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Abstract

This paper defines a new sliced layout architecture for compilation of arbitrary
schematics (netlists) into layout for CMOS technology. This sliced architecture uses
over-the-cell routing on the second metal layer. We define three different architectures
with simple folding, interleaved folding and unrestricted folding. We present a linear
time algorithm for placement of components in architectures with simple folding. We
prove interleaved folding is NP-hard and give an algorithm of complexity O(nbH/§)
for approximating an optimal module, where n is the number of components, b is the
width of the least-area module, H is the total height of the components, and § > 0 is
arbitrarily chosen. The error of this algorithm (i.e., the difference between the area of
the resulting module and the optimal one) is O(nbé). We conclude the paper with a
proof that the architecture with interleaved folding is as good as the architecture with
unrestricted folding with respect to area minimization of the total layout.




1 Introduction

Complexities of VLSI designs have reached the level of a million transistors on one VLSI
chip. At this level the use of analysis and synthesis CAD tools becomes necessary. They
improve the productivity, shorten the design time and thus shorten the time to market the
new product. The basic requirements of all CAD tools are to cover wide variety of designs
and offer good performance. The main problem in the past was to keep good performance
with increasing complexities of design. The development of high-performance engineering
workstations and specialized engines for a small number of analysis tasks has been the
favorite solution to this problem. In addition to coverage and performance CAD synthesis
tools are required to produce high quality design, possibly outperforming human designers.
That requires different algorithms for different design styles, and usually, several different
algorithms to optimize different goals, such as cost, area, delay and testability, for each
design style.

In this paper we define a new sliced layout architecture for arbitrary microarchitectural
schematics and give several algorithms for optimizing the layout area for several variants of
the sliced architecture.

In the rest of this paper we will describe the problem and its solutions. In section 2 we
will give overview of the placement and routing problems and basic algorithms for solving
them. In section 3 we will describe the reasons for sliced architecture while section 4 will
introduce the placement problem for the sliced architecture. In sections 5, 6, and 7 we will
give placement algorithms for minimizing layout area for simple folding, interleaved folding
and unrestricted folding. Section 8 contains the results of our experiments while section 9

concludes the paper.

2 Background

The transformation of a design consisting of a set of components and their interconnections
consists of three tasks: generation of layout for each component, placement of components
and routing of placed components. Layout generation consists of placing transistors on
silicon in diffusion and polysilicon layers and interconnecting them with two additional
metal layers. Thus, each component may be represented by a rectangle with inputs and
outputs on its periphery. The placement task determines the position of each component

(rectangle) in the design schematic, usually defined with a netlist.




Component placement methods fall into two groups: constructive and iterative. Con-
structive placement methods produce a complete placement from the netlist or partial
placement while iterative methods improve a complete placement by modifying it. Im-
provement is measured by some metric such as area, total wire length, wire density, etc.
The routing task determines the placement of connections between components. It consists
of three subtasks. First, the routing surface must be divided into rectangular routing areas
which meet the restrictions of the routing algorithm to be used. Second, a global router
assigns each net to a subset of routing areas,i.e., the global router defines areas through

which the net will be placed. Third, a detailed router calculates the exact wiring path in

each routing area.

3 Motivation

In order to simplify the general placement and routing problem several layout architectures
have been developed. They restrict the freedom in placing components and wires and thus
simplify the placement and routing algorithms. The best known and the most popular
one is the standard cell architecture. The general microarchitectural components such as
ALUs, registers, counters, encoders and shifters are further decomposed into gates, such
as NAND, NOR and EXOR; and storage elements, such as latches and flip-flops. Each of
these elements is laid out by hand as a cell. All cells are of the same height but of different
width with inputs and outputs on top and the bottom of the cell. The cells are placed
in rows which are stacked in several levels. Every two rows are separated by the routing
area called routing channels (Figure 1). Several dummy cells used only for routing cells in
non-adjacent rows are inserted where needed.

One of the weaknesses of the standard cell architecture is that routing occupies more than
50% of the total area. It should be noted that cells use basically diffusion and polysilicon
layers with some routing in the first metal layer while channels are routed in two metal
layers. Thus, it would be beneficial to route over the cells and minimize routing area.
Another weakness is that standard cell architecture does not take advantage of replicability
of microarchitectural components which consists of -many identical bit slices. Those slices
can be laid out as one cell instead of as several standard cells, and connected through
diffusion and polysilicon layers, thus drastically reducing number of wires in the channel.

