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Abstract

We show that the general two layer constrained via minimization problem and the three layer
constrained via minimization problem for HVH topologies are NP-hard. A backtracking and a
heuristic algorithm for the three layer HVH constrained via minimization problem are pro-
posed. The backtracking algorithm can also be used for three layer non HVH problems.
Experimental results indicate that our heuristic generally outperforms that of [CHAN89].
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1. Introduction

The input to the general constrained via minimization (CVM) problem is a two dimensional rout-

ing region with terminals arranged in rows and columns inside the region together with a layout of the

nets. This layout specifies wire paths together with layer assignment for each segment of each wire

path. The initial layout is feasible in that it contains no crossing or overlap (Figure 1) of wire segments

of different nets. The objective is to reassign the wire segments to layers so as to minimize the number

of vias. The reassignment is required to preserve the original topology (i.e., wire paths but not layer

assignment) and should be such that there is no crossing or overlap of wire segments of different nets on

any layer. Figure 2(a) gives a possible input to the CVM problem. Vias are shown as small boxes.

There are 4 vias in the layout of Figure 2(a). Broken lines indicate wires in layer one and solid lines

indicate wires in the second layer. Figure 2(b) gives another layout that preserves the layout topology

and uses 1 via. The instance of Figure 2 is a 2 layer instance as the input layout uses 2 layers.

____________________________________________________________________________________
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(a) Net crossing (b) Net overlap

____________________________________________________________________________________

Figure 1 Crossing and overlap

In a grid based CVM problem the input layout is confined to follow horizontal and vertical grid

lines that are superimposed on the routing region. Figure 3(a) shows a 2 layer grid based CVM input

that uses 5 vias and Figure 3(b) shows a layout obtained from that of Figure 3(a) by reassigning layers

but preserving the input topology. The layout of Figure 3(b) uses 1 via. Solid lines represent wires on

one layer and broken ones represent wires on the other layer.

The HVH CVM problem is a 3 layer grid based CVM problem in which the input topologies are

restricted such that layers 1 and 3 contain only horizontal wire segments and layer 2 contains only verti-

cal wire segments. However, this restriction does not apply to the output. In reassigning layers, the

topology has to be preserved but both horizontal and vertical segments can be assigned to any layer.
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(a) Input layout (b) Reassignment of (a)

____________________________________________________________________________________

Figure 2 An instance of the CVM problem

____________________________________________________________________________________

(a) Input layout (b) Reassignment of (a)

____________________________________________________________________________________

Figure 3 An instance of a grid based 2CVM problem

Note that a via that goes from layer 1 to layer 3 passes layer 2 and makes electrical contact with any

wire segment that uses this grid position on any of the three layers. An example of an HVH CVM

instance is given in Figure 4(a) and a possible layer reassignment that preserves net topology is pro-

vided in Figure 4(b). Broken lines represent wires on layer 2 while wires on layers 1 and 3 are

represented by solid lines. Layer 3 (1) wires are labeled 3 (1). The layout of Figure 4(a) uses 7 vias

while that of Figure 4(b) uses no via.

Another variant of the CVM problem is the channel CVM (CCVM) problem. In this the net ter-

minals are constrained to lie on two sides of a routing channel. Figure 5(a) gives an instance of the grid

based 2CCVM problem and Figure 5(b) gives a layer reassignment that reduces the number of vias
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(a) Input layout (b) Reassignment of (a)

____________________________________________________________________________________

Figure 4 An instance of HVH CVM problem

from 6 to 2.

____________________________________________________________________________________

(a) Input layout (b) Reassignment of (a)

____________________________________________________________________________________

Figure 5 An instance of 2CCVM problem

The general 2 layer CVM (2CVM) problem was shown to be NP-hard by Naclerio, Masuda, and

Nakajima in [NACL89]. Their proof also applies to the 2 layer CVM problem with any of the following

restrictions:

1) The input layout is grid based

2) Vias are restricted to lie at wire junctions (i.e., points where two or more wire segments of the

same net meet) that were in the original layout

3) The maximum wire junction degree is limited to any number≥ 6.
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Heuristics for the grid based 2CVM problem have been proposed by several researchers (see

[CHAN87] and [XION88] for example). The three layer CVM problem was first shown to be NP-hard

by Chung and Du [CHAN88]. They did this by reducing the planar graph three colorability problem to

the 3 layer CVM problem. Chang, Jyu, and Feng [CHAN89] provide an alternate proof using the three

satisfiability problem. Actually the 2 layer proof of [NACL89] extends to the three layer case. For this,

we need merely replace their two layer sublayout (Figure 6(a)) by the 3 layer sublayout of Figure 6(b).

As a result, the 3CVM problem remains NP-hard under the added restrictions cited earlier.

____________________________________________________________________________________

(a) 2 layer sublayout (b) 3 layer sublayout

____________________________________________________________________________________

Figure 6 Constructs for the NP-hardness proof of [NACL89]

Both Chang and Du [CHAN88] and Chang, Jyu, and Feng [CHAN89] develop heuristics for the

3CVM problem. Experimental studies performed by [CHAN89] indicate that their heuristic is superior

to that of [CHAN88]. Heuristics for the gridless 2CVM problem are proposed in [NACL87]. A related

problem is the unconstrained via minimization (UVM) problem in which the wire layout is not con-

strained by a specified topology. Heuristics for 2UVM can be found in [HASH71], [HSU83], and

[MARE84].

In this paper, we first show that the 2 layer channel CVM (2CCVM) problem is NP-hard (Section

2). Next, in Section 3, we show that the HVH CVM problem is NP-hard. In Section 4, we make some

observations about the HVH CVM problem. These are used in Sections 5 and 6, respectively, to arrive

at a heuristic and a backtracking algorithm for the HVH CVM problem. The backtracking algorithm

may be applied, without modification, to three layer non HVH CVM instances also. Experimental

results are provided in Section 7.

