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Abstract-The problem of state reduction in a finite state ma- 
chine (FSM) is important to reduce the complexity of a sequen- 
tial circuit. In this paper, we present an efficient algorithm for 
state minimization in incompletely specified state machines. 
This algorithm employs a tight lower bound and a fail-first heu- 
ristic, and generates a relatively small search space from the 
prime compatibles. It utilizes efficient pruning rules to further 
reduce the search space and finds a minimal closed cover. The 
technique guarantees the elimination of all the redundant states 
in a very short execution time. Experimental results with a large 
number of FSM’s including the MCNC FSM benchmarks, are 
presented. The results are compared with other recent work in 
the area. 

I. INTRODUCTION 
HE REMOVAL of redundant states is important to T reduce the circuit complexity in the design of sequen- 

tial circuits. In a completely specified finite state machine 
(FSM) with n states, a solution can be achieved success- 
fully in O ( n  log n )  time [22]. In such FSM’s, the merging 
of equivalent states yields a unique minimal solution [27]. 
A state machine where transitions under some inputs lead 
to unspecified states or unspecified outputs is called an 
incompletely specified finite state machine (ISSM) [ 161, 
[23]. The state minimization problem for such a machine 
is, unfortunately, NP-complete [ 111, [30]. A minimal so- 
lution obtained in such a case may not be unique [ 131. 
This problem has been studied for many years [ 121, [ 131, 
[27], [3 1 I .  In recent years, because of the development of 
automated FSM synthesis systems [ l l ,  [9], [ lo] ,  [28], 
there has been a renewed interest in this problem [2], [ 171, 
1201, W I ,  W I .  

In this paper, we present a new algorithm for the state 
minimization problem. This algorithm constructs a search 
tree from prime compatibles. It efficiently builds up a rel- 
atively small search space by utilizing a tight lower bound 
derived from maximal incompatibles. Efficient pruning 
criteria are developed to further prune the search space. 
The algorithm is capable of removing all the redundant 
states in a given FSM and guarantees a minimal FSM so- 
lution. This algorithm can generate all the minimal FSM 
solutions with almost no time overhead. It then selects the 
FSM having minimum implementation area. Our experi- 
ments with practical FSM’s, including MCNC FSM 
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benchmarks, show that the technique is effective in re- 
ducing time and memory requirements for large size 
FSM’s. These results are compared with recent experi- 
mental results by Kannan and Sarma 1201 and by Hachtel 
et al. [17]. 

The rest of this paper is organized as follows. In Sec- 
tion 11, we briefly overview the previous work in the area. 
Section 111 gives some basic definitions and notations that 
simplify our discussion. In Section IV, we describe in de- 
tail an efficient algorithm for state reduction. Experimen- 
tal results with industrial FSM’s, including MCNC 
benchmarks, are illustrated in Section V. Section VI con- 
cludes this paper. 

11. PREVIOUS WORK 

Paul and Unger [27] and Unger [33] developed a gen- 
eral theory of ISSM’s and presented a systematic ap- 
proach for generating maximum compatibles and minimal 
closed covers. Since then many researchers have studied 
the reduction of this enumerative tabular procedure pro- 
posed by Paul and Unger. Grasselli and Luccio [13] 
solved the binate covering (i.e., state minimization) prob- 
lem by an integer linear programming approach. Luccio 
[24] further extended the definition of prime compatibility 
classes to simply the procedure. The chain generating 
method developed by Meisel [25] generates all the paths 
and chains unconditionally. This leads to an unacceptably 
large search space in case a machine has a large number 
of prime compatibles. DeSarkar et ul. [8] derived ali the 
irredundant prime closed sets and chose the minimal one 
that covers the machine. This method becomes inefficient 
when a large number of irredundant prime closed sets ex- 
ists. 

Kella [21] proposed a method that avoids the genera- 
tion of a complete set of maximal compatibles by adding 
new states recursively. This method generates all possible 
reduced machines so that no machine with fewer states is 
overlooked. House and Stevens [19] and Curtis [7] de- 
veloped reduction rules to reduce the size of a covering- 
closure table proposed by Grasselli and Luccio [ 131. Ben- 
netts [3] developed a method of deriving prime compati- 
bles and corresponding implications without deriving the 
maximal compatibles. Pager [26] proposed a method that 
dealt with only a very special class of FSM’s (i.e., where 
a minimal closed cover can be derived from maximal 
compatibles only). Yang’s method [35] eliminates all the 
implication unrelated and superseded compatibles, which 
substantially reduces the number of compatibles under 
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consideration. His method does not guarantee that at least 
one minimal closed cover can be derived from the re- 
maining set of compatibles [31]. Biswas [4] proposed a 
technique based on implication trees. The approach is 
suitable for small FSM's, where the minimal closed cover 
contains at least one maximal compatible. Biswas later 
modified this method to account for machines where none 
of the solutions contain a maximal compatible [ 5 ] .  Rao 
and Biswas [31] applied some deletion rules to the set of 
compatible classes and obtained a relatively small set of 
symbolic compatibles. A minimal solution was then ob- 
tained from these symbolic compatibles. 

Perkowski and Nguyen [29] gave a backtracking algo- 
rithm that checks partially generated solutions using dy- 
namic rules. This algorithm employs an optimum variant 
to find the optimality of the solutions. For large size 
FSM's, the method requires excessive computing time. 
Avedillo et al. [2] derived a reduced FSM by applying a 
sequence of transformations to internal states in a given 
FSM. Kannan and Sarma [20] proposed a simple heuristic 
algorithm to find a minimal closed cover. Their approach 
yields a suboptimal solution in some cases and suffers from 
excessive computing time in the case of large FSM's. Re- 
cently, Hachtel et al. [ 171 described the exact and heuris- 
tic algorithms for minimizing incompletely specified fi- 
nite state machines which yield optimal results in most of 
the cases. 

