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Tim ing and Area O ptim ization for Standard-Cell

VLSI Circuit D esign 1

Weitong Chuangt Sachin S. Sapatnekar* Ibrahim  N. Hajj*

tCoordinated Science Laboratory and J Department of Electrical Engineering
Dept, of Electrical & Computer Engineering and Computer Engineering
University of Illinois at Urbana-Champaign Iowa State University

A bstract

A standard cell library typically contains several versions of any given gate type, each of which 

has a different gate size. We consider the problem of choosing optimal gate sizes from the library to 

minimize a cost function (such as total circuit area) while meeting the timing constraints imposed 

on the circuit.

After presenting an efficient algorithm for combinational circuits, we examine the problem 

of minimizing the area of a synchronous sequential circuit for a given clock period specification. 

This is done by appropriately selecting a size for each gate in the circuit from a standard-cell 

library, and by adjusting the delays between the central clock distribution node and individual 

flip-flops. Traditional methods treat these two problems separately, which may lead to very sub- 

optimal solutions in some cases. We develop a novel unified approach to tackle them simultaneously. 

Experimental results show that by considering the two problems together, it is not only possible to 

reduce the optimized circuit area, but also to achieve faster clocking frequencies.

Finally, we address the problem of making this work appbcable to very large synchronous 

sequential circuits by partitioning these circuits to reduce the computational complexity. A heuristic 

metric to measure the objective function of the partitioning problem is proposed. A multiple-way 

synchronous sequential circuit partitioning algorithm is then developed.

^ h is  work was supported by Joint Services Electronics Program.
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1 Introduction

1.1 G ate S izing P roblem

The delay of a MOS integrated circuit can be tuned by appropriately choosing the sizes of transistors 

in the circuit. While a combinational MOS circuit in which all transistors have the minimum size 

has the smallest possible area, its circuit delay may not be acceptable. It is often possible to reduce 

the delay of such a circuit, at the expense of increased area, by increasing the sizes of certain 

transistors in the circuit. The optimization problem that deals with this area-delay trade-off is 

known as the sizing problem.

The rationale for dealing with only combinational circuits in a world which is rampant with 

sequential circuits is as follows. A typical MOS digital integrated circuit consists of multiple stages 

of combinational logic blocks that lie between latches, clocked by system clock signals. Delay 

reduction must ensure that the worst-case delays of the combinational blocks are such that valid 

signals reach a latch in time for a transition in the signal clocking the latch. In other words, the 

worst-case delay of each combinational stage must be restricted to be below a certain specification.

For a combinational circuit, the transistor sizing problem is formulated as

minimize Area

subject to Delay < Tspec. (1)

The problem of continuous sizing, in which transistor sizes are allowed to vary continuously 

between a minimum size and a maximum size, has been tackled by several researchers [1-4]. The 

problem is most often posed as a nonlinear optimization problem, with nonlinear programming 

techniques used to arrive at the solution.

A related problem that has received less attention is that of discrete or library-specific sizing. 

In this problem, only a limited number of size choices are available for each gate. This corresponds
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to the scenario where a circuit designer is permitted to choose gate configurations for each gate 

type from within a standard cell library. This problem is essentially a combinatorial optimization 

problem, and has been shown to be NP-complete [5].

Chan [5] proposed a solution to the problem that was based on a branch-and-bound strategy. 

The strategy proposed for Boolean tree networks involves propagating the set of delay constraints, 

and pruning those that are infeasible. For general DAG’s (directed acyclic graph), a cloning proce­

dure is used to convert the DAG into an equivalent tree, whereby a vertex of fanout m  is implicitly 

duplicated m  times, followed by a reconciliation step in which a single size that satisfies the re­

quirements on all of the cloned vertices is selected. As pointed out in [6], this procedure does 

not necessarily provide the optimal solution for a general DAG; moreover, this algorithm is of 

exponential complexity in the worst case.