We now introduce the sliced architecture that avoids the above mentioned weaknesses




of standard cell architecture. For all microarchitectural components in the library there
are cells implementing functionality of one-bit slices of each component. All cells are of the
same width. Obviously, each microarchitectural component has cells of different height A
(Figure 2). Each cell has n second-metal tracks used for input, output and over-the-cell
routing among different components. Each input or output to the cell may use any of the
tracks entering from the top or bottom or passing through.

All components in a design are stacked one on top of the other and routed in second metal
through the available tracks over the cells (Figure 3). The weakness of such a placement is
that different components have different numbers of bits and thus components with fewer
bits waste area. Thus the main problem is to fold the sliced architecture into itself in a way
that minimizes wasted area. By folding, we mean here, pairing of different components so

that all the pairs are of approximately the same width.

4 Problem definition

The problem of sliced architecture placement can be defined as follows: “Given a set of
microarchitectural components and their connections, place components in such a way that
the area of the bounding rectangle including components and routing is minimal.”

We assume in this definition that each component C; has height h; and is b; slices wide.
We also assume that all the routing among components and to and from the outside world
can be accommodated through over the cell routing, that is, the track density of each cell
is narrower or equal to the density of all interconnections in the particular placement.

The first solution to the above problem we call simple folded sliced architecture. It is
obtained by sorting the components by their bit widths and folding the ordered stack of
components approximately in the middle (Figure 4). The routing tracks are also folded so
that they make a 180 degree turn as shown in Figure 4. The inputs and outputs of the
unfolded part are on the top while the folded part may have inputs and outputs on the top
or bottom. This strategy imposes a constraint on the bit width of the bottom components.
The bottom component of the folded part must not have more bit slices than half the width
of the module.

This restriction can be removed using the interleaved folding as shown in Figure 5. The
inputs to the unfolded part are at the top while inputs and outputs to the folded part are on

the bottom. Both parts are connected together through routing around the module. In this




second solution to the sliced architecture placement the possibly smaller component area is
traded off for the larger routing area in comparison to the simply folded architecture.

The third solution to the above problem is the unrestricted architecture in which com-
ponents are not sorted or folded. Components afe stacked with respect to the left and the
right edge of the module in such a way that wasted area is minimal as shown in Figure 6.
This architecture does not have any restriction on ordering or size of particular components.
It assumes, however, that track densities of the left and the right parts together are less

than or equal to the track density of the bit slice.

5 Simple-folded sliced architecture

In this section we give a fast algori:hm for minimizing the area of the module, using the
simple-folded sliced architecture.

Sort the components by width. Let b; and h; be the width and height of the it* widest
component. Let the width of the module be b; for any fixed b, our algorithm minimizes the
required height of the module. The area of the module can be minimized by running the
algorithm once for each choice of b, and comparing those best answers.

We define the component C; to be wide if b; > b/2, and narrow otherwise. In the simple-
folded sliced architecture, components Cy through Cj (for some k) will be stacked on the
left in sorted order, while components Ck4; to C,, will be stacked on the right. The routing
strategy requires that all the components on the right be narrow.

We say that components C; and C; are compatible if they can be laid side by side in
the module, i.e., if b; + b; < b. Otherwise, we say they are incompatible. For any narrow
component Cj, define the critical obstructing component of C; to be that C; of maximum
index which is incompatible with C;, and we say that j is the critical indez of ¢, and write
crit(i) = j. If there is no incompatible component, we say that crit(¢) = 0.

The algorithm needs only find the correct value of the parameter k. For each k, define
Yx to be the minimum distance possible from the top of the module to the bottom of Ci41
if the folding occurs at k. Note that yx > 3" ;,; hi. Strict equality may not occur since
obstructions caused by wide components on the right may prevent the folded portion from
abutting the top of the module. All values of y; can be found in lineé,r time by reverse
iteration, starting with ¥ = n. Since there are no components on the right side, y, = 0.

For k£ < n, we need to compute yx, knowing yx+1. Let 7 = crit(k), and let z; = Ef-;l h;.




(Note that zo = 0.) If yx41 > z;, then the top of Ck+1 can be placed at depth yiyy without
encountering any obstruction from components on the left side, so yx = Yk+1 + P41 in that
case. On the other hand, if yx4; < z;, the top of Ci4; abuts the bottom edge of its critical
obstructing component Cj, 50 yx = z; + hgyq. The optimal choice of k is that for which

maz(Zx, yx) is minimized, subject to the condition that br+1 < b/2.