Throughout this paper, we assume that vias are restricted to junctions in the specified input layout.

These points are called via candidates. The via candidates for the instance of Figure 1(a) are shown by
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boxes in Figure 7. Observe that since a wire can change layers only by the use of a via, entire wire seg-

ments that contain no via candidate must be placed in the same layer.

____________________________________________________________________________________

Track2

Track1

____________________________________________________________________________________

Figure 7 Via candidates

2. Complexity of 2CCVM

In this section we show that the two layer CVM problem with the added restriction that the pins

lie on two sides of a channel (2CCVM) is NP-hard. Our proof shows how any instance of 2CVM may

be transformed, in polynomial time, into an instance of the 2CCVM problem such that from an optimal

solution to the 2CCVM instance one can obtain, in polynomial time, an optimal solution to the original

2CVM instance.

Consider any instance I of 2CVM. The top and bottom boundaries of this may be viewed as the

two sides of a channel (Figure 1(a)). To transform this instance into an instance of 2CCVM, we need to

eliminate all pin positions that are not on these two sides of the channel. Each such pin position, p, falls

into one of the categories: (PA) there is a path from p to one of the two sides of the channel and this

path does not intersect any of the nets of I; and (PB) there is no such path. In the example of Figure

8(a), all nets are two pin nets and all pin positions other than A fall into category PA. The layer assign-

ments are not shown in this figure. Pin positions in category PA can be moved to one of the two sides of

the channel by extending the net from this position to a position on the channel side without intersect-

ing any existing net. The extensions are shown by broken lines in Figure 8(b). Clearly, such an exten-

sion which, in effect, moves pin positions to the sides of the channel does not affect the number of vias

in the optimal solution. Let I´ be the instance of 2CVM obtained by extending nets in this way so that

all remaining pin positions that are not on one of the two channel sides are in category PB.

To extend the type PB pins to the sides of the channel, we need a more complex construction. Let

p be such a remaining pin position. Every path from p to one of the two channel sides crosses at least
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(a) Instance of 2CVM (b) Net extension

____________________________________________________________________________________

Figure 8 An example of pins and their extensions

one net. Suppose that r net segments are crossed. Figure 9(a) gives an example with r = 3. At each point

where this path crosses a net, we shall use a crossover box. Two types, S and T, of crossover boxes are

used. Type S is used at the first crossover and type T at all remaining ones. A type S crossover box has

one input terminal and 8 output terminals. Type T boxes have 8 input and 8 output terminals. The pin

position p is connected to the input of S, the outputs of an S box and a T box are connected to the inputs

of the next T box (if any) on the path. If there is no such next box then the eight outputs are extended to

the channel side as in Figure 9(b). So, one pin position p results in 8 pin positions on the channel side.

The connection of the outputs of one box to the inputs of the next is done, in order, left to right. I.e., the

i’th output of a box is connected to the i’th input of the next box, 1≤i≤8.

The configurations for the S and T boxes are shown in Figures 10 and 11, respectively. The bro-

ken lines labeled A and B denote the net being crossed by the path from the pin p to one of the channel

sides. By appropriately scaling the construction, S and T crossover boxes may be placed so as not to

intersect any of the existing nets other than the ones crossed by the aforementioned path from p. Note

that the eight output terminals of an S box and the eight output and eight input terminals of a T box

represent exactly four distinct nets.

Let I" be the 2CCVM instance obtained from I´ by extending all pin positions in category PB

using S and T crossover boxes as described above. It should be clear that I" can be obtained from the

original 2CVM instance I in polynomial time and that the size of I" is a polynomial function of the size

of I. We need to show that from an optimal solution to I" we can obtain, in polynomial time, an optimal
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Figure 9 Extending a pin with crossovers to the top side of the channel

____________________________________________________________________________________
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Figure 10 S crossover box

solution to I. For this, we shall first establish several properties of the crossover boxes S and T.

We shall use the term edge to denote a net segment that has no crossovers in its interior. Consider

the net configuration of Figure 12(c). This shows five net segments labeled 1-5. Segments that cross are

from different nets. The subsegments (a,b), (b,c), (c,d), (d,e), and (e,a) are five of the edges in this lay-

out. These five edges form a cycle in the graph theoretic sense if we regard the net crossover points a, b,

c, d and e as vertices of a graph. This cycle is an odd cycle as there are an odd number of edges on it.
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Figure 11 T crossover box

Figure 12(a) shows an odd cycle with three edges and Figure 12(b) shows an even cycle with four

edges.

____________________________________________________________________________________
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Figure 12 Cycles in a layout

Lemma 1: (a) In every two layer layout of an odd cycle there must be an odd number of vias on the

cycle.

(b) In every two layer layout of an even cycle there must be an even number of vias on the

cycle (we consider 0 vias to be an even number of vias).
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Proof: Since adjacent edges of a cycle come from different nets, there must be a layer change at each

vertex of the cycle. The layer change at a vertex uses no via and results from assigning the two edge

segments that meet at a vertex to different layers. Further, if we start at any point on a cycle (not neces-

sarily a vertex) and walk around the cycle and return to this point, the number of layer changes mod 2

must be zero as we must return to the same layer. Let e be the number of edges (and hence vertices on

the cycle) and let q be the number of vias. Our discussion implies that (e+ q) mod 2 = 0. If e is odd, then

q must be odd. If e is even, then q must be even.