Following Meisel's approach [25] in generating a 
search tree, our algorithm employs a tight lower bound 
and an ordered generating sequence to create a smaller 
search space. Efficient pruning criteria are developed to 
reduce further the search space. Compared to the Per- 
kowski-Nguyen backtracking algorithm [29], which em- 
ploys an optimum variant to prove the optimality, in our 
algorithm, the first path on the search tree satisfying the 
covering and closure constraints is guaranteed to be a 
minimal FSM solution. 

111. PRELIMINARIES 

The external behavior of an FSM can be described by 
a state transition graph (STG). An STG can be repre- 
sented by a flow table or a cube table. The flow table 
representation is a two-dimensional array where columns 
correspond to the input states and rows correspond to the 
internal states. The entries are ordered pairs representing 
the next internal state and the output. In a cube table rep- 
resentation (e.g., MCNC FSM benchmarks), each row 
corresponds to a transition edge of the STG. Thus each 
entry specifies an input, the present state, the next state, 
and the output. Each nontrivial entry of a flow table can 
be mapped as a corresponding entry in the cube table. In 
the following discussion, we will use a simple state ma- 
chine example to illustrate our algorithm. The flow table 
of the FSM example ungerex is shown in Table I [33]. 

For a finite state machine '312 with n states, let C, denote 
the ith compatible class and let S = {Cl, C2 * * . } denote 
a set of compatible classes. Following basic notations in 
(231. [24], [33], we now give some basic definitions. 

TABLE I 
FLOW TABLE OF FSM EXAMPLE ungerex 

Dejinition 1 :  States p and q are compatible, if and only 
if, for every possible input sequence applicable to p and 
q, the same output sequence is produced, regardless of 
whether p or q is an initial state. If the output sequences 
differ, then p and q are called incompatible. 

Dejinition 2: A set of states Q is compatible, if and 
only if, for every possible input sequence, no two con- 
flicting output sequences will be produced, regardless of 
which state is the initial state. 

Dejinition 3: A compatible class C, covers compatible 
class C,, if and only if, every state contained in C, is also 
contained in C,. 

Dejnition 4: A compatible class is said to be maximal 
if it is not covered by any other compatible class. Simi- 
larly, an incompatible class is said to be maximal, or a 
maximal incompatible (MI), if it is not covered by any 
other incompatible class. 

In the FSM example ungerex, there are five maximal 
compatibles, i.e., {hfe, ifd, ged, fed, cba}, and twelve 
maximal incompatibles, i.e., {ihgc, gfc, iec, hdc, ihgb, 
gfb, ieb, hdb, ihga, gfa, iea, hda}. 

Dejinition 5: Under input i ,  a set of states Q implies 
another set of states R ,  if R is a set of next states for Q. 
If Q is a compatible, then R is called an implied compat- 
ible of Q under input i .  

Dejnition 6: A closure class of compatible C,, denoted 
as @(C, ) ,  is a set of the implied compatibles of C; such 
that 

1) Each implied compatible has more than one state 
2) Each implied compatible is not contained in Cj 
3 )  Each implied compatible is not contained in any 

A closure class is obtained by the repeated application of 
implication transitivity for all inputs. 

Dejnition 7: A compatible class C j  is said to be prime 
if there exists no other compatible class Cj such that 

1) C, covers C, 
2) Every member of closure class + (C') is contained 

in at least one member of closure class @(CJ 
For the FSM example ungerex, the prime compatibles and 
their corresponding closure classes are shown in Table 11. 

Dejinition 8: A compatible C, in a set of compatibles 
S is said to be unimplied if neither Ci nor any of its subsets 
are implied by any member of S. 

Definition 9: An extended closure class of S ,  denoted 
as @(S), is a set of the implied compatibles of S such that 

1) Each implied compatible has more than one state 

other member of the closure class 
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TABLE I1 
PRIME COMPATIBLES A N D  CORRESPONDING CLOSURE CLASSES 

2) Each implied compatible is not contained in any 
compatible of S 

3) Each implied compatible is not contained in any 
other member of the extended closure class 

An extended closure class is obtained by the repeated ap- 
plication of implication transitivity for all inputs. 

Dejinition 10: A set of compatibles S,i dominates ( 5 ) 
another set of compatibles S, if every compatible of S i  is 
contained in at least one compatible of S,. 

In the FSM example, set SI  = {ifd, hfe, ged, a} and set 
S, = {ifd, hfe, ged, cba} have the extended closure class 
+(SI )  = 0 and a(&) = {fed}, respectively. 

The set of compatibles S2 dominates another set of 
compatibles S I ,  i .e.,  SI  5 S2, since every member of S ,  
is contained in at least one member of Sz. 

Dejinition 11: A set of compatibles covers machine 312 
if it contains all the states of the machine. 

The weight of S, denoted as w(S) ,  is the number of 
distinct internal states covered by compatibles in S. If S 
covers the machine 312, then w ( S )  is equal to n .  

Dejinition 12: A set of compatibles is closed if for 
every compatible contained in the set, all its implied com- 
patibles are also contained in the same set. The extended 
closure class of a closed set of compatibles S is empty, 
i.e.,  @(S) = 0. 
For example, the set of compatibles S = { ifd, hfe, ged, 
cba} covers FSM example ungerex, since every state of 
ungerex is covered by at least one of the compatibles in 
S. Thus, the weight of set S, i.e., w ( S )  = 9. 