The approach of Lin et al. [7] uses a heuristic algorithm that is an adaptation of the TILOS 

algorithm [1] for continuous transistor sizing, with further refinements. The approach is based on 

a greedy algorithm that uses two measures known as sensitivity and criticality to determine which 

cell sizes are to be changed. Another algorithm proposed by Li et al. [6] is exact for series-parallel 

graphs, but is of exponential complexity. This work is extended to non-series-parallel circuits, 

whose structures are represented by general DAG’s, and several heuristic techniques are used in 

conjunction with the algorithm, but no guarantees on optimality are made for such circuits. Both of 

these approaches are heuristics, and hence no concrete statements can be made on how close their 

solutions are to the optimal solution. Moreover, neither work shows comparisons with a technique 

such as simulated annealing that is well-known to give optimal or near-optimal solutions.

The algorithm proposed in [8] does use simulated annealing; however, since simulated annealing 

is computationally expensive, a technique for variable pruning is used by this algorithm to reduced 

the computational complexity. An initial configuration is obtained using an algorithm similar 

to TILOS [1]. The set of gates that are left at minimum size at the end of this algorithm are
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eliminated from the parameter space, under the assumption that these cells would not be sized in 

the final configuration. The sizes of the remaining cells are determined using a simulated annealing 

algorithm. One argument against such an algorithm is that it would have very large run-times 

for tight timing specifications, where a large number of cells would be sized by the TILOS-like 

heuristic.

Recently, Chuang et al. [9] proposed an efficient approach for solving the gate sizing problem 

under double-sided timing constraints. The approach first approximates delay curves of each gate in 

the circuit by piecewise-linear functions. With these piecewise-linear delay characteristics, the gate 

sizing problem can be formulated as a linear program. The obtained solution, which may contain 

impermissible gate sizes from the library, is then mapped onto the permissible set. This approach 

has been shown to be able to obtain near-optimal solutions (compared to simulated annealing) 

in a reasonable amount of time. However, the approach in [9] assumes the output capacitance of 

each gate is constant, which is not so in reality, since gate resizing alters the output capacitance of 

driving gates.

In the first part of this paper, we present a new algorithm for solving the gate sizing problem 

for combinational circuits that takes into consideration the variations of gate output capacitance 

with gate resizing. Unlike the approach used in [9] which assumes constant load capacitance of each 

gate, our approach handles the fanout capacitance problem properly. As will soon be obvious, this is 

not a straightforward exercise, as it greatly increases the number of constraints in the optimization 

problem. In the first stage, the gate sizing problem is formulated as a linear program. The solution 

of this linear program provides us with a set of gate sizes that does not necessarily belong to the 

set of allowable sizes. Therefore, in the second phase, we move from the linear program solution to 

a set of allowable gate sizes, using heuristic techniques. In the third phase, we further fine-tune the 

solution to guarantee that the delay constraints are satisfied. Finally, to illustrate the efficacy of 

our algorithm, we present a comparison of the results of this technique with the solutions obtained
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by simulated annealing as well as by our implementation of the algorithm in [7].

1.2 O p tim ization  for Synchronous Sequential C ircuits

Optimization for synchronous sequential! circuits, on the other hand, is different. An additional 

degree of freedom is available to the designer in that one can set the time at which clock signals 

arrive at various flip-flops (FF’s) in the circuit by controlling interconnect delays in the clock signal 

distribution network. With such adjustments, it is possible to change the delay specifications for 

the combinational stages of a synchronous sequential circuit to allow for better sizing. However, 

consideration of clock skew in conjunction with sizing increases the complexity of the problem 

tremendously, since it is no longer possible to decouple the problem and solve it on one subcircuit 

at a time.

Example 1: Consider the circuit shown in Figure 1. If the gates in Block 1 are sized substantially, 

while those in Block 2 are close to their minimum sizes, then by allowing a clock skew at FF B, it 

is possible to increase the delay specification for Block 1 and decrease that for Block 2. This could

reduce the area of Block 1 greatly, at the expense of a small increase in the area of Block 2. □

Example 2: Consider the synchronous sequential circuit shown in Figure 2. In addition to adjust 

clock skews at boundary latches (which will be defined in Section 6) as in Example 1, we can adjust 

clock skews at internal latches. By doing so, it is also possible to reduce the circuit area of the 

combinational block. □

In general, given a combinational circuit segment that lies between two flip-flops i and j ,  if S{ 

and Sj are the clock arrival times at the two flip-flops, we have the following relations:

Si + Maxdelay(i,j) + Tsetup < Sj + P (2)

Si + Mindelay(i,j)  > Sj + Thoid (3)

where Maxdelay(i, j )  and Mindelay(i,j)  are, respectively, the maximum and the minimum combi­

national delays between the two flip-flops, and P is the clock period. Fishburn [10] studied the clock
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skew problem, under the assumption that the delays of the combinational segments are constant, 

and formulated the problem of finding the optimal clock period and the optimal skews as a linear 

program. The objective was to minimize P, with the constraints given by the inequalities in (2) 

and (3) above. In real design situations, however, P  is dictated by system requirements, and the 

real problem is to reduce the circuit area.

In the second part of the paper, we examine the following problem: Given a clock period 

specification, how can the area of a synchronous sequential circuit be minimized by appropriately 

selecting gate size for each gate in the circuit from a standard-cell library, and by adjusting the 

delays between the central clock and individual flip-flops? For simplicity, the analysis will use 

positive-edge-triggered D-flip-flops. In the following, the terminologies flip-flop (FF) and latch will 

be used interchangably. We assume that all primary inputs (PI) and primary-outputs (PO) are 

connected to FF’s outside the system, and are clocked with zero (or constant) skew.

We first present an algorithm for small synchronous sequential circuits, and then show how 

it can be extended to arbitrarily large circuits. The algorithm works in three phases to solve the 

problem. In the first phase, the combined gate sizing and clock skew optimization problem is 

formulated as an LP. The solution of this LP provides us with a set of gate sizes that does not 

necessarily belong to the set of allowable sizes. Hence, in the second phase, we move from the LP 

solution to a set of allowable gate sizes, using heuristic techniques. At the end of the second phase, 

the set of allowable sizes obtained may not satisfy (2) and (3) simultaneously. Hence in the third 

-stage, we fine-tune the longest path to satisfy (2) and satisfy the short path constraints in (3) by 

appropriately inserting delay buffers in the short path.

Finally, we consider arbitrarily large synchronous sequential circuits for which the size of the 

formulated LP’s are prohibitively large, and present a partitioning algorithm to handle such circuits. 

The partitioning algorithm is used to control the computational cost of the linear programs. After 

the partitioning procedure, we can apply the optimization algorithm to each partitioned sub circuit.
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This paper is organized as follows. We describe the linear programming approach in Section 2, 

followed by the two post-processing phases in Sections 3 and 4. In Section 5, we formulate the 

synchronous sequential circuit area optimization problem and present the algorithms to tackle the 

problem. The partitioning algorithm that allows us to handle large circuits is presented in Section 6. 

Experimental results are given in Section 7. Finally, Section 8 concludes this paper.

2 Problem  Form ulation

2.1 Form ulation o f D elay  C onstraints

We assume that each gate in a standard cell library can be represented by an equivalent inverter 

such that the ratio of the p-transistor size to the n-transistor size of that inverter is a constant. 

Hence, the size of each gate can be parameterized by a single number, which we refer to as the gate 

size. An obvious choice for the gate size, which we use in this work, is the size of the n-transistor 

of the equivalent inverter. As in [1], the equivalent inverter is replaced by an RC circuit; the delay 

of this circuit is taken to be the delay of the inverter. In this case, the Elmore delay [11] of a cell 

G of size x is given by

R
D (x ' )  — X Cout ~ Rout X Conti (4)

Here Ru represents the on-resistance of a unit transistor, and Cout is the load capacitance of G. 

Since the gate terminal capacitance of a cell is proportional to its size, we have

C0ut — + /3 + a* 2/2+ /2---- 1- ot • yf + (3. (5)
where 2/i, 2/2, • • •, Vf is the sizes of the cells to which G fans out; a and ¡3 are related to transistor 

gate terminal area and perimeter capacitances [3]. Thus, the delay function D(x) of G is a function 

of x ,y i ,y 2, . . . , y f .

