURN found;
16 }

Figure 3. P-Grid search algorithm.The algorithm compares the common prefix of the peer’s path to the query submitted to
find the “closest” peer.

The Gnutella File-Sharing System (cont.)

Recent experiments show that in a real-
world setting this accumulates up to 3.5
Mbps (or 353,396 queries in 2.5 hours).1

Caching, which reduces the traffic consid-
erably, might remedy this problem.1

Because very little is known about the
Gnutella network topology, one cannot
estimate query duration or probability for
successful search requests. Such knowl-
edge would provide the foundation for an
accurate mathematical model and would
aid the development of efficient algorithms
that exploit structural properties.As a first
step, a recent study2 investigated Gnutel-
la’s topology and has shown that it exhibits
strong small-world properties3 and a
power law distribution of node degrees.

Free Riding and
Other Social Problems
In addition to technical problems, non-
technical, or social, problems such as free
riding,which occurs when users provide no
files (or few interesting files) to share, chal-
lenge Gnutella.4 Adar and Huberman show
that nearly 70 percent of Gnutella users
share no files, and nearly 50 percent of all
responses are returned by the top 1 per-
cent of the sharing hosts.4 This problem
starts to transform Gnutella into a client-
server-like system that might soon face
technical (degradation of performance, vul-
nerability, and so on) and legal issues similar
to Napster’s.

Another social issue not addressed by
Gnutella is reputation. In a P2P system,peers
frequently “meet” unknown peers and have
no way to judge their reputations — that is,
to what extent they can trust peers and the
data they provide.Gridella’s P-Grid approach
can also address this issue efficiently.5

References
1. K. Sripanidkulchai, “The Popularity of Gnutella

Queries and Its Implications on Scalability,” white

paper, Carnegie Mellon Univ., Mar. 2001, available

online at http://www.cs.cmu.edu/~kunwadee/

research/p2p/gnutella.html.

2. M.A. Jovanovic, F.S.Annexstein, and K.A. Berman,

“Scalability Issues in Large Peer-to-Peer Networks

— A Case Study of Gnutella,” tech. report, Univ. of

Cincinnati, Laboratory for Networks and Applied

Graph Theory, 2001; available online at http://

www.ececs.uc.edu/~mjovanov/Research/paper.ps.

3. J. Kleinberg,“The Small-World Phenomenon:An

Algorithmic Perspective,” tech. report 99-1776,

Cornell Univ.Computer Science Dept.,Oct. 1999.

4. E. Adar and B.A. Huberman, “Free Riding on

Gnutella,” First Monday, vol. 5, no. 10, Oct. 2000;

available online at http://firstmonday.org/issues/

issue5_10/adar/index.html.

5. K.Aberer and Z. Despotovic,“Managing Trust in a

Peer-2-Peer Information System,” Proc.10th Int’l Conf.

Information and Knowledge Management (2001 ACM

CIKM),ACM Press,New York,Nov.2001,pp.310-317.

2 * C * (C - 1)i = 26240
i =0

TTL

∑

continued from p. 4

by some mechanism peers meet frequently, the
process works as follows.

Initially, all peers are responsible for the entire
search space, that is, all search keys. When two
peers meet, they divide the search space and each
peer takes responsibility for one half and stores the
other peer’s address to cover the other half. The
same happens whenever two peers responsible for
the same path meet. If peers whose paths share a
common prefix meet, they can initiate new
exchanges by forwarding each other to their ref-
erenced peers. If the meeting peers’ paths are in a
prefix relationship, the peer with the shorter path
can specialize by extending its path. To obtain a
balanced P-Grid, the peer will specialize in the
opposite direction from the other peer at that level.
Figure 4 shows the complete construction algo-
rithm in pseudocode.

Simulations show that this algorithm has the
following properties1:

� The convergence speed to a complete P-Grid is
(practically) independent of the total number
of peers — that is, each peer participates in a
constant number of exchanges independent of
the population size.

� The algorithm scales gracefully as maximum
path length grows.

� To obtain fast convergence, the maximum
allowed recursion depth should exceed a min-
imum value (for example, 2 for paths of
length 6).