The extended closure class of the sct S = {ifd, hfe, 
ged, cba, fed} is empty, i.e.,  +(S) = 0. Thus, the set 
of compatibles S is closed. 

Dejinition 13: A set of k compatibles S is called a min- 
imal closed cover if and only if S satisfies 

1) Covering condition: S covers the machine 312, i .e.,  

2) Closure condition: S is closed, i.e.,  +(S) = 0. 
3) Minimal condition: A set of k - 1 or less compati- 

bles does not satisfy both covering condition and 
closure condition. 

A minimal closed cover is a minimal FSM solution, i.e., 
a reduced FSM. 

In FSM example ungerex, S = {ifd, hfe, ged, cba, fed} 
is a minimal closed cover, since it satisfies the covering 

w ( S )  = n .  

condition, the closure condition, and the minimal condi- 
tion. 

The goal of state minimization is to find an equivalent 
FSM, i.e., a minimal closed cover, that simulates the 
given external behavior with a reduced number of states. 
The state minimization process normally consists of the 
following steps: 

Detection of redundant states which can be merged, 
producing pairwise compatibles. 
Derivation of prime compatibles from painvise com- 
patibles (in the case of completely specified FSM’s, 
the solution can be found only from maximal com- 
patibles). 
Selection of a set of compatibles from prime com- 
patibles which satisfies the covering constraint, the 
closure constraint, and the minimal constraint. 
Ensuring that the functional behavior of the reduced 
FSM is equivalent to the original one. 

IV.  EFFICIENT ALGORITHM FOR FINDING A MINIMAL 
FSM 

The algorithm starts by generating all pairwise com- 
patibles and incompatibles [23] from FSM cube table rep- 
resentation (e.g., the KISS format (361). We employ Ben- 
netts’s approach [3] to derive compatible classes directly 
from the list of pairwise compatibles. Some of the com- 
patible classes are then removed by utilizing Luccio’s 
deletion rules [24]. The remaining compatible classes are 
called prime compatibles, which are used to generate the 
search tree. 

In the following discussion, we will describe the lower 
bound on the number of states in  a reduced FSM, the gen- 
erating sequence for the construction of the search tree, 
search tree generation and pruning, and the algorithm to 
search for a minimal FSM solution. 

4.1.  Lower Bound 
A set of k incompatible states 41, 4 2  . . - , qk must be 

covered by k compatible classes, since a single compati- 
ble class cannot cover two incompatible states. In addi- 
tion, the compatibles in a minimal closed cover must cover 
all the internal states of the given FSM. Hence, a maximal 
incompatible containing a maximum number of states de- 
termines the limit to further state reduction. The lower 
bound‘ on the size of the reduced FSM, denoted as Q ,  is 
equal to the number of states contained in a maximal in- 
compatible with the maximum number of states. The 
maximum incompatibles (i.e., maximal cliques) are de- 
rived from the incompatibility graph using Carraghan’s 
maximal clique algorithm [6]. 

Example: In FSM example ungerex, there are three 
maximal incompatibles having a maximum number of 
states, i .e.,  ihgc, ihgb, and ihga. This implies that the 
maximum number of states in a maximal incompatible is 
four. Thus, the lower bound Q on the size of the minimal 
closed cover is four. 

‘This lower bound does not account for the closure constraint; thus, in 
some cases, a closed covering of this minimal size may not be possible. 
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thib 
ihga 

4.2. Generating Sequence 

4.2.1. Selecting a Maximal Incompatible as a Gener- 
ating Sequence 

A generating sequence is an ordered sequence of states 
in a maximal incompatible that contains the maximum 
number of states and generates a minimum number of 
nodes in the search tree. The generating sequence, de- 
noted as S I ,  s2, s3 * * . sQ, is used to determine the priority 
of the levels of the search tree. Each level 1 corresponds 
to a state s, in the generating sequence. The nodes at level 
I of the search tree are determined by the prime compat- 
ibles that cover the state s[ in the generating sequence. 

The weight of a state qJ, denoted as w(qJ), in a maximal 
incompatible is equal to the number of prime compatibles 
covering state qJ. The total number of nodes, which is also 
referred to as the weight of maximal incompatible, de- 
noted as w(MI), equals @M'] w(q,). 

It is possible that the number of states in more than one 
maximal incompatible equals the lower bound Q .  In such 
a case, the maximal incompatible having the least weight 
w (MI) (generating the minimum number of nodes) is cho- 
sen as the generating sequence. If the weights of two or 
more maximal incompatibles are the same, then the ties 
are broken arbitrarily and any one of them is chosen as 
the generating sequence. 

Example: For FSM example ungerex, the maximal in- 
compatibles having maximum number of states, and their 
corresponding total number of nodes are shown in Table 
111. Three maximal incompatibles, i .e.,  ihgc, ihgb, and 
ihga, can be chosen as the generating sequence. Each will 
generate an equal number of nodes, i.e., twelve. In such 
a case, an arbitrary choice is made, and the maximal in 
compatible ihga is chosen as the generating sequence. 

4.2.2. Ordering States in the Generating Sequence 
Pruning is more effective at a high level of a search 

tree. Thus, the states of the generating sequence are or- 
dered ascendingly in terms of their weights, so that a node 
with fewer children nodes is selected first to construct the 
search tree (fail-first heuristic [14], [15], [18]). If two 
states in the ordered generating sequence have equal 
weights and if the second state has a higher chance of 
pruning the nodes, then we interchange their order. In 
most instances, the swapping of the order results in a sub- 
stantial reduction in the number of nodes in the search 
tree. 