Figure 13 gives some possible layer and via assignments for the cycles of Figure 12. Note that we

are limited to two layers. Layer numbers are noted on the edges or edge segments. Note also that the

two layer assignments of Figure 13 are done using a minimum number of vias. Figure 14 depicts some

of the net segments in an S crossover box that is connected to a T crossover box. All the segments of S

and those segments of T below the horizontal line through points a and b of Figure 11 are included as

solid lines. The five distinct nets are labeled n1 through n5. The point x is not a crossover point as the

three net segments that meet at x belong to the same net n1. (a,b), (b,c), (i,k), (m,o), and (g,r) are some

of the edges in this configuration.

____________________________________________________________________________________
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Figure 13 Possible layer and via assignment for cycles of length 3, 4, and 5

Lemma 2: If the two ends of n5 (cf. Figure 14) are required to be on the same layer then, independent

of which layer (x,y) is required to be on, a minimum of four vias are needed to complete the layout in

two layers. Every four via layout places exactly two vias on n5.

Proof: Figure 15 shows a four via two layer assignment under the assumption that n5 is assigned to

layer l2. In this figure l1 and l2 denote the two layers and a box denotes a via location. Note that if the
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Figure 14 Configuration for Lemma 2

segment (x,y) of n1 is required to be on l1, then this can be accomodated by moving the via on the edge

(i,k) so that it is on the segment (i,x) of this edge.

____________________________________________________________________________________
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Figure 15 4 via, 2 layer assignment of Figure 7
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Since the cycles abs, abi, ikj, pqr, grh, and ghz are of odd length, every two layer assignment must

have at least one via on each. The cycles abs and abi can share a via if it is placed on the common edge

(a,b). Similarly, ghz and ghr can share a via if it is on edge (g,h). Hence the via requirement can be

reduced to four if one via is placed on each of the edges (a,b) and (g,h). No other via sharing is possible.

Hence, in every four via layout, only two vias can be placed on n5.

Lemma 3: If the two end points of n5 (cf. Figure 14) are required to be on different layers then,

independent of which layer (x,y) is required to be on, a minimum of five vias are needed to complete

the layout in two layers.

Proof: A possible five via two layer assignment in which the ends of n5 are on different layers is given

in Figure 16. This assumes that (x,y) is to be on layer l2. If it is to be on l1, then the via on (i,k) may be

moved to the edge (i, x). From the proof of Lemma 2, we know that at least four vias are needed to han-

dle the six odd cycles and that every four via assignment has two vias on n5. However, for the ends of

n5 to be on different layers, an odd number of vias need to be assigned to n5. So, no four via assignment

is possible. A five via layout can have a via on each of (a,b) and (i,k), one on each of the cycles ghz,

ghr, and pqr, and no via on (g,h).

____________________________________________________________________________________
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Figure 16 5 via, 2 layer assignment of Figure 7

Figure 17 gives the net segments that result when two T boxes are interconnected. The nets n1-n4

are numbered in accordance with Figure 14 and the vertices s, t, u, v, w, and z correspond to the vertices
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in Figure 14 that have the same label.

____________________________________________________________________________________
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Figure 17 Nets from two interconnected T boxes

Lemma 4: If the two ends of n5 (cf. Figure 17) are required to be on the same layer, then a minimum of

ten vias are required to complete the layout in two layers. Every ten via layout has exactly two vias on

n5.

Proof: A ten via two layer layout that has both ends of n5 on the same layer is given in Figure 18. The

configuration of Figure 17 contains 14 cycles of odd length (abs´, abi, inj, nst, bijkc, ckd, kju, elf, flomg,

gmh, ghz´, opm, lvo, pwz). From Lemma 1, there must be a via on each. Cycles abs´ and abi can share a

via if the via is placed on (a,b) and ghz´ and ghm can share a via if it is placed on (g,h). The only other

possibilities for via sharing are cycle bckji shares a via with one or more of the cycles cdk, jku, and inj,

and cycle fgmol shares a via with one or more of the cycles lov, mop, and efl. This sharing by bckji and

fgmol can reduce the via requirements by at most two. Hence at least ten vias are needed. Since the

above defines every 10 via layout, every ten via layout has exactly two vias on n5.

Lemma 5: If the two end points of n5 (cf. Figure 17) are required to be on different layers, then a

minimum of 11 vias are needed to complete the layout in two layers.

Proof: An eleven via two layer layout of Figure 17 is given in Figure 19. From the proof of Lemma 4,

we know that at least ten vias are needed to layout Figure 10 on two layers and that every ten via layout

has two vias on n5. Hence, in every 10 via layout, the two ends of n5 are on the same layer. So, at least

11 vias are needed if the two ends of n5 are on different layers.
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Figure 18 10 via, 2 layer assignment of Figure 17
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Figure 19 11 via, 2 layer assignment of Figure 17

Lemma 6: Let p be a type PB pin position that is extended to a side of the channel by using one type S

and t type T crossover boxes. Suppose that q of the t+1 type n5 nets crossed by these t+1 crossover

boxes are required to have their ends on different layers. The minimum number of vias needed to layout

the t+1 crossover boxes is 4+10t+q.

Proof: That 4+10t+q is a lower bound follows from Lemmas 2 through 5. To show that the layout can

actually be done using this number of vias, we need to show that a type T crossover box can be layed
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out using 10 vias when the ends of net A (Figure 11) are required to be on the same layer and using 11

vias when they are to be on different layers regardless of the requirements on the ends of net B (Figure

11). Figure 20 shows eight of the sixteen possibilities for the ends of A and B. The remaining eight are

isomorphic to these. In Figure 20, vias are shown as o’s and x’s. In keeping with our development of

Lemmas 2 through 5, vias placed on net B, which are represented as "o" instead of "x" in Figure 20, are

charged to the crossover box below the current one. One may verify that the number of vias charged to

a type T box is either 10 or 11 depending on whether the ends of net A are on the same layer or on

different layers.