Thus, P-Grids can be constructed efficiently in a
self-organizing system without central control.
Moreover, the bootstrap algorithm is uniform, self-
stabilizing, and distributed.5 Simulation results
also show that the number of peers responsible for
the same keys is distributed uniformly with a low
deviation from the expected average number of
peers responsible for a key.1

Data updates in the P-Grid require the updating
peer to identify all replicas that store the con-
cerned data. Related work shows that the best
strategy for identifying these replicas is a breadth-
first search with limited recursion.1 Still, this sim-
ple approach will not find all replicas. To compen-
sate, the query strategy includes multiple searches
on the P-Grid and chooses the correct result based
on the number of identical answers. Thus, a high
probability of correctness is possible.

Mapping Filenames to Binary Keys
In the P-Grid approach, we assume that search
keys have a binary representation and are uni-
formly distributed. Neither assumption, however,
holds for real filenames. We therefore provide a
mapping scheme to calculate a binary representa-
tion from a filename string. To support search on
these binary keys, the mapping has to satisfy a
prefix property for strings s1 and s2:

s1 prefix s2 ⇒ key(s1) prefix key(s2).

For this mapping, we first construct a balanced trie
from a sample string database (A trie is a tree for

6 JANUARY • FEBRUARY 2002 http://computer.org/internet/ IEEE INTERNET COMPUTING

Peer-to-Peer Networking

1 exchange(a1, a2, r) {
2 determine the common prefix of path(a1) and path(a2) and its length lc;
3
4 exchange references at the level where the paths match;
5 li = length of remaining path of ai;
6 /* Case 1: both paths empty, introduce new level */
7 CASE l1 = 0 AND l2 = 0 AND lc < maximum possible path length
8 extend path(a1) with 0 and path(a2) with 1;
9 add mutual references for future search;
10 /* Case 2: one remaining path empty, split shorter path */
11 CASE l1 = 0 AND l2 > 0 AND lc < maximum possible path length
12 extend path(a1) by one bit different to the corresp. bit in path(a2);
13 update references of a1 with a2;
14 /* Case 3: analogous to case 2 with roles exchanged */
15 ...
16 /* Case 4: recursively exchange with referenced peers */
17 CASE l1 > l2 > 0 AND r < maximum recursion depth
18 take a reference from a2 at the level of the common prefix;
19 a1 performs a new exchange with the referenced peer
20 (which shares with a1 a longer common prefix);
21 /* Case 5: analogous to case 2 with roles exchanged */
22 ...
23 }

Figure 4. P-Grid construction algorithm.When two peers meet, they divide the search space. Each takes responsibility for
one half and stores the address of the other peer to cover the other half.

storing strings in which there is one node for every
common prefix). Figure 5 shows this trie con-
struction algorithm.

The trie-building algorithm takes a sample
search string database sampledb as a parameter
that contains unique strings of length len, which
are substrings of actual search strings that were
collected from the current Gnutella system. First
the length of the common prefix (commonprefix)
of all strings in sampledb is determined. Then the
algorithm sorts sampledb lexicographically and
selects the string at position

.

From this string we take the prefix of length
commonprefix+1, which is used as the criterion
to split sampledb into two parts of approximate-
ly equal size.

The value of this prefix is stored in the trie root
and the function is called recursively for both parts
to construct the left (lower) and right (higher)
branch of the trie. The splitting proceeds until there
are fewer than MaxLeafStore strings in sampledb.

Using this trie, we can map strings (filenames)
into binary keys as shown in Figure 6.

The binary key is calculated by lexicographi-
cally comparing the string to the trie’s root value.
If it is prefix of or equal to the root, the calcula-
tion terminates and returns the binary key. If the