Example: For FSM example ungerex, the weight of 
states in the generating sequence ihga are 

w ( i )  = w(h)  = 1, w ( g )  = 3, w(a)  = 4. 

~, , ~I I ~-,  . ~, 
w ( i ) = l , w ( h ) = l , w ( g ) = 3 , w ( b ) = 4  12 
w ( t ) = l , w ( h ) = l , w ( g ) = 3 , w ( a ) = 4  12 

State i being least in weight is ordered at first position, 
followed by state h ,  state g ,  and state a in that order. States 
i and h have equal weights, i.e., one. But none of them 
can prune the nodes, since each generates only one node, 
i.e.,  ifd and hfe, respectively. Thus, the order of state i 
and state h remains unchanged. The ordered generating 
sequence for FSM example ungerex is ihga. 

The obtained sequence of state variables in the maximal 

TABLE I11 
M A X I M A L  INCOMPATIBLES HAVING MAXIMUM NUMBER OF STATES 

[ Maximal Incompatible (MI) I Weight of Each State w(q,) Weight w(M1)  
I ihoc I wulil = 1.wulhl = l .wfol  = 3.wfcl = 4 I 12 I 

incompatible is called an ordered generating sequence 
(OGS), denoted as s I s2s3  . . sn. The algorithm gener- 
ate-sequence, shown in Fig. I ,  takes the set of maximal 
incompatibles and the set of prime compatibles as inputs 
and produces an OGS. 

4.3. Search Tree Generation 
In this section we describe the search tree generation 

process. The search tree is constructed to find a minimal 
solution. The OGS and the lower bound on the size of a 
reduced FSM are used to generate the search tree. In the 
rest of the paper, let 

A node on the search tree represent a compatible. 
The kth node on level I is denoted by q k .  
A path on the search tree represent a set of compat- 
ibles. A path consisting of 1 nodes (from the root 
node to the k th node on level I )  is denoted by path,, k .  

Nodes in the search tree are comprised of prime compat- 
ibles. The search tree is generated level by level in terms 
of the OGS (sIs2s3 . sQ) ,  where w(s I )  5 w(sJ 5 * . * 

5 w(sQ). There are Q states in the generating sequence, 
and each state s, is associated with the corresponding level 
1 of the search tree. A search tree generated by such a 
method has fewer children nodes attached to a node at the 
higher levels than at the lower ones, facilitating efficient 
pruning. The tree generation process starts at root level 
(1 = 0). Each node at the current level 1 is expanded to 
the next lower level (1 + 1) by choosing prime compati- 
bles covering the state sI + of the generating sequence as 
its children. The nodes are expanded level by level until 
all Q state variables in the generating sequence are used. 
Thus, each node at level 0 spans a path from the root node 
consisting of exactly Q compatibles. 

Example: For FSM example ungerex, the generating 
sequence derived in the previous section was ihga. Thus, 
states i, h,  g ,  and a of the generating sequence are asso- 
ciated with the first, second, third, and fourth levels of 
the search tree, respectively. The prime compatibles con- 
taining states i ,  h ,  g ,  and a are shown in Table IV. 

We start with an empty node at root level (I = 0). There 
is only one node at the first and second levels of the search 
tree, namely ifd and hfe. There are three nodes, i.e., ged, 
gd, and ge, at the third level. Each of these nodes will 
have four children nodes, i.e.,  cba, ba, ca, and a ,  at the 
fourth level. Thus, in total there are twelve nodes at the 
fourth level of the search tree. The tree generation process 
stops as the four states in the generating sequence, i .e . ,  
i ,  h ,  g and a ,  have been used. The search tree generation 
process for this machine ungerex is illustrated in Fig. 2.  
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I I, : ith State in OGS 

Input : A set of maximal incompatibles. Generating Roo( Node 

Output : An ordered generating sequence (OGS). 

Procedure generate-sequence( ) [ 

Level i : A set of prime compatibles. Sequence 

s1=i - - - - - - - - ifd - - - - - - - - 1=1 
(ifd) And the lower bound R on the size of the reduced FSM ; 

for each maximal incompatible M I  with number of states equal to R { S2=h - - - - - -if,- - - - - - 1=2 

n W e )  
compute the weight of each state tu (q j )  in M I  ; 

compute the weight of MI as v ( M r ) = n  w ( e )  ; 

1=3 ged - - - - -  & s3=g - - - - - ,=I 

And ) a maximal incompatible (MI) having R states and minimum weight w(M1); k e d , g d , g e )  /fi\ ' . // \ 
sort the states of this maximal incompatible in the ascending order of their weights , 
if two states q. and q, have equal weights ( 

,X: ca ba cba - - - ' 1 4  - - -  1' compare the chances of q, and qj to prune the nodes */ s4 =a 

1=5 
\ 

And the sets of prime compatibles P, and P, containing states q. and q, ; (cba ba,ca,a) ' a 
ba cba 

assign weights to P. and P>, equal to the number of prime compatibles, 

if the first weight is larger 
that are contained in the rest of their members ; 

AMinimal fed _ _ _ _  
1 FSM Solution 

then interchmge the order of state q, and state q, ; 

Prime Compatibles Containing State s, 
ifd 
h f e  
ged, gd, ge 
A, ba, a, (1 

return the states of ordered maximal incompatible MI 
as the states of OGS (SISZSI.. . sn) ; 

1 
Fig. 1. Algorithm to derive an ordered generating sequence 

In the following discussion we present the rules for 
search tree pruning. 