Algorithm 1

g «— 0
for j — 1 tondo
Tj — Tj-1+hj
end for
Yn <0
crit — 0
for k — n—-1 downto 1 do
if b > b/2 exit
while b.yi141 + b < b do
crit — crit + 1
end while

Yk < hk + max{yk+l, zcrit}
end for
Best k — that k for which max{z, yx} is minimum

Figure 7(a) illustrates the geometry behind the definition of the y. Figure 7(b) shows
the optimal folding in that example, together with the routing.
Analysis. For fixed b, it takes O(n) time to compute all z;, then O(n) time to compute

all y in reverse order. Finally, it takes O(n) time to find the optimal folding point. The

entire algorithm thus takes linear time.

6 Sliced architecture with interleaved folding

In this section we give an algorithm which minimizes the area of the module for sliced
architecture with interleaved folding. The algorithm takes exponential time in theory, but
in fact is quite fast in practical examples.

NP-hardness. We first show that the problem is NP-hard, by reducing the classical
partioning problem to it. Given a set of n items, each of which has a weight w;, we may
wish to divide the set into two subsets which have as close to equal weight as possible. This

problem is known to be NP-hard [2], meaning that existence of a polynomial time algorithm



for it is equivalent to the statement that P = NP.

We reduce the above partitioning problem to our architecture problem as follows: assume
that we have n components of equal width (say b; = 1) and heights w;, as well as a single
component of width 2 and any height. The minimum area module has width 2, and is
obtained by partitioning the components into left and right subsets of as nearly equal total
height as possible; the one long component goes at the top or bottom. This partitioning
yields an optimal solution to the classic problem. It follows that if we could find a polynomial
time algorithm for optimizing sliced architecture with interleaved folding, we would have
proved that P = NP,

The situation is very far from hopeless, however. In this section we give an algorithm
for minimizing the area of the module which runs in exponential time in the worst case.
This algorithm, which we call the List-Merge algorithm, actually takes very little time to
execute in practical cases, as we will show below. Even in the worst case, the List-Merge
algorithm can be used to find an approximately optimal solution very fast, which differs
from the optimal solution by a provably narrow amount.

Assumptions. We will fix a module width 5. The List-Merge algorithm will find that
placement of the components which minimizes the module height. The algorithm can then
be run once for each choice of b.

We sort the components in the order in which they will be processed by the algorithm.
The longest and shortest components come first, and those whose widths are closest to
b/2 come last. This sorting is accomplished in two steps. In the first step, we sort the
wide components (those of width greater than b/2) by width, widest first, and we sort the
narrow components (those of width less than or equal to /2) by width, narrowest first.
These two lists are then merged, with the rule that if a wide and a narrow component are
compatible (i.e., they can be placed side-by-side in the module) the narrow one is first,
while if they are incompatible, the wide one is first. For example, if there are 9 components
of widths 1,2,4,5,6,7,8,9,10 and if b = 12, the sorted list of wide components will have
widths (10,9, 8,7) and the sorted list of narrow components will have widths (1,2,4,5,6).
The merged list of components will have widths (1,2, 10,9,4,8,5,7,6). Let b;, h; be the
width and height of the i** component using this ordering.

Partial solutions and signatures. The List-Merge algorithm is a dynamic programming
algorithm which successively builds up lists of partial solutions “up to” k, for k£ from 0 to

n. We define a partial solution up to k to be a placement of Cy,...Cy in the module which



satisfies the following conditions:

1. Components on the left are sorted in decreasing width going down.
2. Components on the right are sorted in decreasing width going up.

3. There is a “force” which pulls all wide left components and all narrow right compo-

nents as far up as possible.

4. There is a “force” which pulls all wide right components and all narrow left compo-

nents as far down as possible.

A partial solution up to n is a sosolution, , i.e., a placement of all components.

We define the top ezcess, z, of a partial solution up to k as follows. Let u be the distance
from the top of the module to the bottom of the lowest wide component on the left, and let
v be the distance from the top of the module to the bottom of the lowest narrow component
on the right. We define z = maz{0,v — u} The bottom excess, y, is defined similarly. The
ordered pair (z,y) we call the signature of the partial solution.

