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Steiner Tree Heuristics in 
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Abstract-We give a family of examples on which a large class C of 
“minimum spanning tree-based’’ rectilinear Steiner tree heuristics has 
performance ratio arbitrarily close to 3/2 times optimal. The class C 
contains many published heuristics whose worst-case performance ra- 
tio: were previously unknown. Of particular interest is that C contains 
two heuristics whose worst-case ratios had been conjectured to be 
bounded away from 3/2,  and our construction also points out an in- 
correct claim of optimality for one of these heuristics. Our examples 
also force worst-possible behavior in a number of heuristics outside C. 
The construction generalizes to d dimensions, where the heuristics will 
have performance ratio of at least (2d - l / d ) ;  this improves the pre- 
vious lower bound on performance ratio in arbitrary dimension. 

I. INTRODUCTION 

The minimum rectilinear Steiner tree (MRST) problem has been 
extensively studied in VLSI layout because solutions correspond to 
optimal circuit wiring in the L ,  (Manhattan) norm. The problem is 
defined as follows: 

T h e  M R S T  Problem: Given a set P of points in the L ,  plane, 
determine a set S of Steiner points such that the minimum span- 
ning tree on P U S has minimum cost. 

Here, the cost of a tree is the sum of the costs ( L ,  lengths) of its 
edges. The MRST problem is NP-complete [5], and a number of 
heuristics have been proposed. Hwang [9] showed that the rectilin- 
ear minimum spanning tree (MST) is itself an approximation to the 
MRST with worst-case ratio cost( MST)/cosr( MRST) 5 3 / 2 .  
This result, along with efficient methods for computing the MST 
of a planar point set, has motivated a number of MRST heuristics 
which start with an MST construction and then improve the solu- 
tion by various methods (e.g., overlapping edges to induce Steiner 
points). Instances of this approach include the work of Hasan, Vi- 
jayan, and Wong [7], Ho, Vijayan, and Wong (81, Hwang [ I l l ,  
Lee, Bose, and Hwang [14], and Lee and Sechen 1151. Other heu- 
ristics, such as those discussed by Bern [ I ] ,  Bern and Carvalho 121, 
Richards [17], and Servit 1181, emulate the classic MST construe- 
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tions of Kruskal and Prim [ 131, [I61 while building the Steiner tree. 
As noted by Richards 1171 and in such surveys as those of Hwang 
[ lo]  and Winter [20], these methods yield very similar results on 
random instances, i.e.,  heuristic Steiner tree cost 8 %  to 9% less 
than MST cost on average. 

Since these Steiner tree constructions cannot have greater cost 
than the minimum spanning tree, the bound of 3 / 2  proved by 
Hwang is a trivial upper bound on the worst-case performance ratio 
of these heuristics. However, the actual performance ratios for 
many “MST-based” methods have remained unknown. At times 
there has been hope that certain methods might be provably better 
than the simple MST approximation (e.g., [12]; the algorithms of 
Bern [I.] and Ho, Vijayan, and Wong [8] are two more recent ex- 
amples). 

This paper shows that any Steiner tree heuristic in a very general 
class C of “MST-based” methods will have worst-case perfor- 
mance ratio arbitrarily close to 3 / 2 .  i.e.,  the same bound as for 
the MST itself. This result is based on two simple constructions. 
We then show that many published heuristics [ l ] ,  121, 171, 181, 
[ 121, [17], [18] with previously unknown worst-case behavior fall 
into the class C, and thus we simultaneously resolve a number of 
error bounds. Our construction also points out a recent incorrect 
claim in [8] that the two heuristics of [8] yield optimal Steiner trees 
on a certain class of inputs. Furthermore, our examples also estab- 
lish a lower bound of 3 /2  on performance ratios for other heuristics 
which are not in the class C, e .g . ,  [12], [14], [19]. Finally, the 
examples generalize to d dimensions, where all of these heuristics 
will have error bound of at least (2d - l ) / d .  The previous lower 
bound on the performance ratio was 2(d - I ) /d  [4], [6]. From 
these results, it seems doubtful that the popular MST-based ap- 
proach will ever afford a better worst-case ratio than the simple 
MST bound of 3 / 2 .  

11. COUNTEREXAMPLES FOR Two DIMENSIONS 

We begin this section by discussing two common approaches to 
constructing a heuristic Steiner tree in the Manhattan plane. We 
exhibit pathological examples for these methods and then show that 
the same instances will force a 3 / 2  performance ratio for an entire 
class C of Steiner tree constructions. 

The first popular approach to the MRST problem starts with a 
rectilinear MST and computes a Steiner tree by “overlapping” 
edges of the MST as much as possible, as shown in Fig. 1. Clearly, 
the result cannot have cost greater than the MST cost. A general 
template for this MST-Overlap heuristic is as follows: 

MST-Overlap: 
Input: fixed rectilinear MST 
Determine a shorter Steiner tree which lies completely within 

the union of bounding boxes of the MST edges. 