Therefore the Elmore delay of a cell is a sum of functions of g(x,y)  = y /x  and h(x) = 1/x. 

Figure 3 shows surface plots of the function y/x.  Since the function g(x,y)  = y /x  is relatively
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smooth, it can be approximated, by a convex piecewise linear function with q regions, of the form

PW L(x, y) =

a\ • x + 61 • y + ci (x, y) € Region R x
a2 • x + 62 • y + c2 (x, 2/) € Region R 2

aq • x + bq • y + Cq (x, 0) 6 Region R q

= max (ai • x + &,• • y + ct) V (x, 0) 6 I I  R t
1- t- 9 i<Y<?

(6)

(7)

The second equality follows from the first since P W L(x ,y )  is convex.

Similarly, we can approximate the function h(x) = 1/x with a convex piecewise linear function.

Therefore, the gate delay D(x, yx, . . . ,  y/) of a gate with size x, and fanout gate sizes y\ • • • yj 

can be represented using a convex piecewise linear function with q regions, as follows:

ài • x + 61,1 • yi +  • • • +  b i jy f  + ci 
a2 • X +  62)i • yi + • • • + b2j y f  + c2

(x,yi • • *y/) € Region R x 
(*,0i ' “ Vf) € Region R 2 (8)

. àq -x + bqti • 01 + • • • + bqjyf + cq (x, 0i • • -y/) 6 Region R q

max (ài • x + &,\i • 01 + • • • &,\/0/ + ct)
Ki<?

V(*,01 •••0/) G U Rf. (9)
l< t < g

It is worth pointing out that although we use Elmore delay model to estimate gate delays, our 

approach is not limited to this model. Given a standard-cell library, as long as the gate delay curve 

is relatively smooth (which is true for almost all practical designs), we can always approximate the 

delay function by a convex piecewise linear function.

2.2 Form ulation of th e  Linear Program

The formal definition of the gate sizing problem for a combinational circuit is as given in (1). Since 

the objective function, the area of the circuit, is difficult to estimate, we approximate it as the sum 

of the gate sizes, as has been done in almost all work on sizing [1-8].
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The delay specification states that all path delays must be bounded by Tspec. Since the number 

of PI-PO paths could be exponential, the set of constraining delay equations could potentially be 

exponential in the number of gates; unless certain additional variables, rat-, i = 1 • • • Af (where Af 

is the number of gates), are introduced to reduce the number of constraints; where mi corresponds 

to the worst-case delay from the primary inputs to gate i. Using these variables, for each gate i 

with delay dt-, we have

mj + di < mi, V j  6 Fanin(i). (10)

This reduces the number of constraining equations to Y iL i Fanin(i), which, for most practical 

circuits, is of the order 0(.A/"). We now formulate the linear program as

Af
minimize  71- •

1=1

subject to For all gates i = 1 • • - Af
mj + di < mi V j  € Fanin(i) (H )

< Tspec V gates i at PO's
di ^  D(xi, xtj 1 ,.. • ®i,/o(t))
X{ > Minsize(i)
Xi < Maxsize(i)

where 71- is the area coefficient, a constant associated with gate i. The area of gate i is 7* • Xi if 

gate i has size The value of 7 can be calculated based on the data given by the standard-cell 

library. xt>i , . . . ( , )  are the sizes of the gates to which gate i fans out.

The above is a linear program in the variables mt. It is worth noting that the entries in

the constraint matrix are very sparse, as can be seen above, which makes the problem amenable 

to fast solution by sparse linear program approaches. Notice that the equalities of (8) are replaced 

here by inequalities, so as to satisfy (9).
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3 Phase II : The M apping A lgorithm

The set of permissible sizes for gate i is Si = {xt-,i • • •xt;p.}, where pi is the cardinality of Si. The 

solution of the linear program would, in general, provide a gate size, Xi, that does not belong to 

Si. If so, we consider the two permissible gate sizes that are closest to a:,-; we denote the nearest 

larger (smaller) size by x,+ (xt_). Since it is reasonable to assume that the LP solution is close to 

the solution of the combinatorial problem, we formulate the following smaller problem:

For all i = 1 • • • M  : Select xt- = or zt_,

such that Delay < Tspec

Although the complexity has been reduced from 0 ( n ^ i  Pi) for the original problem to 0 (2 ^ ), 

this is still an NP-complete problem. In this section we present an implicit enumeration algorithm 

for mapping the gate sizes obtained using linear programming onto permissible gate sizes. The 

algorithm is based on a breadth-first branch-and-bound approach.