4.4. Pruning Criteria 
The search space generated by the tree generation pro- 

cess described in the previous section can be relatively 
large in case of a large FSM. In this section, we describe 
the pruning criteria used to reduce the search space. Some 
redundant nodes in the search tree can be deleted by com- 
paring subsets of compatibles. The pruning rules ensure 
that the covering condition and closure condition of a de- 
leted node are covered by some other nodes. 

Let S, = { C , ,  C2, a * * , C,_ I ,  C,} be a set of com- 
patibles, which is shown in Fig. 3 as path, ,. Assume that 
the end node C, of path,,, has two children nodes, C, and 
C,. The compatible sets S, ( { C , ,  C2, - , C,- I ,  C,, C,}) 
and S, ({Cl, Cz, * . * , Cr-1, Cr, C,}) f o m p a t h / + i , ,  and 
path,, I , J ,  respectively. Node C, deletes C, with respect to 
the compatible set S, if all the conditions in either of the 
following two rules are satisfied. 

Rule 1 
Condition I .  1: C, covers all the states contained in C,, 
i.e., C, C C,. 
Condition 1.2: The extended closure class of S, domi- 
nates the extended closure class of S I .  That is, 

Fig. 2 .  Search tree for FSM example ungerex. 

ROM Node 

, @  

level l+l-  - - - - - - - - - - 

Fig. 3 .  Pruning a node in the search tree 

Proof: Let S be a set of compatibles containing all 
the compatibles in S,, i .e. ,  {S,} U C, G S. Assume that 
S is a minimal closed cover, i.e., weight w ( S )  = n and 
the extended closure class @ (S) = 0 (Definition 13). If 
CJ in S is replaced2 by a compatible class C, such that CJ 
c C, (Condition l . l ) ,  then the covering condition of S 
will not be affected, i.e., w({S\C,} U C,) = n.  If each 
number of the extended closure class of {S,) U C,, is 
contained in at least one member of the extended closure 
class of {S,} U C,, i .e. ,  @(S,) I '(S,) (Condition 1.2), 
then replacing C, by C, will not affect the closure condi- 
tion of S, i.e., @({S\CJ} U C,) remains empty. The num- 
ber of compatibles in S remains unchanged if C, is re- 
placed by C,, thus the minimal condition will not be 
affected. In summary, compatible C, can be deleted with- 
out affecting the chances of finding the minimal closed 
cover, if both Conditions 1.1 and 1.2 are satisfied. 0 

Rule 2 
Condition 2.1: If C, does not cover all the states in CJ 
then these uncovered states should be covered by the 
set of compatibles S, (i.e., path,. ,). 
Condition 2.2: CJ is an unimplied compatible. 
Condition 2.3: The extended closure class of S, domi- 

*S\C, is the set of compatibles obtained by removing compatible C, from 
@(C;) 5 '(S, U c,) U s,. compatibles in S .  
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nates the extended closure class set of Si. That is, 
+(S,) 5 a@,). 

Pro08 Let S be the set of compatibles containing all 
the compatibles in S j ,  i.e., {S,.} U C, E S. Assume that 
S is a minimal closed cover, i .e.,  w ( S )  = n and +(S) = 
0 (Definition 13). If C, in S is replaced by a compatible 
class C, such that all the states of C, not covered by C, are 
covered by S, (Condition 2. I ) ,  then Si covers the same 
states as S j .  This ensures that the covering condition of S 
will not be affected, i .e . ,  w({S\C,}  U C;)  = n.  If the 
extended closure class of { S\C,} contains C, (or its sub- 
set) as its member, then replacing C, by C, may affect the 
closure condition of S,  i.e., the extended closure class 
@(S) may no longer be empty. Compatible Cj being un- 
implied (Condition 2.2) ensures that neither C’ nor any of 
its subsets are implied by any of the prime compatibles 
(Definition 8) .  Thus, Condition 2.2 ensures that closure 
condition +(S) = 0 will not be violated. In addition, if 
each member of the closure class of the set of compatibles 
{ S,.} U C, is contained in at least one member of the clo- 
sure class of {S,} U C,, i.e.,  4 ( S j )  5 +(S,) (Condition 
2.3), then replacing C, in S by Ci will not affect the clo- 
sure condition of S ,  i.e., +({S\C,) U Ci) remains empty. 
The number of compatibles in S remains unchanged when 
replacing Cj by Ci. Thus, the minimal condition will also 
be unaffected. This implies that compatible Cj can be de- 
leted from the search tree without affecting the chances of 
finding the minimal closed cover, if Conditions 2.1, 2.2, 
and 2.3 are satisfied. U 

The pruning is carried out in conjunction with tree gen- 
eration as described in the previous section. When a node 
is expanded to the next level, its children are tested for 
the pruning criteria. Those satisfying the pruning criteria 
are deleted from the search tree. The search tree genera- 
tion and pruning algorithm is shown in Fig. 4. Procedure 
tree-qeneration takes the ordered generating sequence and 
the set of prime compatibles as its input and generates a 
search tree with its depth equal to Q .  

Example: In the search tree shown in Fig. 2, consider 
the children nodes of node hfe at the second level, namely, 
ged, gd, and ge. Node gd can delete node ge with respect 
to the path consisting of nodes ifd and hfe because it sat- 
isfies 
low. 