A number of authors have explored this idea, including Hwang 
[ I l l ,  Lee, Bose, and Hwang [14] and Lee and Sechen [15]. Ho, 
Vijayan, and Wong [8] recently gave the surprising result that the 
optimal RST derivable in this fashion can be computed in linear 
time; thus, their method is strictly better than those of [ I l l ,  [14], 
and [ 151. Several researchers conjectured that the worst-case per- 
formance ratio of the new method i n  [8] was less than 3 / 2 .  How- 
ever, the example of Fig. 2 forces a sharp performance bound of 
exactly 3 / 2 .  

Note that the authors of [8] define a separable MST to be one 
whose edge bounding boxes do not intersect except at their borders, 
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Fig. 1 .  Optimal overlap of MST edges within their bounding boxes. .+. 
Fig. 2.  An example where the strict equality 

cost(MST-Overlap)/cost(MRST) = 3/2  

holds. (a) MRST (cost = 20); (b) any Steiner tree derived from this MST 
will have cost = 30. 

and their linear-time algorithm actually finds optimal overlaps for 
separable initial MSTs (the MST of Fig. 2 is not separable). How- 
ever, even when we insist that the starting MST be separable, we 
can still force a performance ratio arbitrarily close to 3 /2 ,  as il- 
lustrated in Fig. 3 .  Fig. 3(a) shows a separable MST on a pointset 
where the strict equality cos t (MST)/cos t (MRST)  = 3 / 2  holds; 
Fig. 3(b) shows a perturbation of the pointset such that the MST 
is unique; and Fig. 3(c) shows the optimal Steiner tree topology 
for both cases. 

The example of Fig. 3(a) is separately included since it points 
out a misstatement [8, p. 1921: “Both the algorithms produce the 
optimum Steiner trees for each member of the class of point sets 
whose optimal RST has a cost which is 2 / 3  that of the cost of the 
MST.” This refers to the so-called S-MST and L-MST algorithms, 
which rely on the separable-MST (SMST) construction in [8, p. 
1871. It is straightforward to verify that on the pointset shown in 
Fig. 3(a), the tie-breaking rules of the SMST construction in [8] 
will force the initial separable MST to be exactly that shown in the 
figure. Edge overlapping improves this only marginally to the so- 
lution shown in Fig. 3(d), implying a performance ratio arbitrarily 
close to 3 /2 ,  even though the optimal RST indeed has a cost ex- 
actly 2 / 3  that of the MST. 

Fig. 3 also shows that a “folklore” heuristic and its variants, 
described in [ 171 and ascribed to Clark Thompson by Bem [ I ] ,  [2], 
has worst-case performance ratio arbitrarily close to 3 / 2 .  We refer 
to this second generic type of construction as the Kruskal-Steiner 
heuristic, since it is an analog of Kruskal’s MST construction [13]: 

Kruskal-Steiner: 
Input: n isolated components (points) 
Until one component remains, connect the closest pa i r  of 

components. 

Variants in the literature differ mostly in their definitions of 
“closest pairs” of components, but the example of Fig. 3(b) is 
immune to these distinctions. When any variant of Kruskal-Steiner 
is executed on the pointset of Fig. 3(b), it will start at the left end 
and altemate between the middle, top, and bottom rows, adding a 

(d) 

Fig. 3.  An example of a separable MST where cost(MST-Overlap)/ 
cost( MRST) is arbitrarily close to 3/2.  For n points, any Steiner tree de- 
rivable from the separable MSTs of (a) or (b) will have cost 2 ( n  - 2), 
while the MRST (c) has cost (4/3) . (n - l), yielding a performance ratio 
arbitrarily close to 3 /2  for large enough n. In (d), we show the best pos- 
sible RST that can be produced by any MST-Overlap or Kruskal-Steiner 
heuristic. 

single horizontal segment to each in tum. Therefore, the Steiner 
tree will consist entirely of straight horizontal line segments, ex- 
cept at the starting left end, and its cost will be arbitrarily close to 
3 / 2  times optimal. Note that the E perturbations in Fig. 3(b) force 
the altemation between rows and make the heuristic construction 
completely deterministic. 

The MST-overlap and Kruskal-Steiner heuristics form part of a 
very general class C of greedy Steiner tree methods. We now define 
the class C and show that the example of Fig. 3 is pathological for 
the entire class C. 

Recall that the heuristic Steiner tree is a minimum spanning tree 
on the union of an input pointset P and a set of Steiner points S .  
We define an edge as any wire connecting two points in P U S .  
The following terminology is used to denote progressively more 
general connection types: 1) a point-point connection is an edge 
between two points of P; 2) a point-edge connection is a wire be- 
tween a point of P and an edge, inducing up to one Steiner point; 
and 3) an edge-edge connection is a wire between two edges, which 
may induce up to two Steiner points. 

We say that a greedy algorithm iteratively selects the best alter- 
native from among all available altematives. In the following def- 
inition, the iterative algorithms in C are greedy with respect to 
Manhattan edge length. The class C is defined as follows: 

Heuristic H E C 
Input: n isolated components (points of P )  
While there is more than one connected component do: 

Select a connection type (point-point, point-edge, or edge- 
edge); 
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Connect the closest pair of components greedily with re- 

Optionally at any time, reroute any edge within its bounding 

Optionally at any time, eliminate any edge overlap. 

spect to this connection type; 

box; 

Theorem I: Any heuristic in the class C will have performance 
ratio arbitrarily close to 3/2.  