Size sampledb()
2

IEEE INTERNET COMPUTING http://computer.org/internet/ JANUARY • FEBRUARY 2002 7

Improving Data Access

1 MakeTrie(sampledb) {
2 /* sort the sampledb in lexicographical order */
3 SortLex(sampledb);
4 /* find the length of the common prefix for all the strings in sampledb */
5 commonprefix = Length(CommonPrefix(sampledb));
6 /* We choose the median string from sampledb and take the prefix of
7 length commonprefix+1 to split the sampledb into two
8 approximately equal parts. It is possible to explore different
9 alternatives at this point, in order to achieve a more balanced split */
10 if Size(sampledb) > MaxLeafStore then
11 mid = Prefix(sampledb[Quotient(Size(sampledb), 2)],
12 Length(commonprefix + 1);
13 for j = 1 to Size(sampledb) do
14 if sampledb[j] is lexicographically smaller than mid then
15 lowpart = Append(lowpart,sampledb[j]);
16 if sampledb[j] is lexicographically greater than mid then
17 highpart = Append(highpart,sampledb[j]);
18 if Size(lowpart) > MaxLeafStore then
19 left = MakeTrie(lowpart)
20 else
21 left = null;
22 if Size(highpart) > MaxLeafStore then
23 right = MakeTrie(highpart)
24 else
25 right = null;
26 root = mid;
27 TrieSet(root, left, right);
28 }

Figure 5.Trie construction algorithm.The algorithm constructs a balanced trie structure, which the mapping algorithm uses
to compute binary search keys.

1 FindKey (trie, filename) {
2 key = {};
3 if (trie = null) or (filename is prefix or equal to trie.root) then
4 return key;
5 else
6 if filename is lexicographically smaller than trie.root then
7 key = Append(key, 0);
8 key = Append(key, FindKey(trie.left, filename);
9 else
10 key = Append(key, 1);
11 key = Append(key, FindKey(trie.right, filename);
12 }

Figure 6. Mapping strings into binary keys.The mapping algorithm uses the trie structure to map strings
to binary keys.

string is smaller, 0 is appended to the key and the
function is called recursively with the left subtree.
If it is greater, 1 is appended to the key and Find-
Key is called with the right subtree.

The mapping is based on a sample database con-
structed by systematically collecting filenames
from the current Gnutella system. We assume (and
validate in experiments described later) that a large
sample database effectively approximates the glob-
al distribution of filenames, such that mapping the
database results in a reasonably uniform distribu-
tion of key values for all filenames. We thus pack-
age the mapping scheme and the sample database
with the other P-Grid software components.

To evaluate the mapping algorithm’s quality, we

modified the open-source Furi (http://www.jps.net/
williamw/furi/) Gnutella client to log all queries
routed through it. We used this data to construct a
large database of Gnutella queries, from which we
derived a sample database that we used to con-
struct the trie structure. We then tested the trie
structure by encoding the complete set of search
strings and analyzed the resulting key distribution.

Of 33,799 logged search strings of length 4, for
example, we randomly selected 1,951 strings for
the sample database. From this set we constructed
the trie using MaxLeafStore = 30, which resulted
in 99 different keys. When generating the keys for
all search strings, we mapped a maximum of 798
strings to each key. A perfectly uniform distribu-
tion would result in 342 search strings per key. In
the worst case, slightly more than twice the number
of search strings would be encoded into the same
key as with a perfectly uniform encoding. Thus, the
resulting distribution is of fairly good quality with
respect to uniformity, and peer workload for stor-
ing data and answering queries is distributed rea-
sonably uniformly as well. This is also illustrated
by the frequency histogram in Figure 7.

Gridella System
Gridella is our P-Grid-based, Gnutella-compatible
P2P system. It targets efficient distributed search,
network traffic reduction, component reuse, and
multiprotocol support. Gridella is written in Java
and will be released in spring 2002 under the GNU
general public license.

Components and Communication Model
Figure 8 shows the main components of the
Gridella system. Locally (that is, on a node) the
implementation of a Gridella peer follows a client-
server architecture. The Gridella client provides all
user-related functionality so that the user can use
an arbitrary GUI while the Gridella server handles
data management and communication. The com-
munication subsystem provides communication
abstractions for including arbitrary protocols (we
currently support the Gnutella and Gridella proto-
cols), which allows Gridella to interoperate with
other P2P systems.