It is worth pointing out that the solution to this problem is not necessarily the optimal solution; 

however, it is very likely that the final objective function value at a solution arrived using good 

heuristics will be close to the linear program solution, and hence close to the optimal solution. This 

supposition is borne out by the results presented in Section 7.1.

3.1 Im p lic it E num eration  A pproach

The algorithm first places all M  gates in a queue, Q, in decreasing order of their worst-case signal 

arrival time, mt-. The longest path, P, from PI to the gate at the head of Q is found. The unmapped 

gates along P  are mapped to permissible gate sizes using an implicit enumeration approach [12]. 

Once a gate size has been mapped onto a permissible size, it is said to be processed, and remains 

unchanged during the remainder of the enumeration process. A processed gate is removed from the 

queue Q.

9



After P  has been processed, the process is repeated for the longest path to the gate that is 

now at the head of Q , until Q is empty. Thus, although the circuit could have an exponentially 

large number of paths, our algorithm needs to handle at most J\f of those paths.

Let G\ be the gate that is currently at the head of the queue. Let P = Gi ,G 2, .. .,Cr|p| be 

the longest path from any PI to gate Gi, where |P | is the number of gates on the path. The order 

of gates on the path is such that Gi fans out to Gt_i, 2 < i < \P\. The predecessor (successor) of 

gate G{ on the path P is the gate Gt-+i (Gt_i). Note that G\p\ has no predecessor and G\ has no 

successor.

Starting from Gi, we form a state space tree. Each node at level i in the state space tree 

is a cell configuration, which represents a possible realization of gate Gi. To help define a cell 

configuration, we introduce the following notation. Let

C {i,j)  : the j th node at level i,

the ancestor node of C(î , j ), 

the set of gates that gate i fans out to,

the cell area of gate i when its size is Xi, area(i,Xi) = 7,■ • x i (see (11)),

a n c ( i j )  

FO(i) 

area(i, Xi) 

Rout(X/i) : the equivalent resistance of gate i, corresponding to size Xi, 

that drives its load capacitances, R'out(xi) = Ru/xi  (see (4)),

cap(i,j) : the sum of the transistor gate terminal capacitances of gate j  that are 

driven by gate i (see Figure 4 for an example),

r^ Z j) : cap(i,j), given that gate j  is the predecessor of gate i on path P, 

and the size of gate j  is Xj .

Definition 1 A cell configuration, C (i,j)  is a triple (Xty, Aty, P tj),

10



X ij  = X C(i, j )

A i j  =  A C(i, j ) = area(i, Xij) -+■ A anc(i,j)

Dij = DC(ij) — dij 4* Anc(t\j)>

where dtJ = R'out(Xij) • J2 cap(i, k) + r(Xanc(tti)) . 
kçFO( i) , k& - 1

Atj is called the accumulated area from the root to C (i,j) ,  Dij is called the accumulated delay from 

the root to C ( i , j ), and dij is called the configuration delay associated with C (i,j) .  Physically, di3 

corresponds to the delay of gate i, given that gate i has size X ij , and gate (i — 1) has size X anc^ j y

In the state space tree, each node has no more than two successors since there are at most 

two choices for the gate size. Every node in the tree corresponds to an assignment of sizes to those 

gates which lie on the path from the tree root to that node.

The root of the tree is, by definition, assigned a null cell configuration (0,0,0). We begin with 

the unprocessed gate on the current path, P, that is closest to the POs, and implicitly enumerate 

the two possible realizations of each gate ¿, x,-+ and ay_. The delay of each gate is dependent 

on its own size and on the size of the gates that it fans out to. Therefore, once Gt has been 

enumerated, the delay associated with the predecessor of Gi on path P can be calculated, and it 

can be enumerated. The process continues until all gates along P have been processed.