Proof: The MST of the pointset depicted in Fig. 3(b) is clearly 
unique, since all  interpoint distances of length < 3 are unique. Even 
if general connection types are allowed, all connections in the MST 
will be simple horizontal point-point connections except for ex- 
actly two connections, from the top row to the middle row and from 
the middle row to the bottom row. The greedy routing of every 
edge but these two is unique, since all edges except these two have 
degenerate bounding boxes. Note that no improvement is possible 
by edge rerouting within these degenerate edge bounding boxes. 
Therefore, no heuristic in C can do better than the result depicted 
in Fig. 3(d). Since the effect of the optional rerouting of the two 
nondegenerate connections becomes negligible as the pointset 
grows large, the performance ratio is arbitrarily close to 3 / 2 .  fl 

We now list a number of published heuristics with previously 
unknown performance ratio, all of which are shown by Theorem 1 
to have error bounds arbitrarily close to 3 / 2 .  We do not reproduce 
the various authors’ descriptions of each algorithm that we mention 
here, since it is very easy to see from the high-level classification 
that these algorithms are indeed in C. Algorithms which follow a 
greedy Kruskal-type construction satisfy the verbatim definition of 
the class C: these include the methods of Hwang [ 1 1 I and Lee and 
Sechen [15], in addition to methods described in Bern [ I ] ,  [2]. 
Richards [ 171, and Servit [ 181. It is also easy to see that algorithms 
which start with an initial MST and then overlap rectilinear edges 
within their bounding boxes, such as those of Hasan. Vijayan. and 
Wong 171 and Ho, Vijayan. and Wong [8], are members of C, since 
using only point-point connections will build an MST, and the op- 
tional rerouting is then used to induce edge overlaps. Interestingly, 
exponential-time methods can also fall into the class C, e.g. ,  the 
suboptimal branch-and-bound method of Yang and Wing [21]. 
Theorem 1 implies that all of these methods have the same worst- 
case error bound as the simple MST. 

Finally, the counterexample of Fig. 3 also establishes new lower 
bounds arbitrarily close to 3 / 2  for the performance ratios of sev- 
eral heuristics not in C, such as the three-point connection methods 
of Hwang [12] and Lee, Bose, and Hwang [141, and the Delaunay 
triangulation-based method of Smith, Lee, and Liebman [ 191. This 
is easy to verify using the pointset in Fig. 3(b): as with the heuris- 
tics in C, these latter methods are severely constrained by the na- 
ture of the unique minimum spanning tree. 

We note that the recent work of De Souza and Ribiero [ 3 ]  con- 
structs a similar instance to that of Fig. 3 and also discusses the 
worst-case performance of RST heuristics. However, the work of 
[3]  is limited to two dimensions, while Section 111 below extends 
our construction to yield new bounds in higher dimensions. More 
importantly, the work of De Souza and Ribiero is concerned solely 
with several specific algorithms and thus does not establish a gen- 
eral result as we do in Theorem 1 .  

111. EXTENSIONS TO HIGHER DIMENSIONS 

Most rectilinear Steiner tree heuristics, including the MST-Over- 
lap and Kruskal-Steiner variants, extend to higher dimensions and 
are of special interest for emerging multilayer packaging and 
“three-dimensional” process technologies. However, the exam- 

(b) 
Fig. 4. Ford = 3, the MRST (a) has cost 6 / 5  . (n - I ) ,  while any MRST 
derivable from the MST ( b) has cost 2 ( n  - 3) ,  yielding performance ratio 
arbitrarily close to S / 3  for n large. 

ples of Figs. 2 and 3 also generalize to d dimensions and provide 
new lower bounds on the performance ratio of heuristics in C. In 
particular, the example of Fig. 3 generalizes to n = (2d - I ) k  + 
1 points for any given positive integer k:  the cost of the optimal 
Steiner tree is at most 2 d ( n  - 1)/(2d - I), the cost of the (unique, 
separable) MST is 2 ( n  - I ) ,  and the cost of the best Steiner tree 
derivable from this MST is 2 ( n  - d ) ,  as illustrated in Fig. 4 f o r d  
= 3. Thus, in d dimensions the performance ratio of a heuristic in 
class C will be arbitrarily close to (2d - l ) / d .  This value improves 
the lower bound for the worst-case MSTIMRST ratio in higher di- 
mensions from the previously known value of 2 (d - 1) / d  [4], [6]. 

IV. CONCLUSIONS 

We conjecture that (2d - l ) /d  is not only a lower bound, but 
also a general upper bound for the worst-case performance ratio in 
d dimensions of any MRST heuristic in C. Thus, (2d - 1) / d  would 
be the higher dimensional analogue of Hwang’s value of 3 /2  for 
two dimensions. The basic question remains whether there is an 
MRST heuristic with worst-case performance ratio bounded away 
from 3 / 2 .  The result of Theorem 1 suggests that the “MST-based” 
approach, which has dominated the VLSI Steiner routing literature, 
is not likely to yield such a bound. 
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