Theorem 1: The 2CCVM problem is NP-hard.

Proof: Let I be an instance of 2CVM that has a pin positions of type PA and b of type PB. Let I" be

obtained from I by first extending the type PA positions to the channel sides as described earlier and

then extending the type PB positions using S and T crossover boxes. Suppose that the path used to

extend the i’th type PB position crosses ni nets, 1≤i≤b. We shall show that the optimal solution to I uses

m vias iff the optimal solution to I" uses m+10
i =1
Σ
i =b

ni−6b vias. Furthermore, from an optimal solution to I

one can obtain, in polynomial time, an optimal solution to I" and vice versa.

Consider an optimal solution to I. Let m be the number of vias used. Place these m vias at exactly

the same positions in I". Also, preassign layers to all net segments of I" that are also in I. This layer

assignment is the same as that used in the optimal solution for I. The layer assignment for the exten-

sions of type PA pin positions is the same as that of the original net segments of I to which they are con-

nected. For the extensions of the type PB pin positions, we place vias and assign layers in accordance

with Figure 18. For the i’th type PB position exactly 10ni−6 additional vias are introduced. This is so

because if the ends of a type A net segment (Figure 11) were preassigned to different layers, then there

must also be an odd number of vias preassigned to points between these ends. Since no nets of the ori-

ginal instance cross between these two ends of the net segment of type A, there is exactly one such via

(if there is more than one such via then the solution to I is not optimal as vias in excess of one can be

eliminated without affecting the feasibility of the solution). This via can be used as one of the needed

eleven vias and may be moved to any point between the ends of the type A net segment. Hence only ten

additional vias are needed when the ends of this net segment are on different layers. If the ends of the

type A net segment are preassigned to the same layer, there can be no vias preassigned to it as the

preassignment is done from an optimal solution to I. Hence 10 additional vias are introduced by the Fig-

ure 18 assignment. Since one type S and ni−1 type T crossover boxes are used, the extension of the i’th

type PB position uses 4+10(ni−1) = 10ni−6 additional vias. So, the number of vias used in the layout of
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Figure 20 Cases for Lemma 6

I" is m+10
i=1
Σ
i =b

ni−6b.

Next consider an optimal solution to I". From this we can obtain a solution to I by eliminating the
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pin position extensions and crossover boxes used in going from I to I" and also eliminating the vias on

these. When eliminating vias from type A net segments, one is retained in case the number of vias on

the segment is odd. From Lemmas 2 through 5, it follows that exactly 10
i =1
Σ
i=b

ni−6b vias are eliminated in

this way. Furthermore, following this we have a feasible solution to I that uses 10
i=1
Σ
i =b

ni−6b fewer vias

than used by the optimal solution to I". Hence the optimal solution to I uses m vias iff that for I" uses

m+10
i =1
Σ
i =b

ni−6b vias. Since I" can be constructed from I in polynomial time and since 2CVM is NP-hard

[NACL89], it follows that 2CCVM is also NP-hard.

3. Complexity Of HVH CVM

We show that HVH CVM is NP-hard by showing that a polynomial time algorithm for HVH

CVM implies such an algorithm to determine whether or not a planar graph is 3 colorable. This latter

problem is known to be NP-hard [STOC83].

Theorem 2: The HVH CVM problem is NP-hard.

Proof: Let G be any planar graph. Consider any planar drawing of G. In this drawing, consider a vertex

v and all edges incident to do. Draw a narrow closed curve [EHRL76] that encloses more than half of

each edge incident to v (see Figure 21(b)). The closed curve is drawn so as not to touch any of the

remaining edges in G. These closed curves are drawn for every vertex in G. Figure 21(c) shows the

result for the planar graph drawing of Figure 21(a). The curves may now be rectilinearized (i.e.,

transformed so as to consist of horizontal and vertical segments only) and each closed rectilinear curve

opened at some point so as not to affect the inter curve intersections (Figure 21(d)) and such that no two

curves have overlapping horizontal or vertical segments (or portions thereof). If, now, we discard the

original graph, what remains is an instance of the HVH CVM problem in which each the open curves

specifies the topology of the layout for a two terminal net. The ends of the curve are the two terminals

of the corresponding net. The specified construction is easily seen to be of polynomial complexity.

Observe that two open rectilinear curves (and, in fact, even the original continuous curves) of the

construction cross iff the two vertices of G they are associated with are adjacent in G. Hence, the com-

plete layout of two nets can be assigned to the same layer iff the two corresponding vertices of G can be

assigned the same color. In other words, the constructed HVH CVM instance can be realized in 3 layers

and with no vias iff G is three colorable. So, HVH CVM is NP-hard.

From the construction of Theorem 2, it follows that the following restricted versions of the HVH
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Figure 21 Construction of Theorem 2

CVM problem are also NP-hard:

1) All nets in the HVH CVM instances are two terminal nets.

2) The HVH CVM instances have no horizontal or vertical segment overlaps.

3) The maximum junction degree is 2.

4) Vias are restricted to lie at junctions.

4. Observations

The via candidates of the input layout may be classified into the categories: unremovable, abso-

lutely removable, and possibly removable. An unremovable via is one which must be present in every

feasible via assignment. An absolutely removable via is one which is not present in any optimal via

assignment. All other via candidates are possibly removable.
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Consider the sublayout of Figure 22(a). The five wire segments u-y come from four different nets

and the sublayout contains just one via candidate Z. Since w crosses u and v, w must be assigned to a

different layer from u and v. Further, since u and v overlap, they must be assigned to different layers.