During the enumeration process, it is possible to eliminate several of the possibilities to prune 

the search space. A node C (i, j)  with a cell configuration, (Xty, Aty, Ay), is bounded if there exists 

a cell configuration, (Xik,Aik, Aik)> at the same level of the tree such that

(1) area(i.Xik) < area(z,Xty), Aik < Aij and Aik < Dij, or

(2) area(i,Xik) < area(i,Xij), Aik < and Aik < Dij.

A somewhat similar procedure, which uses dynamic programming approach, was used in [6]; 

however, that procedure uses enumerative techniques on a much larger tree, where every gate
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size is permissible (unlike our case of a binary tree). Since the number of possibilities is much 

larger, the heuristics that are required by that method to control the computational complexity are 

necessarily more ad hoc and hence, more inaccurate. Moreover, the procedure used in [6] fails to 

consider fanout capacitance load eifects, since the sizes of the fanout modules of a certain module, 

M ,  are not considered when the optimal implementations of M  are being enumerated.

Example 1. In Figure 5, let G\ be the current head of the queue, Q. Let G2 be the predecessor 

of Gi, and G3 that of G2 on the longest path from a PI to Gi. There are two possible realizations 

for G1, namely,

(1) one with a re a (l,X i(i) = 1.2 and delay d\ti = 0.9, and

(2) one with area(l ,X i>2) = 0.8 and delay di)2 = 1.1.

If neither of node G (l, 1) or C (l, 2) is bounded, we proceed to construct the second level for both cell 

configurations. The two successors of node G (l, 1) in the tree represent two possible configurations 

of G2 if G\ is chosen to have the size with a rea ( l ,X ifi) = 1.2.

Further, node C (2 ,1) represents the configuration if G2 is chosen to have size with area(2, X 2)i) = 

1.5. Here, if the corresponding configuration delay of G2, d2,i = 0.8, then

• Accumulated delay of G\ and G2, D2,\ = 1.7

• Accumulated area of G\ and G2, A2i 1 = 2.7

Similarly, node C(2,2) represents the situation if G\ is chosen to have size with cell area 1.2 and 

G2 with cell area 1.0. If the configuration delay of G2, d2f2 = 1.2, then

• Accumulated delay D2,2 = 2.1

• Accumulated area A2(2 = 2.2

12



The entries of node C(2,3) and C(2,4) can be calculated similarly.

Now, notice that nodes C(2,1) and C(2,3) have the same gate area for G2 , while node C(2,3) 

has less accumulated area and accumulated delay than node C(2,1). Therefore, node C(2,1) is 

bounded and it is not necessary to enumerate the descendants of C(2,1). Similarly, C(2,2) is 

bounded since C(2,4) has superior configuration to C(2,2). □

For every path P  in the circuit, we define a quantity known as maximum path delay, (M P D ), 

as follows:

min (mi — di), 
j e F O { i )  3 3 n

M PD (P)  =
min[ mm fm ,--*,-), T5pec],jeFO(t)

if gate i is not at a PO. 

if gate i is at a PO.
(12)

where gate i is the gate that lies at the end of path P. Note that even if gate i is at a PO, it could 

still fan out to other gates in the circuit; this is reflected in the definition of the M PD .  Maximum 

path delay physically corresponds to the maximal delay that can be assigned to path P before its 

effect is propagated beyond the gate G, at the end of the path.

After the state space tree for the longest path P has been constructed, the algorithm examines 

the cell configurations at the leaf nodes of the tree. The cell configuration, C(\P\, n), which satisfies 

the following requirements, is selected.

(1) D]Pln < MPD(P),

(2) D\p\iU > D\P\fi V C(\P\,i) such that D\p\it- < MPD(P).

In requirement (2), instead of using A |p |n < A|p| ,- as the criterion, we use D\P\ n > D\p\^. This is 

because we do not want to perturb the solution obtained from the linear programming too much. 

This way, it is expected that no change in gate size takes the circuit delay radically away from 

Tspec •
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By performing a trace-back from C(\P \,n ) to the root of the tree, the size of each gate along 

P is determined from the cell configurations at each traversed node of the tree.