Figure 9 shows a typical search interaction
between two Gridella peers. When a user enters a
query, the local Gridella client maps the query into
the binary P-Grid representation and sends it to the
local Gridella server, which checks whether it is
responsible for the request. If yes, it returns the data;
otherwise, it determines which peer to contact and
forwards the query using the communication sub-

8 JANUARY • FEBRUARY 2002 http://computer.org/internet/ IEEE INTERNET COMPUTING

Peer-to-Peer Networking

200 400 600 800

2

4

6

8

10

Figure 7. Classification of peers according to their workload.The
workload is proportional to the number of strings (search requests)
that are mapped to the key a peer is responsible for.The number of
strings mapped to the same key (or peer) are classified in steps of
25; the height of each bar corresponds to the number of peers that
have (approximately) the same workload.

Gridella
server

Gridella
client Comm

GridellaConfig

*

1

Protocol

PGridMapping
scheme

Maps query
strings to binary
representations

Data structure
& query
algorithm

Figure 8. Gridella core system components.The Gridella client pro-
vides user-related functionality, while the server handles data man-
agement and communication.

system. The peer receiving the query forwards it to
its local Gridella server and the pattern repeats.

Other interactions, such as meetings between
two peers, announcing a peer’s availability, or
downloading data, are straightforward. Interact-
ing with non-Gridella peers is simple as well. If
the recipient is a Gnutella peer, for example, the
Gridella peer skips the mapping step and forwards
the original query via the Gnutella protocol.

Gridella vs. Gnutella:
Performance Comparison
Gridella can be viewed as a layer on top of
Gnutella that provides additional abstractions and
functionality: Gnutella supplies the basic commu-
nication and Gridella adds directed, efficient
search through its underlying P-Grid approach. In
our study, we compared the number of messages
required to locate a specific data item in Gridella
and Gnutella with success probability of 0.99. We
considered populations of 20,000 to 200,000 peers
with a 0.3 probability of their being online. Table
1 shows the results of our comparison.

To achieve our search goal in Gnutella, it was
sufficient to create 22 replicas of each data item
and to have a search horizon of 70 percent of all
Gnutella peers (that is, to reach 70 percent of the
Gnutella population with a search message). We
then computed the required number of search
messages (using the formula discussed in the side-
bar, “The Gnutella File-Sharing System”).

For Gridella, we assumed that each peer stores
1,000 data items, and then determined the number
of messages required to traverse the system’s search
structure in the worst case. The variations listed in

Table 1 for Gridella result from the simulation of
the probabilistic process modeling Gridella’s search
algorithm. The steps in the results for Gnutella cor-
respond to the steps in the TTL, which must be
incremented for higher numbers of peers to meet
the 70 percent requirement. The results clearly
demonstrate the benefit of using an access struc-
ture, even if we take into account some modest
storage demand and update overhead in Gridella.

Future Work
We plan to introduce reputation and trust into
Gridella based on an approach that uses P-Grid for
decentralized storage of reputation data.6 The nat-
ural next step is to address security issues such as
authenticity and confidentiality. These improve-
ments would make P2P an interesting environ-

IEEE INTERNET COMPUTING http://computer.org/internet/ JANUARY • FEBRUARY 2002 9

P-Grid Comm Gridella
serverCommGridella

server

bStr = mapQuery(aStr)

Gridella
client

Mapping
scheme

Map ASCII
string to a
unique binary
string

XXX.mp3

The user enters
a new query,
for example,

Check if this
peer is responsible
for this query

Submit the query
to a responsible
peer

System
border
(Internet)

Use the mapped
binary string for
routing the search

sendQuery
(aStr, bStr, peer) search(aStr, bStr)

remoteQuery
(aStr, bStr, peer)

Search(aStr)

Search(aStr, bStr)
processQuery(aStr, bStr)

checkResponsibility(bStr)

[Not responsible]

User
newWorker()

Figure 9.A Gridella interaction. Queries are mapped into binary keys and sent to the local Gridella server, which either
answers the query or forwards it to the appropriate peer.

Table 1. Performance comparison
of Gridella and Gnutella.

Peers Gridella messages Gnutella messages

20,000 61 8,744
40,000 63 26,240
60,000 65 26,240
80,000 65 78,728
100,000 68 78,728
120,000 69 78,728
140,000 68 78,728
160,000 69 78,728
180,000 69 78,728
200,000 72 78,728

Improving Data Access

ment for new e-commerce models.
We also intend to address free riding by intro-

ducing economic concepts to force users to pay for
the services they use. Such a market-driven
approach does not necessarily mean monetary
exchange, however. We could implement a micro-
payment system with an artificial currency to bal-
ance requests with offers.7,8 Offers and downloads
from a peer would earn credits, which could be
used to pay for services requested.