Hence, u,v, and w must be assigned to different layers. If the via candidate Z is eliminated, then both x

and y must be assigned to the same layer to maintain electrical connectivity. However, this cannot be

done in three layers without crossing u,v, or w. So, the via candidate Z is unremovable as far as three

layer layouts are concerned.

____________________________________________________________________________________
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Figure 22 Unremovable via

Unremovable vias can be identified by drawing the crossing graph of the layout. This graph was

defined in [CHAN89] to be an undirected graph in which each vertex represents a distinct wire segment

of the layout; there is a solid edge between two vertices iff the corresponding wire segments cross or

overlap; and there is a broken edge between two vertices iff two corresponding wire segments meet at a

via candidate. The crossing graph for the sublayout of Figure 22(a) is shown in Figure 22(b).

The removal of a via candidate modifies the crossing graph as such a removal results in the wire

segments that meet at the via candidate being combined into a single wire segment. So, if the via candi-

date Z of Figure 22(a) is removed, the vertices x and y of the crossing graph coalesce into a single ver-

tex. When two vertices x and y are coalesced, they are replaced by a single vertex xy, all edges previ-

ously incident on x or y are now incident on xy; and the broken edge between x and y is eliminated.

The resulting crossing graph is shown in Figure 22(c). This is the complete graph, K4, on four vertices.

Lemma 7: Let G be the crossing graph of an HVH CVM instance. Assume that G does not contain the

subgraph K4 comprised solely of solid edges. Let the broken edge (x,y) ∈ G represent the via candidate

Z. Z is an unremovable via candidate if the coalescing of vertices x and y results in a subgraph K4



20

comprised solely of solid edges.

Proof: The creation of K4 of solid edges requires that the wire segments corresponding to the four ver-

tices of K4 be assigned to different layers as these four wire segments cross each other. Hence there is

no feasible three layer assignment for these four wire segments. Hence Z is unremovable.

Figures 23(a) and (b) provide two examples of absolutely removable vias. We assume that both

subtopologies are part of a feasible instance of HVH CVM. We claim that the via candidate Z in each

example is absolutely removable. Consider Figure 23(a). No matter which layer x is assigned to, y can

be assigned to the same layer as y conflicts (i.e., overlaps or crosses) only with w and w cannot be

assigned to the same layer as x since x and w also conflict. In the case of Figure 23(b), every feasible

layer assignment assigns x and w to different layers. The segments v and y can be reassigned to the

same layer as x as they conflict only with w which cannot be in the same layer as x because of the over-

lap between x and w. As a result of the reassignment of x and y, the via candidate Z is eliminated.

____________________________________________________________________________________
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Figure 23 Absolutely removable vias Z

Lemma 8: Let Z be a via candidate and let x be one of the wire segments that meet at Z. Suppose that

every other wire segment, y, that meets at Z overlaps or crosses only wire segments w that also overlap

or cross x. Then, Z is absolutely removable.

Proof: Consider any three layer via and layer assignment for the given input topology. The wire seg-

ments that meet at Z can always be reassigned to the layer to which x is assigned as the segments with

which they conflict also conflict with x and so cannot be on the same layer as x. Hence the via candi-

date Z may be eliminated.

Via candidates that do not get classified as unremovable or absolutely removable by Lemmas 7

and 8 are classified as possibly removable.
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Let I be an instance of HVH CVM and let x be a wire segment of I. Let I’ be an instance that

results from the removal of x from I. If x can be added to every feasible layer and via assignment of I’

without increasing the number of vias, then x is a trivial wire segment.

Lemma 9: (a) Let x be a wire segment of an instance of HVH CVM. If x is connected to no other wire

segment and if all the wire segments with which x conflicts (i.e., overlaps or crosses) can be assigned to

at most two layers in any feasible assignment, then x is a trivial wire segment.

(b) If x is connected to other wire segments at only one of its two ends and if every wire seg-

ment with which x has a conflict also conflicts with one of the wire segments, y, to which x is con-

nected, then x is a trivial wire segment.

Proof: In case (a), x can be assigned to the layer that does not contain any of the wire segments with

which it conflicts and in case (b), x can be assigned to the same layer as y. Figures 24(a) and (b),

respectively, provide an example for cases (a) and (b).

____________________________________________________________________________________
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Figure 24 Examples for Lemma 9

Lemma 10: Consider the subtopology of Figure 25(a). In every three layer assignment wire segments

(a, b, c, and d) of this subtopology must be placed in layers 1 and 3 and the vertical segments (e and f)

in layer 2.

Proof: Suppose that one of a and b is assigned to layer 2. Without loss of generality, we may assume

that the other is assigned to layer 1. So, e and f must be assigned to layer 3. Hence, neither c nor d can

be assigned to layer 3. Since c and d overlap, they must be assigned to different layers. Without loss of

generality, we may assume that c is assigned to layer 1 and d to layer 2. The via Z passes through layer

2 and so makes contact with wire segment d resulting in infeasibility. Hence, neither a nor b can be

assigned to layer 2. Similarly, we may show that neither c nor d may be assigned to layer 2. Since a and
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b overlap, one is in layer 1 and the other is layer 3. Hence neither e nor f can be assigned to layers 1 and

3 and so must be assigned to layer 2.

____________________________________________________________________________________
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Figure 25 Subtopology for Lemma 10

By identifying the subgraph of Figure 25(b) in the crossing graph of the input layout, we can res-

trict certain wire segments to be in layer 2 and others to be in one of the layers 1 and 3.