1 )  

2) 

3) 

all the conditions of pruning rule 2 as explained be- 

State e of compatible ge is not covered by gd, but 
is already covered by hfe (the parent node), thereby 
satisfying Condition 2.1. 
The compatible ge is unimplied. Thus Condition 2.2 
is satisfied. 
Extended closure classes +(ifd,  hfe, ge) and +(ifd, 
hfe, g d )  are empty. They satisfy Condition 2.3. 

Similarly, node a at the fourth level (i.e.,  a child of com- 
patible ged at level 3) is also deleted. The deleted nodes 
are marked in the search tree (Fig. 2). 

In the following section, we describe an algorithm that 
finds a minimal closed cover satisfying covering and clo- 
sure constraints. 

Input 

Output : A search tree with its depth equal to $2. 

Procedure tree-generation( ) { 

: A set of prime compatibles. 
: An ordered generating sequence (si, ~ 2 ~ ~ 3 , .  . . sn). 

initialize the mot node ; 
while level I is less than the lower bound R ( 

expand each node at level I to level I + 1 by choosing 

prune the children of each node at level I ; 
increment 1 to level 1+1 : 

prime compatibles covering the state sl+l as its children nodes 

1 
return the search tree 

} 

Fig.  4 .  Algorithm for search tree generation and pruning 

4.5. Searching for a Minimal FSM Solution 
A path in the search tree is a minimal FSM solution if 

it satisfies the closure condition, the covering condition, 
and the minimal condition (Definition 13). An efficient 
heuristic that is able to reduce the search effort further is 
to rank the weights for nodes at the same level of the 
search tree. The weight of a node is the number of distinct 
states covered by compatibles on its path. To gain search 
efficiency, a node having a large weight is expanded be- 
fore a node having a smaller weight (again, fail-first heu- 
ristic [ 151, [ 181). This heuristic increases the chances of 
finding a minimal solution at an earlier stage of the search 
and eliminates the redundant computational effort of ex- 
panding the rest of the nodes. 

For each node at level n, denoted as nQJ, the algorithm 
tests each pathQ,k for covering and closure conditions. If 
the path satisfies both constraints, then the compatibles 
on the path form a closed covering. If the path does not 
satisfy either constraint, then node is expanded to the 
next level. pathn,k and its children are then tested for a 
minimal solution. If the new path satisfies the covering 
and closure conditions, the algorithm stops and returns 
compatibles on the path as a minimal closed cover. A node 
is expanded to the next level as follows. 

The covering condition can be satisfied by adding prime 
compatibles (i.e., children nodes at level $2 + 1) that cover 
an uncovered state in pathn,k. The closure condition can 
be satisfied by adding prime compatibles (i.e., children 
nodes at level 0 + 1) that cover a member of the extended 
closure class of compatibles on pathn,k. If pathQ,k has more 
than one uncovered state, the rest of them are covered in 
the subsequent levels. Similarly, if the extended closure 
class has more than one member, the rest of them are cov- 
ered in the subsequent levels. The nodes at lower levels 
can be expanded similarly. If none of the nodes at level 
fl + 1 satisfy the constraints, then each node nQ + I , k  at 
level s2 + 1 is expanded to next lower level, and its chil- 
dren are tested for a minimal solution. This process of 
expanding the nodes and testing the children is continued 
until a path satisfying the covering and closure conditions 
is found. 

Proposition: A set of compatibles on the first path that 
satisfies covering and closure constraints also satisfy min- 
imal constraint. 

Proof: A path having k compatibles forms a minimal 
closed cover, if it satisfies covering and closure condi- 
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Input 

Output : A minimal FSM solution. 

Procedure search-minimal-solution( ) { 
(k = 1,2,. . . , Innl) { 

: A set of prime compatibles. 
: Nodesat IevelR: nn+ ( k =  1,2, . . . , I  nn() 

for each node /* test nodes at  level R * I  
S k  = compatibles on pathnC ; 
if St is a c l o d  covering (solution found) 

return pathnh ; stop and quit; 
} 
s t a r t  from level 1 = R ; 
while no solution { 

sor t  nodes at  level I in the ascending order of their weights , 
for each node nIA (k = 1,2,. . . , In,/) { 

St = compatibles on pathlA ; 
if s k  satisfies cowering condition { 

if Sk satwfies closure condrtron (solution found) 

else { /* if closure conditwn not satisfied, try to satisfy it at  next level */  
return pathlh ; 

expand node nIL to level I + 1 ; 
prune the children nodes ; 
if path of the children satisfy both constraints (solution found) 

s top  and quit; 

return the pnthr.t and the child ; stop and quit; 
I 

) 
else {/* if couenng mndition not satisfied, try to satisfy it at  next level */ 

expand node n1.t to level I + 1 : 
prune the children nodes ; 
if path of the children satisfy both constraints (solution found) 

return the path!> and the child ; s top  and quit; 
) 

) /*  for loop ‘ J  
increment I to level 1+1 ; 

) /* while loop */ 
1 

Fig. 5. Algorithm to find a minimal FSM solution. 

tions and if there is no closed covering of k - 1 or less 
compatibles. In the search for a minimal solution, a node 
at level 1 is expanded to the next 1 + 1 level if and only 
if none of the paths at level 1 satisfy the closure and cov- 
ering constraints. Thus we test a path having k compati- 
bles for a minimal solution only after we have tested all 
the paths having k - 1 or less compatibles. This guar- 
antees that the first path that satisfies both the covering 
and the closure constraints will also satisfy the minimal 
constraint. 0 

The procedure search_minimal_solution, illustrated in 
Fig. 5 ,  takes the set of prime compatibles and the nodes 
generated by the tree-generation algorithm. It finds a 
minimal FSM solution, or proves that no solution exists. 
A complete path obtained from the procedure search- 
minimal-solution is a minimal FSM solution of the given 
state machine equals the number of nodes on the solution 
path. The search tree generation process ensures that a 
complete path containing 1 compatible must be at the Ith 
level of the search tree. This implies that all the minimal 
FSM solution paths must be at the same level of the search 
tree as the first minimal closed covering path. Thus all the 
minimal FSM solutions call be generated with almost no 
time overhead. 

