
UC Irvine
ICS Technical Reports

Title
Layout placement for sliced architecture

Permalink
https://escholarship.org/uc/item/0x97m5w1

Authors
Larmore, Lawrence L.
Gajski, Daniel D.

Publication Date
1989-10-19

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0x97m5w1
https://escholarship.org
http://www.cdlib.org/

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

_Layout Placement for Sliced Architectur~

Lawrence L. Larmore
--= -

Daniel D. Ga.jski
~ Dept. of Ma&hema&ica and Compu&er Science Dep&. of Informa&ion and Compu&er Science

Univerahy of California a& Riveraide Univenily of C&lifornia. a& Irvine

Riverside, CA 92521 Irvine, CA 92117

Technical Report 89-36

October 19, 1989

Layout Placement for Sliced Architecture

Lawrence L. Larmore
Dept. of Mathematics and Computer Science

University of California at Riverside
Riverside, CA 92521

Daniel D. Gajski
Dept. of Information and Computer Science

University of California at Irvine
Irvine, CA 92717

Abstract

This paper defines a new sliced layout architecture for compilation of arbitrary
schematics (netlists) into layout for CMOS technology. This sliced architecture uses
over-the-cell routing on the second metal layer. We define three different architectures
with simple folding, interleaved folding and unrestricted folding. We present a linear
time algorithm for placement of components in architectures with simple folding. We
prove interleaved folding is NP-hard and give an algorithm of complexity O(nbH/6)
for approximating an optimal module, where n is the number of components, bis the
width of the least-area module, H is the total height of the components, and 6 > 0 is
arbitrarily chosen. The error of this algorithm (i.e., the difference between the area of
the resulting module and the optimal one) is O(nb6). We conclude the paper with a
proof that the architecture with interleaved folding is as good as the architecture with
unrestricted folding with respect to area minimization of the total layout.

1

Component placement methods fall into two groups: constructive and iterative. Con­

structive placement methods produce a complete placement from the netlist or partial

placement while iterative methods improve a complete placement by modifying it. Im­

provement is measured by some metric such as area, total wire length, wire density, etc.

The routing task determines the placement of connections between components. It consists

of three subtasks. First, the routing surface must be divided into rectangular routing areas

which meet the restrictions of the routing algorithm to be used. Second, a global router

assigns each net to a subset of routing areas,i.e., the global router defines areas through

which the net will be placed. Third, a detailed router calculates the exact wiring path in

each routing area.

3 Motivation

In order to simplify the general placement and routing problem several layout architectures

have been developed. They restrict the freedom in placing components and wires and thus

simplify the placement and routing algorithms. The best known and the most popular

one is the standard cell architecture. The general microarchitectural components such as

ALU s, registers, counters, encoders and shifters are further decomposed into gates, such

as NAND, NOR and EXOR; and storage elements, such as latches and flip-flops. Each of

these elements is laid out by hand as a cell. All cells are of the same height but of different

width with inputs and outputs on top and the bottom of the cell. The cells are placed

in rows which are stacked in several levels. Every two rows are separated by the routing

area called routing channels (Figure 1). Several dummy cells used only for routing cells in

non-adjacent rows are inserted where needed.

One of the weaknesses of the standard cell architecture is that routing occupies more than

50% of the total area. It should be noted that cells use basically diffusion and polysilicon

layers with some routing in the first metal layer while channels are routed in two metal

layers. Thus, it would be beneficial to route over the cells and minimize routing area.

Another weakness is that standard cell architec~ure does not take advantage of replicability

of microarchitectural components which consists of many identical bit slices. Those slices

can be laid out as one cell instead of as several standard cells, and connected through

diffusion and polysilicon layers, thus drastically reducing number of wires in the channel.

We now introduce the sliced architecture that avoids th~ above mentioned weaknesses

3

second solution to the sliced architecture placement the possibly smaller component area is

traded off for the larger routing area in comparison to the simply folded architecture.