4. Heuristic For HVH CVM

As indicated in Section 1, Chang and Du [CHAN88] and Chang, Jyu, and Feng [CHAN89] have

proposed heuristics for the 3CVM problem. While their development is not confined to HVH inputs,

their experimentation was limited to HVH CVM instances. The heuristic of Chang and Du [CHAN88]

attempts to reduce the number of vias by considering the vias in the initial layout one at a time. When a

via is considered, an attempt is made to eliminate it by modifying the layer assignment of some wire

segments. In the heuristic of Chang, Jyu, and Feng [CHAN89] wire segments rather than vias are con-

sidered one at a time. The order in which wire segments is considered is determined by a weighting

function. Suppose that wire segment x is being considered for layer assignment. Let m be the number of

layers to which the wire segments that cross or overlap with x and which have already been assigned to

a layer have been assigned. If m = 3, then a backtracking procedure is invoked to modify some layer

assignments so as to accomodate x. If m = 2. then there is only one layer to which x may be assigned

and it is assigned to this layer. If m < 2, then a priority function is used to determine which of the possi-

ble layers x is to be assigned.

In our heuristic, we process the horizontal tracks to which horizontal wire segments are assigned

from the outside to the inside. So, the tracks of the layout of Figure 26 are processed in the order Tr1,
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Figure 26 Example of a four track layout

Tr4, Tr2, Tr3. Since our heuristic does not make use of the initial layer assignment that may be part of

the input, our example of Figure 26 does not show this. When a track is processed, the horizontal net

segments assigned to it are assigned to layer one or three based on a greedy criteria that will be

specified later. Vertical net segments that have one end point on the track being considered and the

other on a previously considered track that is on the same side (upper or lower) of the layout region as

the current track are also assigned to a layer at this time. So, when track 1 of Figure 26 is considered,

the HWSs (horizontal wire segments) 12, 13, and 14 and the VWSs 3 and 5 are assigned to layers; when

track 2 is considered the segments 1, 2, 15, and 16 are assigned; and when track 3 is considered the seg-

ments 4, 7, 9, 11, 17, 18, and 19 are assigned to layers. Once all tracks have been processed in this way,

the unassigned vertical net segments are assigned to layers. Finally, there is a post processing step in

which some of the layer assignments are changed.

Our heuristic does not deal directly with HWSs. Rather, it works with horizontal net segments

(HNS). These are obtained by combining together adjacent HWSs from the same net that are assinged

to the same track. So, in the example of Figure 26, the HWSs 12, 13, and 14 constitute a single HNS.

Each of the remaining HWSs defines a distinct HNS. A high level description of our layer assignment

heuristic is provided in Figure 27.

We now present the details or steps S1-S4. First consider step S1. The HNSs in a track are

classified as either single or double. A single HNS is one which does not overlap with any other net
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____________________________________________________________________________________

{phase 1: track-by-track layer assignment}

for each track i in outside-to-inside order do
begin

S1: assign the HNSs of this track to layers;

S2: assign the VWSs that have one end point on track i,

the other end point on an already considered track,

and which do not pass the middle of the routing region;

end;

S3: assign the as yet unassigned VWSs to layers;

{phase 2: post processing}

S4: reassign HNSs in an effort to reduce the number of vias;

____________________________________________________________________________________

Figure 27 High level description of our heuristic

segment in the track. A HNS that is not a single HNS is a double HNS. In the example of Figure 26, the

HNSs (12, 13, 14) and 20 are single HNSs while 15-19 are double HNSs. If x is a double HNS, then we

compute a set X of HNSs in the same track as x by beginning with X = {x} and adding to x other HNSs

that overlap with one or more HNSs already in X. This addition of HNSs to X is continued until no

more HNSs can be added to X. So, if x = 17 (cf. Figure 26), then X = {17, 18, 19}. For every double

HNS x, the set X may be partitioned into two sets Ax and Bx such that the HNSs in Ax do not overlap and

those in Bx do not overlap. For the case x = 17, A17 = {17, 18}, and B17 = {19}.

For each single HNS, x, in the track under consideration, we compute n1 (n3), the number of via

candidates that can be eliminated by assigning x to layer 1 (3). This is done by considering the via can-

didates that are on x. Let Z be such a via candidate. Let V be all the VWSs (at most two) that connect to

Z. If all the HNSs that cross VWSs in V have been assigned to layers and if x and all the VWSs in V

can be assigned to layer 1 (3) with no conflicts then increase n1 (n3) by 1. In case x is a double HNS

then n1 (n3) is computed for the set X by determining how many of the via candidates on the HNSs of

X can be eliminated if the HNSs in Ax (Bx) are assigned to layer 1 and those in Bx (Ax) are assigned to

layer 3. For example, when track 2 of Figure 26 is being considered and x = 16, X = {15, 16}, A16 =

{15}, and B16 = {16}. Suppose that the HNSs {12, 13, 14}, and {20} have been assigned to layer 1. If

A16 = {15} is assigned to layer 1, then B16 = {16} must be assigned to layer 3. The via candidate at the

junction of 1 and 15 can be saved only by assigning these two segments to the same layer. However the
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VWS 1 cannot be assigned to layer 1 as it crosses the HNS {12, 13, 14}. For the via candidates at the

junctions of segments 6 and 16 and 2, 8, and 16 such a consideration is not made at this time as each

has a VWS (6 and 8, respectively) that crosses an unassigned track (i.e., track 3). So, n1 = 0. If A16 is

assigned to layer 3, then B16 must be assigned to layer 1. In this case the via at the junction of segments

1 and 15 is saved as the VWS 1 can be assigned without conflict to layer 3. So, n3 = 1. Under the condi-

tions described above, our heuristic would assign A16 to layer 3 and B16 to layer 1.