Conclusion
The World-Wide Web proved the Internet commu-
nity’s ability to incubate revolutionary systems
and somewhat “out-perform” the scientific com-
munity. By popularizing the P2P approach in sim-
ple yet very successful and influential systems
such as Napster and Gnutella, the Internet com-
munity has proven this ability again. Although
such developments help spread and advance new
technologies, when they lack a scientific founda-
tion, long-term development is impeded.

We still can give P2P systems firm scientific
foundations by combining state-of-the-art

methodological and engineering know-how. The
work presented in this article is a first step. Con-
siderable research and experimentation remains to
make P2P systems feasible for application domains
beyond mere MP3 and image exchange, such as
creating a new paradigm for decentralized e-com-
merce systems, or for new types of network infra-
structures such as mobile ad hoc networks.9

References

1. K. Aberer, “P-Grid: A Self-Organizing Access Structure for

P2P Information Systems,” Proc. Int’l Conf. Cooperative

Information Systems (CoopIS), Lecture Notes in Computer

Science 2172, Springer-Verlag, Heidelberg, Germany, Aug.

2001, pp. 179-194.

2. T. Imielinski, S. Viswanathan, and B.R. Badrinath, “Data on

Air: Organization and Access,” IEEE Trans. Knowledge and

Data Eng., vol. 9, no. 3, May/June 1997, pp. 353-372.

3. C.G. Plaxton, R. Rajaraman, and A.W. Richa, “Accessing

Nearby Copies of Replicated Objects in a Distributed Envi-

ronment,” Proc. ACM Symp. Parallel Algorithms and

Architectures, ACM Press, New York, 1997, pp. 311-320.

4. H. Yokota, Y. Kanemasa, and J. Miyazaki, “Fat-Btree: An

Update-Conscious Parallel Directory Structure,” Proc. 15th

10 JANUARY • FEBRUARY 2002 http://computer.org/internet/ IEEE INTERNET COMPUTING

Peer-to-Peer Networking

Several approaches address scalable,decen-
tralized access schemes. Unlike our
approach, these consider only exact search
for file (or object) identifiers rather than
text-based search for filenames.

Several serverless distributed file sys-
tems, such as Farsite,1 Freenet,2 or
OceanStore,3 provide secure file storage in
an insecure environment. All encrypt the
information to be stored and devise mecha-
nisms for distributing and retrieving files in
an unreliable environment.Like Gridella, they
require a self-organizing routing structure,
and, as published, their routing approaches
are similar to P-Grid.Unlike Gridella, they do
not focus on information sharing and search.

Several architectures for decentralized
lookup services propose scalable access
structures to search for identifiers stored
in distributed directories.4-6 Plaxton et al.’s
approach, in particular, uses virtual binary
search trees similar to P-Grid.5 These
approaches differ in two respects from
our work:

� They consider only the problem of
equality search for keys.

� Some of their assumptions mildly
violate peer autonomy. For example,
they assume fixed roles for peers that
are globally assigned, either by virtue
of IP addresses4 or by a globally
shared identification of peers.5

Others require a shared list of
bootstrap entries to the network6 —
a situation the P-Grid bootstrap
algorithm avoids.

In addition to these approaches, ongoing
work seeks to increase the interoperability
of P2P systems and to define a universal
architecture for them. JXTA defines a
three-layer P2P software architecture, a set
of XML-based protocols, and a number of
abstractions and concepts such as peer
groups, pipes, and advertisements to pro-
vide a uniform platform for applications
using P2P technology and to allow P2P sys-
tems to interact.7 We are evaluating the
JXTA for Gridella.

References
1. W.J. Bolosky et al.,“Feasibility of a Serverless Dis-

tributed File System Deployed on an Existing Set

of Desktop PCs,” Proc. Int’l Conf. Measurement and

Modeling of Computer Systems (SIGMETRICS 2000),

ACM Press, New York, June 2001, pp. 34-43.

2. I.Clarke et al.,“Freenet:A Distributed Anonymous

Information Storage and Retrieval System,” Proc.