Example: Fig. 2 shows the search tree for the FSM 
example. The paths of nodes at the fourth level, i .e.,  
path,.k, are shown in Table V, where s, denotes the set 
of compatibles on The nodes are arranged in the 
descending order of their weights w(Sk) .  Each pathn In 

Table V is then tested for a minimal solution. None of 
them satisfies both covering and closure constraints. The 
uncovered states and the extended closure class (S,) on 
each path are shown in the table. Since pathn. i.e., S I  
= {ifd, hfe, ged, cba} ,  satisfies the covering constraint. 

~ 

I 
, 

TABLE V 

(FSM EXAMPLE) 
PATHS A N D  CONSrRAlNl-S AT T H E  FOURTH LEVEL OF SEARCH TREE 

pathn.k States Covered by St @(&) 
(Path of Compatibles at  Level R) (Covering Condition) (Closure Condition) 

ifd, bfe, ged, ba abdefghi 
ifd, hfe, ged, ca acdefghi bc, ba 
ifd, hfe, gd, ba abdefgbi bc, ca 
ifd, hfe, gd, ca acdefgbi 
ifd, hfe, gd, a adefghi 

TABLE VI 
R ~ D U C E D  FSM Ob THE EXAMPLE STATE MACHINE ungerex 

Present state I Io 

it covers all the states in ungerex (wj(S,) = 9). The ex- 
tended closure class of SI  is not empty and it contains a 
compatible fed. Thus, we expand the first node at level 
four to level five, to satisfy the closure condition. This 
requires supplementing pathn, I with compatible fed. Sub- 
sequently, we test the path of childfed, i.e., {S , }  U ( fed)  
= {ifd, hfe, ged, cba, fed}, for a minimal solution. This 
new path satisfies both the covering and closure condi- 
tions. It is therefore a minimal closed covering path, as 
shown in the highlighted lines in Fig. 2. Compatibles {ifd, 
hfe, ged, cba, f e d }  form a minimal closed cover for FSM 
example ungerex. The reduced state machine is derived 
by merging states f ,  e ,  d into state A ,  states c ,  b ,  a into 
state B ,  states g,  e ,  d into state C ,  states h , f ,  e into state 
D ,  and states i ,  f ,  d into state E ,  as shown in Table VI. 

V .  EXPERIMENTAL RESULTS 

We have tested a large number of FSM’s for state min- 
imization. The majority of the FSM’s tested were from 
MCNC FSM benchmark set [36]. All experiments were 
preformed on a SUN SPARC 1 + workstation. We have 
compared our results with recent state minimization re- 
sults from Kannan and Sarma [20] (experiments per- 
formed on a SUN 3/60) and Hachtel et al. [I71 (experi- 
ments performed on a DEC 3100). 

Table VI1 illustrates the experimental results, where the 
second, third, and fourth columns show the number of 
inputs N I ,  number of outputs No,  and number of states N ,  
in the benchmark FSM’s. The fifth and sixth columns 
show the lower bound LB and the memory reduction M R  
obtained using our algorithm. The last several columns 
give the number of states in the reduced FSM, N s ( R ) ,  and 
the corresponding execution time (seconds), obtained us- 
ing our algorithm, Kannan et al.’s algorithm, and Hachtel 
et al.’s algorithm. 

It was observed from Table VI1 that approximately half 
the MCNC benchmarks do not have any compatible states 
and thus could not be reduced. FSM’s whose number of 
states were reduced have been underlined in Table VII. 
In four of the MCNC FSM’s, i.e.,  donjle, modulol2, 
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TABLE VI1 
STATE REDUCTION RESULTS W I T H  B E N C H M A R K  F S M ’ s  

PSM Spmc$eat~ow 
VI No Ns 
4 2 10 
7 7 16 
2 2  6 
3 4  7 
7 7 16 
3 5  7 
3 5  4 
2 3 27 
2 3  8 
1 2  7 
1 3 15 
2 1 24 
9 9 20 
2 2 I O  
6 g 14 
2 2  9 
5 8  8 
2 2 10 
7 2 19 
2 6 16 
2 1  4 
2 1  9 
5 6 15 
3 5  4 
1 1 12 
5 6 10 
7 9 18 
7 9 48 
8 8 24 
8 6 20 
8 6 20 
4 1  6 
4 1  5 
I 9 32 

27 56 121 
1 1  8 
7 7 16 
9 10 30 
4 4  4 
6 3 32 
7 6 20 
2 I 11 
2 1  4 
2 1 I0 
2 1  9 
2 1  9 
2 1  9 
2 1  9 
3 1  8 
2 1  8 
2 1  8 