The third solution to the above problem is the unrestricted architecture in which com­

ponents are not sorted or folded. Components are stacked with respect to the left and the

right edge of the module in such a way that wasted area is minimal as shown in Figure 6.

This architecture does not have any restriction on ordering or size of particular components.

It assumes, however, that track densities of the left and the right parts together are less

than or equal to the track density of the bit slice.

5 Simple-folded sliced architecture

In this section we give a fast algori,: hm for minimizing the area of the module, using the

simple-folded sliced architecture.

Sort the components by width. Let bi and hi be the width and height of the ith widest

component. Let the width of the module be b; for any fixed b, our algorithm minimizes the

required height of the module. The area of the module can be minimized by running the

algorithm once for each choice of b, and comparing those best answers.

We define the component Ci to be wide if bi> b/2, and narrow otherwise. In the simple­

folded sliced architecture, components C1 through Ck (for some k) will be stacked on the

left in sorted order, while components Ck+l to Cn will be stacked on the right. The routing

strategy requires that all the components on the right be narrow.

We say that components Ci and Cj are compatible if they can be laid side by side in

the module, i.e., if bi+ bj :::; b. Otherwise, we say they are incompatible. For any narrow

component Ci, define the critical obstructing component of Ci to be that Cj of maximum

index which is incompatible with Ci, and we say that j is the critical index of i, and write

crit(i) = j. If there is no incompatible component, we say that crit(i) = 0.

The algorithm needs only find the correct value of the parameter k. For each k, define

Yk to be the minimum distance possible from the top of the module to the bottom of Ck+l

if the folding occurs at k. Note that Yk 2:: Ei::k+t hi. Strict equality may not occur since

obstructions caused by wide components on the right may prevent the folded portion from

abutting the top of the module. All values of Yk can be found in linear time by reverse

iteration, starting with k = n. Since there are no components on the right side, Yn = 0.

Fork< n, we need to compute Yk, knowing Yk+i· Let j = crit(k), and let Xj = E1=t hi.

5

for it is equivalent to the statement that P = NP.

We reduce the above partitioning problem to our architecture problem as follows: assume

that we have n components of equal width (say bi = 1) and heights Wi, as well as a single

component of width 2 and any height. The minimum area module has width 2, and is

obtained by partitioning the components into left and right subsets of as nearly equal total

height as possible; the one long component goes at the top or bottom. This partitioning

yields an optimal solution to the classic problem. It follows that if we could find a polynomial

time algorithm for optimizing sliced architecture with interleaved folding, we would have

proved that P = NP.

The situation is very far from hopeless, however. In this section we give an algorithm

for minimizing the area of the module which runs in exponential time in the worst case.

This algorithm, which we call the List-Merge algorithm, actually takes very little time to

execute in practical cases, as we will show below. Even in the worst case, the List-Merge

algorithm can be used to find an approximately optimal solution very fast, which differs

from the optimal solution by a provably narrow amount.

Assumptions. We will fix a module width b. The List-Merge algorithm will find that

placement of the components which minimizes the module height. The algorithm can then

be run once for each choice of b.

We sort the components in the order in which they will be processed by the algorithm.

The longest and shortest components come first, and those whose widths are closest to

b/2 come last. This sorting is accomplished in two steps. In the first step, we sort the

wide components (those of width greater than b/2) by width, widest first, and we sort the

narrow components (those of width less than or equ~ to b/2) by width, narrowest first.

These two lists are then merged, with the rule that if a wide and a narrow component are

compatible (i.e., they can be placed side-by-side in the module) the narrow one is first,

while if they are incompatible, the wide one is first. For example, if there are 9 components

of widths 1, 2, 4, 5, 6, 7, 8, 9, 10 and if b = 12, the sorted list of wide components will have

widths (10, 9, 8, 7) and the sorted list of narrow components will have widths (1, 2, 4, 5, 6).

The merged list of components will have widths (1, 2, 10, 9, 4, 8, 5, 7, 6). Let bi, hi be the

width and height of the ith component using this ordering.