Designing Privacy Enhancing Technologies: Int’l Work-

shop Design Issues in Anonymity and Unobservability,

LNCS 2009, Springer-Verlag,Heidelberg,Germany,

Feb. 2001, pp. 46-66.

3. S.Rhea et al.,“Maintenance-free Global Data Stor-

age,” IEEE Internet Computing, vol. 5, no. 5,

Sept./Oct. 2001, pp. 40-49.

4. I. Stoica et al., “Chord: A Scalable Peer-to-Peer

Lookup Service for Internet Applications,” Proc.

ACM SIGCOMM,ACM Press, New York,Aug. 2001,

pp. 149-160.

5. C.G. Plaxton, R. Rajaraman, and A.W. Richa,

“Accessing Nearby Copies of Replicated Objects

in a Distributed Environment,” Proc.ACM Symp. Par-

allel Algorithms and Architectures, ACM Press, New

York, June 1997.

6. S. Ratnasamy et al.,“A Scalable Content-Address-

able Network,” Proc.ACM SIGCOMM,ACM Press,

New York,Aug. 2001, pp. 161-172.

7. L. Gong, “JXTA: A Network Programming Envi-

ronment,” IEEE Internet Computing, vol. 5, no. 3,

May/June 2001, pp. 88-95.

Related Work in Decentralized Systems

Int’l Conf. Data Eng. (ICDE), IEEE Computer Soc. Press, Los

Alamitos, Calif., Mar. 1999, pp. 448-457.

5. M. Schneider, “Self-Stabilization,” ACM Computing Sur-

veys, vol. 25, no. 1, Mar. 1993, pp. 45-67.

6. K. Aberer and Z. Despotovic, “Managing Trust in a Peer-

2-Peer Information System,” Proc. 10th Int’l Conf. Infor-

mation and Knowledge Management (2001 ACM CIKM),

ACM Press, New York, Nov. 2001, pp. 310-317.

7. Mojo Nation Technology Overview, 14 Feb. 2000,

http://www.mojonation.net/docs/technical_overview.shtml.

8. M. Stonebraker et al., “Mariposa: A Wide-Area Distributed

Database System,” VLDB J., vol. 5, no. 1, 1996, pp. 48-63.

9. J.P. Hubaux et al., “Towards Self-Organized Mobile Ad hoc

Networks: the Terminodes Project,” IEEE Comm., vol. 39,

no. 1, Jan. 2001, pp. 118-124.

Karl Aberer is a full professor at the Swiss Federal Institute of

Technology Lausanne (EPFL), where he heads the Distrib-

uted Information Systems Laboratory. His main research

interests are information management for the information

economy and the self-organization of information systems.

He received a PhD and a diploma, both in mathematics,

from ETH Zurich, Switzerland.

Manfred Hauswirth is an assistant professor at the Technical

University of Vienna, where he teaches courses on dis-

tributed systems. He received an MSc and a PhD in com-

puter science from TU Vienna. His research focuses on

distributed systems, e-commerce, and Internet applica-

tions. He is the principal researcher in the Minstrel pro-

ject, a senior researcher in the Opelix EU project, and,

beginning in 2002, will be a member of Karl Aberer’s

group.

Magdalena Punceva is a PhD student at the Swiss Federal Insti-

tute of Technology Lausanne (EPFL). She received a BSc

from the Faculty of Electrical Engineering, University of

Saints Cyril and Methodius in Skopje. She attended the

graduate school in computer science at EPFL. Her research

interests include peer-to-peer information systems, decen-

tralized access structures, databases, mobile agents, and

economic and bio-inspired principles.

Roman Schmidt is a graduate student at the Technical Univer-

sity of Vienna. He is currently working on a master’s the-

sis about the Gridella peer-to-peer system. His research

interests include distributed systems, e-commerce, Inter-

net applications, and real-time systems.

Readers can contact the authors at {karl.aberer,

magdalena.punceva}@epfl.ch or {M.Hauswirth, R.Schmidt}

@infosys.tuwien.ac.at.

IEEE INTERNET COMPUTING http://computer.org/internet/ JANUARY • FEBRUARY 2002 11

Improving Data Access

filler ad