For a single HNS, x, nn1 (nn3) estimates the number of via candidates that might be saved by ass-

inging x to layer 1 (3). As in the case of n1 and n3, we consider the via candidates on x. Let Z be such a

via candidate that has exactly two VNSs connected to it and such that for one of these VNSs, y, all

HWSs that cross it have already been assigned to a layer and for the other VNS, z, there is at least one

HNS that crosses it and has not been assigned to a layer. If x, y, and z can be assigned to layer 1 (3)

without a conflict with any of the already assigned segments then nn1 (nn3) is increased by 1. When x

is a double HNS, nn1 and nn3 are defined in a similar way but by considering all the HNSs in X as for

the case of n1 and n3. Note that the via candidates Z that can contribute to the count of nn1 and nn3 are

different from those that can contribute to the count of n1 and n3. As an example consider the assign-

ment for track 2 of Figure 26 under the assumption of that {12, 13, 14} and 20 have been assigned to

layer 1. As before, assume x = 16, X = {15, 16}, A16 = {15}, B16 = {16}. The via candidate at the junc-

tion of segments 2, 8, and 16 could not be considered in the count for n1 or n3 but it can be so con-

sidered in the count for nn1 and nn3. If A16 is assigned to layer 1, then B16 is assigned to layer 3. Seg-

ments 2 and 8 can be assigned to layer 3, without crossing any HNS already assigned to layer 3. So, nn1

= 1. However, nn3 = 0 as if A16 is assigned to layer 3, then B16 is assigned to layer 1 and if the VWS 2 is

assigned to layer 1 it will cross the preassigned HNS {12, 13, 14} that is on this layer.

A third set of counts nnn1 and nnn3 may also be defined for each single HNS x. Consider the set,

Y, of VWSs that cross x. For each z ∈ Y increase the nnn1 (nnn3) by 1 iff all the HNSs that both cross z

and are assigned to a layer have been assigned to layer 1 (3). The extension to the case when x is a dou-

ble net segment is analogous to the extensions for the cases of n1, n3, nn1, and nn3. As an example, we

again consider the assignment of track 2 of Figure 26 under the same assumptions as before. Since X =

{15, 16}, we consider the VWSs that cross both 15 and 16. So, Y = {4}. The only HNS that crosses 4

that has already been assigned a layer is {12, 13, 14}. Since this has been assigned to layer 1 and since

A16 = {15}, nnn1 = 1. Also, nnn3 = 0.

The counts described above are used in the implementation of step S1 of Figure 27. A high level

description of this implementation is given in Figure 28. As can be seen, nn1, nn3, nnn1, and nnn3 are

used only as tie breakers and so need to be computed only in case of a tie (i.e., nn1 and nn3 are to be
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computed only if n1 = n3; nnn1 and nnn3 are needed only when n1 = n3 and nn1 = nn3).

____________________________________________________________________________________

Let x be an unassigned HNS on the current track;

if x is a single HNS then [let X = {x}, Ax = {x}, and Bx = ∅]

else let X, Ax, and Bx be as defined for a double HNS;

case

(n1< n3) or ((n1= n3) and (nn1< nn3) or ((n1= n3) and (nn1= nn3) and (nnn1< nnn3)):

assign the HNSs in Ax to layer 1 and those in Bx to layer 3;

else assign the HNSs in Ax to layer 3 and those in Bx to layer 1;

endcase

____________________________________________________________________________________

Figure 28 Step S1 of Figure 27

For step S2 of Figure 27, we consider only those unassigned VWSs that have one end point on the

current track, the other on a previously considered track, and which do not pass through the middle of

the routing area. These VWSs have the property that all HNSs that cross them have already been

assigned to a layer. If any of these can be assigned to layer 1 or 3 without a conflict they are so

assigned. Otherwise, they are assigned to layer 2. When the HNSs of track 2 of Figure 26 have been

assigned to layers, we consider the VWSs 1 and 2. The VWSs 6 and 8 are not considered as they pass

through the middle of the routing region (i.e., from the top half to the bottom half). If {12, 13, 14} and

{16} have been assigned to layer 1 and {15} to layer 3, then VWS 1 can be assigned to layer 3 without

conflict. However, VWS 2 cannot be assigned to either layer 1 or 3 without conflict. So, it is assigned to

layer 2 in step S2.

In step S3 the unassigned VWSs are considered one at a time (in any order) and assigned to layer

1 or 3 if possible (i.e., if such an assignment creates no conflict). Otherwise the VWS is assigned to

layer 2. In step S4 we attempt to further reduce the number of vias by moving all segments associated

with a via from layers one and three to layer 2. This can be done only if these segments do not cross or

overlap with segments already in layer 2.

By using appropriate data structures, our heuristic can be implemented so as to run in O(N+C)

time where N is the number of wire segments (both horizontal and vertical) and C is the number of

crossovers between HWSs and VWSs. The observed run times can be reduced somewhat by not

attempting to eliminate unremovable vias (Lemma 7); noting that absolutely removable vias (Lemma 8)

can be eliminated easily; by considering trivial wire segments in the end (i.e., they are eliminated from
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the initial layout and reintroduced after the heuristic has been run) and by observing the restriction of

certain wire segments to layer 2 or to layers 1 or 3 (Lemma 10).

5. Backtracking Algorithm

We propose a standard backtracking algorithm [HORO78] to obtain an optimal solution. For this

we need to specify the order in which the net segments are to be considered for layer assignment and

also the bounding functions to be used.