Partial solutions and signatures. The List-Merge algorithm is a dynamic programming

algorithm which successively builds up lists of partial solutions "up to" k, for k from 0 to

n. We define a partial solution up to k to be a placement of Ci, ... Ck in the module which

7

partial solutions one level at a time, i.e., as k iterates from 0 to n. After computing each

level, we prune the tree by deleting all nodes whose signatures are not minimal for that level.

If nodes have duplicate minimal signatures, we delete all but one of them. The remaining

nodes at a level all have distinct signatures which are minimal, and only the children of

these nodes are considered for constructing the next level. Induction on k, using Remark

6.4, guarantees that no minimal signature will be lost. Since there is a minimal signature

which is optimal, there will be at least one optimal solution constructed at the bottom level.

Symmetry. Since any partial solution can be rotated 180 degrees, if (x, y) is a minimal

signature so is (y, x). A further pruning by eliminating one of every such pair of minimal

signatures saves almost another factor of 2 in the number of partial solutions that need to

be computed. If this symmetry pruning is used, we eliminate any partial solution whose

signature is (x', y') if we keep any other partial solution of signature (x, y) such that (x, y) ~

(y'' x').

Implementation. Let Lk be the set of partial solutions to k which survive the pruning

process. We can assume that they are maintained in a list with strictly increasing values

of x and strictly decreasing values of y. The algorithm can be expressed in terms of list

operations as follows:

Algorithm 2

1. Let Lo be the list consisting of just the empty solution.

2. For each k from 1 ton, construct the list of left children and the list of right children

of Lk-I · Merge these two lists and prune, eliminating items with non-minimal or

duplicate signatures. Call the resulting list Lk.

3. Search Ln for that solution for which max{x, y} is minimized. The height-compression

of that solution is optimal, and its height is max { x, y} plus the sum of the heights of

all wide components.

In Figure 11, we show the steps of a single example. Figure 11(a) shows the list of

components, sorted in the order required by Algorithm 2. Figure ll(b) show~ the binary tree

of signatures, where all non-minimal and duplicate nodes are pruned. Symmetry pruning

is also used, as this cuts the size of the tree roughly in half. (The lists Lk are not shown in

the figure, since the sorting required by the algorithm is not closely related to the binary

tree structure and a figure showing both would look very tangled.) The path to the optimal

11

arrangement, the height of the module can be increased by at most that same amount. A

decrease of the height of one component may or may not result in an decrease of the height

of the module, but will never cause an increase.

Now use the arrangement that is optimal for the estimated heights. We can increase

every underestimated height to its true value, this causes an increase of the height of the

module by at most E-, by the same argument. D

Theorem 6.1 For any given positive o, there exists an algorithm for the sliced architecture

with interleaved folding which takes 0(n L:i=1 hi/ o) time and produces a solution which is

within no /2 of optimal.

Proof: Approximate each hk by letting h~ be the nearest integral multiple of o. Then apply

Lemmas 6.2 and 6.3. D

Practical cases. In practice, we expect that n will be approximately 30, and that the

sum of the heights of all components will be approximately 15000µ. ff the heights of all

components are rounded to the nearest micron, the total error I: lh~ - hil, in that case,

cannot exceed 15µ and is expected to be only 7.5µ. In that situation, Algorithm 2 will

execute on the order of a million instructions, and will produce a solution whose deviation

from optimal is on the order of 1 % .

7 Sliced architecture with unrestricted folding

We now consider a still more unrestricted architecture. We allow any component to be

located anywhere in the module, as long as its base end abuts either the right or left edge

of the module. Eliminating the restriction on sorting makes routing around the module

impossible, so we must assume that there are two wires available for each cell. (See Figure

6.)

It might be expected that removing the sorting restriction will allow a decrease in the

area of the module in some cases. We shall see that this is false, in fact the unrestricted

folding architecture always yields the same optimal sjzed modules as the interleaved folding

architecture in the previous section. There can be savings in the routing area, though.

Theorem 7.1 For any given b, the minimum possible height of any module of width busing

the sliced architecture with unrestricted folding is equal to the minimum possible height of

any module of width b using the sliced architecture with interleaved folding.