~ For any given signature, there can be many partial solutions up to k. Given any partial
solution P, a partial solution which has the same signature as P and which has height
minimal for that signature can be obtained by pushing the bottom and top components
together. We call this process height-compression. (See Figure 8.) Two partial solutions
which can be height-compressed to the same partial solution are said to be compression

equivalent.

Lemma 8.1 Let (z,y) be the signature of any partial solution P up to k. Then the height
of the module for P is greater than or equal to the sum of the heights of all wide components
among Ci, ...Cy plus max{z,y}. Furthermore, if P is height-compressed, its height is equal

to that quantity.

Proof: Without loss of generality, P is height-compressed. Let M, M’ be the midpoints of
the top and bottom edges of the module. The length of M M’ is the height of the module.
We consider first the case that z > y and z > 0. The lowest narrow component on the
right, say C, extends a distance of z below the lowest wide component on the left, say C”.
C also abuts the highest large component on the right. (See Figure 9(a).) The line M M’
crosses each wide component with just one gap of length . The case where y > z and

y > 0 is similar.




If z = y =0, the line MM’ crosses each wide component with no gaps. (See Figure

9(b).) O

Parents and minimal partial solutions. Any partial solution P up to k has a unique

parent, a partial solution up to k — 1, obtained by simply removing C. A solution up to 0

is just an empty module, and has no parent. Figure 10 shows a portion of a binary tree of

partial solutions, illustrating the pa.rént-ch.ild relationship, with an empty solution at the

- root. We define a partial ordering on signatures as follows: (z1,%) < (z2,42) if 21 < 29
and y1 < y2. We say that a signature of a partial solution up to k is minimal if there is no

signature of any other partial solution up to k which is strictly less according to that partial

ordering, and we refer to a partial solution up to k as minimal if its signature is minimal.

We now give a series of easy remarks, which form the basis of the list-merge algorithm.

Remark 6.1 Iftwo partial solutions are compression-equivalent, their parents are compression-

equivalent.

Remark 6.2 The set of all compression-equivalence classes forms a complete binary tree
of height n, whose root is the class containing the empty partial solutions, and whose leaves

are all classes of solutions.

Remark 6.3 Let (z,y) be the signature of any node in the binary tree at level k < n. Then
if Ck is narrow, the two children of that node have signatures (z+ ki, y) and (z,y+ he). If

Ck is wide, the two children have signatures (max{z — hy,0},y) and (z, max{0,y — ht})

Remark 6.4 If a partial solution up to k > 0 is minimal, then it has the same signature

as another partial solution whose parent is minimal.

Remark 6.5 If P is a partial solution up to n, i.e., a solution, we say that it has optimal
signature if it has minimal signature (z,y) and if max{z,y} is minimized over all such
minimal signatures. Then P is an optimal solution if and only if it has optimal signature

and is height-compressed.

i Proof: Remark 6.1 is trivial. Remark 6.2 follows from the fact that if P is a partial
solution up to k— 1, we can (by reversing the height-compression process if necessary) insert
Ck in just two ways. (see Figure 10). If Cy is wide, it is inserted either as far up as possible

on the left side or as far down as possible on the right side. If Cj is narrow, it is inserted




either as far up as possible on the right side or as far down as possible on the left side.
Remark 6.3 merely gives the correct formula for computing the signature of the child given
the signature of the parent: there are four cases to consider for inserting Ci on the left and

four similar cases for the right. For the left, the cases are

1. C} is narrow and y > 0. Then Cj slides down until it abuts the narrow component

below it on the left side. The bottom excess is increased to y+ hg.

2. Cy is narrow and y = 0. Then Cj slides down until it abuts the topmost wide
component on the right, or the bottom of the module if there is no such component.

The bottom excess changes to hg.

3. Cy is wide and z < hi. Then Cy slides up until it abuts the wide component above it

or the top of the module if there is no such component. The top excess becomes 0.

4. Cy is wide and z > hy. Then Cj slides up until it abuts the wide component above it
or the top of the module if there is no such component. The top excess is decremented

to z — hg.

The other four cases are similar.

We now consider Remark 6.4. Suppose that P is a partial solution up to k, and P’ =
parent(P) is not minimal, i.e., tlilere is a pa,rtia:l solution @’ up to k — 1 whose signature is
strictly less than that of parent(P) in the partial ordering of signatures. Let @ be the child
of Q' obtained from Q’ the same way P is obtained from P, i.e., if P is the left child of P’
then @’ is the left child of @, similarly right. Since signature(Q’) < signature(P’), we have
by Remark 6.3 that signature(Q) < signature(P). (Just check the cases.) But since P is
minimal, that inequality must be an equality. This proves Remark 6.4.