Net Segment Ordering

By using Lemma 10 certain VWSs can be restricted to be on layer 2 and certain HWSs can be res-

tricted to be on layers 1 or 3. As a result of this, only segments not restricted to layer 2 need to be

ordered for layer assignment. Furthermore, trivial net segments can be excluded as these may be easily

assigned to layers in the end. For HWSs restricted to be on layers 1 or 3 a two way branching of the

search tree is used while a three way branching is used for the remaining segments. The segment order-

ing is obtained in the following way. If a segment is required to be assigned to a particular layer as a

result of layer assignments already made, then it is considered next. For example, a HWS may be

required to be on layer 3 because it overlaps with one already assigned to layer 1 and it crosses a VWS

assigned to layer 2. If a next segment cannot be chosen in this way, then the unassigned segments are

assigned a priority and the one with highest priority selected. In case of a tie, a tie breaker is used. For

each segment, we compute the number of different layers to which the segments that cross it or overlap

with it have been assigned. This is the priority of the segment. Note that the priority is either 0 or 1

because a priority of 2 would mean this segment can be assigned to only one layer feasibly. So it should

have been selected as the next segment without a priority computation. A priority of 3 would mean that

the segment cannot be assigned to any layer without conflict. So, the current partial assignment is

infeasible and should be aborted.

For the tie breaker, we use the number of unassigned HWSs and VWSs that cross or overlap with

it. A segment with a highest tie breaker value is used as the next segment. If there is still a tie, it is bro-

ken arbitrarily. Further when there is a choice, layers are considered in the order 2, 1, 3.
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Bounding Functions

The infeasibility criteria mentioned above is used. Additionally, the unremovable vias are not

used in the count for the number of vias in the current partial solution. I.e., we are only concerned with

the vias in the possibly removable category that are actually used in the current layer assignment. If this

equals or exceeds that of the best solution found so far, the current solution may be aborted.

The backtracking algorithm just described may be converted into an ∈-approximation backtrack-

ing algorithm by aborting the current solution if the number of possibly removable vias used by it plus

the number of unremovable vias exceeds (1+∈)(number of unremovable vias + number of possibly

removable vias in the best solution found so far).

6.Experimental Results

We programmed our heuristic and backtracking algorithm in Pascal and conducted experiments

on an Apollo 3500 workstation. For test data we used the data of Chang, Jyu, and Feng [CHAN89].

Table 1 gives the characteristic of the 11 instances used in our experiments. The first column gives the

number of wire segments in the instance and the second gives the number of vias in an optimal three

layer assignment. These optimal values were obtained using our backtracking algorithm. Values with

an asterisk are the best values obtained. These were obtained by our heuristic as our backtracking algo-

rithm was unable to do better in the alloted (30 hours) time. These values may not be optimal. The third

column gives the number of via candidates in the instance; the fourth gives the number, Nr, of abso-

lutely removable vias; the fifth column gives the number, Nu, of unremovable vias; and the number of

trivial wire segments is given in column 6. The last two instances of Table 1 correspond to Deutsch’s

difficult example [DEUT83].

Table 2 gives the number of vias in the solution generated by five different algorithms and the

time taken by each. These figures are provided only for the eight largest instances of Table 1. The

column labeled Optimal Alg. is for backtracking, the next is for the 90% approximate version of back-

tracking (i.e., ∈ = 0.9), the next column is for the heuristic of Section 4, the next is for a heuristic that

differs from that of Section 4 only in that the tracks are considered in an inside-to-outside order rather

than the outside-to-inside order. The last column is for the heuristic of Chang, Jyu, and Feng

[CHAN89]. In this column, the times are on a Sun3/110c workstation and the programming language

used is C. This column is taken from [CHAN89]. We do not present the corresponding figures for the

heuristic of Chang and Du [CHAN88] as Chang, Jyu, and Feng [CHAN89] have established that their

heuristic is superior. As can be seen from Table 2, our outside-to-inside heuristic outperforms the
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WSs Opt.Vias Via Cand. Nr Nu Trivial WSs

29 1 20 11 0 13

35 0 23 20 0 30

42 1 28 11 0 22

101 33 57 11 27 18

121 48 68 9 47 15

190 77 107 16 77 23

220 96 125 22 91 32

258 90 150 27 78 44

316 104∗ 180 36 67 64

520 206∗ 290 32 163 49

586 238∗ 347 33 186 73

* value obtained by our heuristic

____________________________________________________________________________________

Table 1 Instance characteristics

remaining heuristics in seven of the eight cases. The solution is optimal for only two of the five

instances for which the backtracking algorithm was able to complete in 1 hour. The run time of the

outside-to-inside heuristic is also quite satisfactory.

7. Conclusions

We have shown that the 2CCVM and HVH CVM problems are NP-hard. A new heuristic and a

backtracking algorithm have been proposed for the HVH CVM problem. The backtracking algorithm

may also be used for three layer non HVH CVM instances. It is recommended for small instances (say

with 200 or fewer segments) and the heuristic (outside-to-inside) is recommended for larger instances.
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Optimal Alg 90% Approx. Alg Heur.(Out-to-In) Heur.(In-to-Out) Heur. by Chung

NSs vias time vias time vias time vias time vias time

101 33 1.8s 36 1.19s 40 .36s 40 .37s 34 .16s

121 48 1.1s 50 .63s 48 .43s 52 .44s 50 .22s

190 77 1.4s 82 .87s 78 .63s 80 .64s 83 .58s

220 96 3.1s 100 1.43s 96 .72s 98 .74s 99 .58s

258 90 17m 90 1.47m 94 .79s 102 .80s 105 .75s

316 114∗ 1h∗ 117∗ 1h∗ 104 .87s 114 .89s 108 1.3s

520 219∗ 1h∗ 218∗ 1h∗ 206 1.6s 213 1.6s 214 2.5s

586 255∗ 1h∗ 267∗ 1h∗ 238 1.7s 242 1.8s 245 2.7s

* the value after one hour of execution

____________________________________________________________________________________

Table 2 Experimental results
(s:seconds, m:minutes, h:hours)
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