13

Suppose that a left component Ci of width c overlaps a right component Cj, which must

then have width greater than b - c. Let x be the distance from the lower right corner of

Ci to the top of the module, and let y be the distance from the upper left corner of Cj to

the bottom of the module. Since all left moiety components above Ci have width at least

c, x s; f (c). Since all right moiety components below Cj have width greater than b - c,

y ~ g(c). By Lemma 7.1, x + y s; J(c) + g(c) ~ h, which means that the lower right corner

of Ci is above the upper left corner of Cj, contradicting the hypothesis that they overlap.

D

8 Experiments

Since it is very difficult to obtain real-life examples on the microarchitectural level of design

we generated more than ten examples by random. We set the number of components to

be a random number between 10 and 50. This is approximately number of components

on a controller, I/O interface chip or a medium size processor. The number of bits per

component is a random number between 1 and 32, which covers most of the design with

exception of floating-point arithmetic and number crunching high-performance processors.

Similarly, the height of each component is a random number between. 100 and 600 microns.

We developed most of the microarchitectural components using Silicon Compiler System's

Generator Development Tools and found that most components fall into that range. We

used independent uniform distributions in the above mentioned ranges. We approximated

the quality of our algorithm by wasted area in the layout, i.e., the difference between the

area of the module and the sum of all component areas. Table 1 shows for each example the

number of components, areas of bounding rectangles for unfolded and folded archirecture,

as well as wasted areas for both cases. On average our algorithm produced placements with

less than 8.3% wasted area for folded architecture in comparison with 53.4% for unfolded

architecture.

9 Conclusion

We have presented a new sliced architecture and an algorithm for placement of arbitrary

microarchitectural schematics. We gave an algorithm for simple folding and interleaved

folding. We also gave a bound on the algorithm quality. Our experiments show that wasted

area is very small. Since this new architecture uses second metal for routing between

15

cell 1 cell 2 cell 3 ~ell 4 cell 5

l L

1 l L L
l 1 I

1 I 1 I
1

l l l

Figure 1. Standard-cell architecture

cell rows

routing
channe 1 s

component 1
(6 bits)

component 2
(4 bits)

component 3
(5 bits)

component 4
(3 bits)

component 5
(I bit)

component 6
(2 bits)

component 7
(4 bits)

slice O slice I slice 2 slice 3 slice 4 slice S

fixed
no. of
tracks

Figure 3. Sliced architecture

''

comp. 1

comp. 2

comp. 3

comp. 4

comp. 5

Routing
area...,..

Module input and utpu s

wasted

Module outputs

Figure 5. Sliced architecture with inter­
leaved folding and 1/0 on top and bottom

comp. 9

comp. 8

comp. 7

comp. 6

XO=O

X1

X2

X3

X4

XS

X6

X7

X8

X9

X10

Cl

C2 C9

C3 l CB

C7
C4

C6

cs
cs

C6

C7

CB

C9

ClO

Figure 7(a) The Definitions of x i and y i

ClO
YlO=O

yg

YB

Y7

Y6

YS

Y4

.. 1 _____ ... r:

Figure 8(a) Before Height Compression Figure 8(b) After Height Compression

M

M

Figure 9(b) Illustrating the Proof of Lemma 6.1, Case 2

Width Height Large or Small

C1 14 10 Large
C2 3 8 Small
C3 12 5 Large
C4 5 4 Small
cs 5 8 Small
C6 10 6 Large
C7 7 5 Small
cs 9 10 Large

Figure 11 (a) The Widths and Heights of the Components

-,
Cl

C3

l\llll

Figure 11 (c) The Optimal Interleaved Architecture, Showing Routing

....,.4...._--<c----...

-· -·.· - - ~~~~~~

..,.._ ___ ..,_,.~1·11111
lllllll

..,..411---~c--~

I
f

---------..---If II

11111 _,
Figure 13 Illustrating Proof of Lemma 7 .1

f(c)

(c)