Remark 6.5 follows trivially from Lemma 6.1. This concludes the proofs of the Remarks.
a

The algorithm. We can now describe an algorithm for finding an optimal solution.
Simply compute the entire binary tree of partial solutions, and examine the signatures of
the leaves to find one for which maz{z,y} is minimized. The height-compression of that
solution will be optimal by Remark 6.5. The time for this algorithm is o).

Pruning. The List-Merge algorithm is really the same as the full exponential time
algorithm, but with a pruning step added at each level. We compute the binary tree of

10




partial solutions one level at a time, i.e., as k iterateé from 0 to n. After computing each
level, we prune the tree by deleting all nodes whose signatures are not minimal for that level.
If nodes have duplicate minimal signatures, we delete all but one of them. The remaining
nodes at a level all have distinct signatures which are minimal, and only the children of
these nodes are considered for constructing the next level. Induction on k, using Remark
6.4, guarantees that no minimal signature will be lost. Since there is a minimal signature
which is optimal, there will be at least one optimal solution constructed at the bottom level.

Symmetry. Since any partial solution can be rotated 180 degrees, if (z,y) is a minimal
signature so is (y,z). A further pruning by eliminating one of every such pair of minimal
signatures saves almost another factor of 2 in the number of partial solutions that need to
be computed. If this symmetry pruning is used, we eliminate any partial solution whose
signature is (z’, y’) if we keep any other partial solution of signature (z,y) such that (z,y) <
(¥, a).

Implementation. Let Lj be the set of partial solutions to k£ which survive the pruning
process. We can assume that they are maintained in a list with strictly increasing values
of # and strictly decreasing values of y. The algorithm can be expressed in terms of list
operations as follows:

Algorithm 2

1. Let Lg be the list consisting of just the empty solution.

2. For each k from 1 to n, construct the list of left children and the list of right children
of Lr~1. Merge these two lists and prune, eliminating items with non-minimal or

duplicate signatures. Call the resulting list L.

3. Search L, for that solution for which maz {z, y} is minimized. The height-compression
of that solution is optimal, and its height is maz{z, y} plus the sum of the heights of

all wide components.

In Figure 11, we show the steps of a single example. Figure 11(a) shows the list of
components, sorted in the order required by Algorithm 2. Figure 11(b) shows the binary tree
of signatures, where all non-minimal and duplicate nodes are pruned. Symmetry pruning
is also used, as this cuts the size of the tree roughly in half. (The lists L; are not shown in
the figure, since the sorting required by the algorithm is not closely related to the binary
tree structure and a figure showing both would look very tangled.) The path to the optimal

11




signature (which is a leaf at depth =) is indicated. Figure 11(c) shows the configuration of
minimal height, together with routing. The routing is also shown.

Time complezity. The complexity of the List-Merge algorithm is O(T%, |L;]), which
is exponential in the worst case. But, in a practical sense, the algorithm takes very little

time, as indicated by the Lemmas 6.2 and 6.3 and Theorem 6.1, below.

Lemma 6.2 Suppose that there is some positive real number § such that hy is an integral
multiple of § for all k. Let M = (Zk<t h)/6. Then |Li} < M + 1 for all k, and the
List-Merge algorithm takes O(nM) time.

Proof: If (z,y) is a minimal signature of a partial solution up to k, then z must be an
integral multiple of é. Since all such pairs in L; must have distinct values of z, and none
can exceed Mé (since that is the sum of all heights), there can be at most M + 1 items in
L. The stated time complexity follows.

In many practical situations, the heights of all components are integral multiples of
some unit, such as 1 micron. Lemma 6.2 then guarantees fast execution for the List-Merge
algorithm, provided that unit is not extremely narrow.

But what about the worst case, namely where the heights of the components are arbi-
trary real numbers? We can approximate all heights to the nearest integral multiple of some
unit, and the solution obtained may not be optimal, but will be provably close. Lemma 6.3

and Theorem 6.1 below summarize the result.