Our Melhd 
L e  Mn Ns(R) Time 

7 - 7 o w  
13 ~ 13 0.02 
6 -  6 OW 
4 11% 4 0.01 
16 - 16 001 
7 ~ 7 001  
4 ~ 4 001 
27 ~ 27 0.02 
8 ~ 8 001 
7 ~ 7 001 
IS ~ 15 001 
I ~ I o n ]  . .~ 
I8 - 18 0.01 
2 11% 4 2.51 
14 - 14 001 
2 22% 3 0 2 3  
8 -  8 001 
3 25% 3 0 2 6  
19 - 19 0 0 2  
16 ~ 16 0 0 2  
4 ~ 4 001 
4 17% 4 0.01 
12 74% 12 0.02 
4 - 4 001 
I ~ 1 001 
9 -  9 0 0 1  

4s ~ 48 0 I I  
48 ~ 48 0 11 
24 ~ 24 006 
20 ~ 20 0 0 2  
1 ~ 1 001 
5 - 5 001 
1 -  I 001 

32 32 0.02 
97 89% 97 0 9 9  
8 ~ 8 002  
I 3  ~ 13 0 0 2  
30 30 0.04 
4 - 4 0.01 
16 99% 16 164 

4 47% 4 0 0 1  
4 ~ 4 001 
7 ~ 7 0.00 
4 31% S 0 0 3  
4 4 0 00 
2 ~ 4 5 5 9  
2 ~ 2 0 0 0  
3 ~ 4 001 
3 31% 3 001  
2 31% 3 0.08 

18 17% 18 a m  

Yannan rt 01.. [ m y  
YsIR) Time 

7 2 . w  

6 
4 
16 

4 
27 
8 

15 
I 

14 
4 
8 
4 
19 
16 
4 

I2 
4 
I 
9 
16 

20 

1 
32 
9; 
P 
13 
30 
4 
16 

4 
1 

0 05 
1 00 
0 73 
0 12 
0 10 
2 06 
0 10 
0 07 
0 25 

0 17 
100 
0 10 
1 00 
I 9 7  
2 88 
I 0 0  

1 00 
0 03 

I 0 0  
1 5 0  

0 i o  

122 
998 
0 05 
100 
4 10 
0 10 
:I5 0 

I U0 
n 05 

I 0 0  

13 

4 

I8 
4 

3 

3 

4 
12 

9 

97 

13 

16 
1P 
4 

4 
3 

Yachtcl rl 01.. [17] 
Vs(R) Time 

7 0.02 
0 09 

0 02 

0 14 
I 3 4  

0 14 

0 35 

0 00 
0 09 

0 01 

1 7 5  

0 09 

4 60 
0 05 
0 02 

n 02 
0 0 2  

s l a ,  s8, all the states were compatible and thus they were 
merely reduced to one state machine. The execution times 
required to reduce the FSM’s, of which all or none of the 
states are compatible, were negligible. For all except nine 
FSM benchmarks that are marked with an asterisk, the 
lower bound LB on the size of the reduced FSM was the 
same as the number of states in the reduced state machine 
obtained only from maximal compatibles. In such a case 
prime compatibles were not required. The maximal com- 
patibles (i.e.,  cliques in merger graph) were derived using 
Unger’s implication table [33]. 

Statistics regarding the memory space reduction were 
obtained directly from the percentage reduction in number 
of nodes in the search tree due to pruning. The average 
memory space reduction increases with the search tree 
size. In case of FSM’s with a very large number of prime 
compatibles (e.g. ex2) ,  pruning reduces the memory re- 
quirements by 90-95 %, but requires a substantial amount 
of time. Thus such a case involves a trade-off between 
memory space and execution time. For MCNC FSM 
benchmark scfhaving 121 states, a memory reduction of 
89% was achieved, and an optimal solution was obtained 
in 0.99 s of CPU time. In comparison, for the same ma- 
chine, it took Kannan er al.’s algorithm 998 s to obtain a 
solution (on a SUN 3/60). Also, Kannan er al.’s algo- 

’Execution times for all methods are given for computing the minimal 
closed cover and mapping the closed cover into a reduced FSM. 

rithm does not guarantee an optical solution and requires 
a large amount of time for all the benchmark FSM’s. 

Our algorithm compares favorably with Hachtel et al.’s 
exact and heuristic algorithms. It produced optimal results 
for all examples in a lesser time for almost all cases. For 
FSM’s scfand tbk, it took our algorithm 0.99 and 1.64 s, 
as compared to 1.75 and 4.60 s with Hachtel et al.’s al- 
gorithm (on a DEC 3100). In these two cases, only one 
maximal incompatible having a maximum number of 
states (maximal clique) was derived to obtain the OGS. 
Because of efficient pruning criteria, the reduction of 
FSM’s with our approach is accompanied by a substantial 
memory reduction for all large examples. For example, 
for nontrivial FSM’s scfand tbk, memory reductions of 
89% and 99% were achieved. 

The minimal FSM solution of an incompletely specified 
FSM is not unique (e .g . ,  FSM’s ex7, tma, and lion9). 
These minimal FSM’s may have different implementation 
areas. For example, FSM ex7 has two minimal solutions 
with a two-level implementation area of 84 and 72 (ob- 
tained using NOVA [34]). Our algorithm selects the best 
solution with a minimum area of 72. In comparison, Kan- 
nan et al. ’s algorithm generated a sub-optimal solution 
with an area of 108, and Hachtel er al.’s algorithm gen- 
erated a solution with an area of 84. 

VI. CONCLUSION 

An efficient algorithm to search for the minimal closed 
covers in sequential machines is presented. This algo- 
rithm eliminates all the redundant states in a given state 
machine and guarantees to produce an optimal solution 
for a reduced FSM. This performance is achieved because 
of the application of fail-first heuristics in the search tree 
level and nodal ordering and taking advantage of efficient 
search space pruning criteria in search tree generation and 
in the search process. 
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