Lemma 8.3 Suppose that the height of the i** component is approrimated to be h!, and
that an approzimately optimal solution is computed by Algorithm 2 using the actual widths
and approrimated heights. The components are then placed according to the instructions
given by this approzimated solution. The height of the module given by this solution is then
greater than the height of the module of the optimal solution by at most Yoieq |BE = Ry

Proof: There are two kinds of errors: overestimates and underestimates. Let E+ be the
sum of the overestimates, that is, the sum of all h} — h; for all i for which that quantity is
positive, and let E~ be the sum of the underestimates, that is, the sum of all h; — h! for all
t for which that quantity is positive. We call E = E+ + E- = 1 |kl = h;| the total error.

Let h be the height of the truly optimal module. Let A’ be the height of the optimal
module obtained using the estimated inputs. It is easy to see that A’ < h+ E*, for if we use

the truly optimal arrangement, and increase any given component’s height using the same

12



arrangement, the height of the module can be increased by at most that same amount. A
decrease of the height of one component may or may not result in an decrease of the height
of the module, but will never cause an increase.

Now use the arrangement that is optimal for the estimated heights. We can increase
every underestimated height to its true value, this causes an increase of the height of the

module by at most £, by the same argument. O

Theorem 6.1 For any given positive §, there exists an algorithm for the sliced architecture
with interleaved folding which takes O(n Y 7y hi/6) time and produces a solution which is

within né/2 of optimal.

Proof: Approximate each hy by letting k), be the nearest integral multiple of §. Then apply -

Lemmas 6.2 and 6.3. O

Practical cases. In practice, we expect that n will be approximately 30, and that the
sum of the heights of all components will be approximately 15000u. If the heights of all
components are rounded to the nearest micron, the total error 3 |h} — h;|, in that case,
cannot exceed 15u and is expected to be only 7.5u. In that situation, Algorithm 2 will
execute on the order of a million instructions, and will produce a solution whose deviation

from optimal is on the order of 1%.

7 Sliced architecture with unrestricted folding

We now consider a still more unrestricted architecture. We allow any component to be
located anywhere in the module, as long as its base end abuts either the right or left edge
of the module. Eliminating the restriction on sorting makes routing around the module
impossible, so we must assume that there are two wires available for each cell. (See Figure
6.)

It might be expected that removing the sorting restriction will allow a decrease in the
area of the module in some cases. We shall see that this is false, in fact the unrestricted
folding architecture always yields the same optimal sized modules as the interleaved folding

architecture in the previous section. There can be savings in the routing area, though.

Theorem 7.1 For any given b, the minimum possible height of any module of width b using
the sliced architecture with unrestricted folding is equal to the minimum possible height of

any module of width b using the sliced architecture with interleaved folding.
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Proof: 1t is clear that allowing the additional freedom of unrestricted folding cannot increase
the height of the module, since any placement that fulfills the conditions of the previous
section still fulfills the new conditions, since they are weaker. We thus only need show that
the module cannot be made shorter.

Consider a set of components, and consider an optimal placement using the unrestricted
folding condition. Let A be the height of the module for this placement. We define the “left
moiety” to be the set of components which abut the left side of the module, and the “right
moiety” similarly. For any real number ¢ € [0,5], define f(c) to be the sum of the heights
of all left moiety components whose widths are at least equal to c, and let g{(c) be the sum

of the heights of all right moiety components whose widths exceed b — .
Lemma 7.1 For any e, f(c)+ g(c) < h.

Proof: Slice the module horizontally, using every line which is an extension of either a top
or a bottom edge of any component. (There will be at most 2n such lines.) This divides the
module into a finite number of pieces. Each piece intersects at most one left component and
at most one right component. Furthermore, if any component meets one of these pieces, it
cdmpletely covers it vertically, though not horizontally. (See Figure 13(a).)

We classify the pieces into three groups:

1. those pieces which meet a left moiety component of width at least ¢

2. those pieces which meet a right moiety component of width greater than b — ¢
3. the other pieces

It ié clear that groups 1 and 2 cannot have any common members, since otherwise the
components would overlap. It is furthermore clear that f(c) is the sum of the heights of
the pieces in group 1, while g(c) is the sum of the heights of the pieces in group 2. Since
the sum of the heights of all pieces is A, the lemma follows. O

We now return to the proof of Theorem 7.1. We will remove all components from the
module and replace them in sorted order, preserving the moieties. The left moiety will be
sorted in order of decreasing width from the top, and will be top-justified. The right moiety
will be sorted in order of increasing width from the top, and will be bottom- justified. Figure
12 shows a module before and after this sorting. The module still has height h, and the

only thing that could go wrong is that some left and some right component overlap.




Suppose that a left component C; of width ¢ overlaps a right component C;, which must
then have width greater than b — ¢. Let z be the distance from the lower right corner of
C; to the top of the module, and let y be the distance from the upper left corner of C; to
the bottom of the module. Since all left moiety components above C; have width at least
¢, z < f(c). Since all right moiety components below C; have width greater than b — ¢,
y < g(c). By Lemma 7.1,z + y < f(¢) + g(¢) < h, which means that the lower right corner
of C; is above the upper left corner of C;, contradicting the hypothesis that they overlap.

O

8 Experiments

Since it is very difficult to obtain real-life examples on the microarchitectural level of design
we generated more than ten examples by random. We set the number of components to
be a random number between 10 and 50. This is approximately number of components
on a controller, I/O interface chip or a medium size processor. The number of bits per
component is a random number between 1 and 32, which covers most of the design with
exception of floating-point arithmetic and number crunching high-performance processors.
Similarly, the height of each component is a random number between 100 and 600 microns.
We developed most of the microarchitectural components using Silicon Compiler System’s
Generator Development Tools and found that most components fall into that range. We
used independent uniform distributions in the above mentioned ranges. We approximated
the quality of our algorithm by wasted area in the layout, i.e., the difference between the
area of the module and the sum of all component areas. Table 1 shows for each example the
number of components, areas of bounding rectangles for unfolded and folded archirecture,
as well as wasted areas for both cases. On average our algorithm produced placements with

less than 8.3% wasted area for folded architecture in comparison with 53.4% for unfolded

architecture.

9 Conclusion

We have presented a new sliced architecture and an algorithm for placement of arbitrary
microarchitectural schematics. We gave an algorithm for simple folding and interleaved
folding. We also gave a bound on the algorithm quality. Our experiments show that wasted

area is very small. Since this new architecture uses second metal for routing between
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components and since each component is hand laid it is expected that it will outperform
the standard-cell architecture in area and performance.

Our algorithm did not take into account routing area around the module needed to
connect two folded parts. It is an open problem to modify the placement algorithm to

minimize the sum of the component and the routing areas.
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Figure 7(b) The Optimal Simple-Folded Sliced Architecture .




Figure 8(a) Before Height Compression Figure 8(b) After Height Compression




Figure 9(a) lllustrating the Proof of Lemma 6.1, Case 1



Figure 9(b) lllustrating the Proof of Lemma 6.1, Case 2
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Figure 10 The Binary Tree of Partial Solutions
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C1 14 10 Large
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C3 12 5 Large
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Figure 11(a) The Widths and Heights of the Components
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Figure 11(c) The Optimal Interleaved Architecture, Showing Routing




Figure 12 lllustrating Theorem 7.1
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Figure 13 lllustrating Proof of Lemma 7.1




Area of Components in square millimeters
Maximum # of bit slices in a Component

Number of Components
Sum of Heights of Components in microns

Area of Unfolded Module in square millimeters

Percentage Waste of Unfolded Module

Number of Bit Slices in Optimal Interleaved Module

Héight of Optimal Interleaved Module in microns

Area of Interleaved Module in square millimeters

Percentage Waste of Interleaved Module

29 | 4125 | 15.551 | 54.8% | 31 | 2073 | 8.354 | 15.9%
32 | 2728 | 11.348 | 30.7% | 32 | 2116 | 8.803 | 10.7%
32 | 7038 { 29.278 | 46.5% | 36 | 3605 | 16.871 | 7.1%
30 | 6995 | 27.280 | 50.0% | 31 | 3631 | 14.633 | 6.7%
32 | 10191 | 42.395 | 49.1% | 32 | 5513 | 22.934 | 5.9%
32| 9995 | 41.579 | 45.8% | 33 | 5749 | 24.663 | 8.6%
32 [ 13473 | 56.048 | 55.9% | 32 | 6322 | 26.300 | 6.0%
32 | 14270 | 59.363 | 60.6% | 32 | 6064 | 25.226 | 7.3%
32 | 18393 | 76.515 | 69.3% | 33 | 5767 | 24.740 | 5.2%
32 | 17665 | 73.486 | 71.2% | 31 | 5785 | 23.314 | 9.3%
Table 1. Comparison results