4 Phase III : T he A djusting A lgorithm

After the mapping phase, if the delay constraints cannot be satisfied, some of the gates in the circuit 

must be fine-tuned. For each PO which violates the timing constraints, we identify the longest path 

to that PO. For example, if gate p at the PO has a worst case signal arrival time mp > Tspec, we 

first find the longest path, P , to Gp. The path slack of P is defined as

Pslack(P) = Tspec -  m p (13)

For each gate along that longest path, we calculate the local delay difference for each of the 

gates along path P. Assume that Gt_i, Gi, Gi+i are consecutive gates, in order of precedence, on 

path P. The local delay and local delay difference associated with Gi are defined as

delay(Gi) — z?*+l /'»t’+l d* r*i— 11 out °out n out ’ ^  out (14)

A delay(Gi) = K i l  ■ AC'0H  + AR'mt ■ C'out (15)

where Rlout and Clout are, respectively, the equivalent driving resistance of gate i, and the capacitive 

load driven by gate i. Therefore, Adelay(Gi) is the difference between the original local delay of 

Gi and the new local delay of Gi after we replace it with a different gate size that has a different 

value of Rlout and Cjj*1.

Example 2 [13]. Consider the chain of three CMOS inverters shown in Figure 6(a). Let the width 

of both the n-type and p-type transistors in gate 2 be ti?2, and let D be the total delay through 

the three gates. Consider the effect of increasing W2 , while keeping the size of the transistors in 

gates 1 and 3 fixed. This causes the magnitude of output current of gate 2 to increase, thus the 

time required, d2, for gate 2 to drive its output signal will decrease monotonically (Figure 6(b)).
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However, increasing W2 also increases the capacitive load on the output of gate 1, thus slowing down 

the output transition of the first gate. Beyond a certain point W2 = A, the total delay, D, starts to 

increase with respect to W2 , which shows the nonmonotonicity of the delay-area relationship. □

From the above example, it is clear that for each of the gate along P , we must consider either 

increasing or decreasing its size (unless, of course, a gate is already of the largest or smallest possible 

size). After calculating the local delay difference associated with each of the gates along path P, 

we select the largest one, Adelay(Gn), which satisfies

Adelay(Gn) < Pslack(P) (16)

and change the size of Gn accordingly. If none of the local delay differences satisfies (16), we select 

the most negative one and replace the gate with a new realization. This process continues until 

the delay constraints are all satisfied. Also, notice that unlike in the mapping algorithm, we do not 

restrict our choices to xt+ and xt-_ here.

5 O ptim ization for Sequential C ircuits

The techniques described so far are valid for the sizing problem for combinational circuits. We now 

consider the optimization problem for synchronous sequential circuits.

5.1 Form ulation o f C onstraints

In a synchronous sequential circuit, a data race due to clock skew can cause the system to fail [14]. 

Consider a synchronous sequential digital system with flip-flops (FF’s). Let S{ denote the individual 

delay between the central clock source and flip-flop PP,, and let P  be the clock period. Assume 

there is a data path, with delay from the output of PP t to the input of FFj  for a certain input 

combination to the system. There are two constraints on and that must be satisfied:
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Double Clocking : If Sj > st- + then when FFi is clocked, the data races ahead through the 

path and destroys the data at the input to F F j  before the clock arrives there.

Zero Clocking : This occurs when Si + > Sj  + P, i.e., the data reaches F F j  too late.

It is, therefore, desirable to keep the maximum (longest-path) delay small to maximize the clock 

speed, while keeping the minimum (shortest-path) delay large enough to avoid clock hazards.

In [10], Fishburn developed a set of inequalities which indicates whether either of the above 

hazards is present. In his model, each FFi receives central clock signal delayed by Si by the delay 

element imposed between it and central clock. Further, in order for a FF to operate correctly when 

the clock edge arrives at time ¿, it is assumed that the correct input data must be present and 

stable during the time interval (f — Tseiup, t + Thoid)-, where Tsetup and Thoid are the set-up time and 

hold time of the FF, respectively. For all of the FF’s, the lower and upper bounds M I N ( i , j ) and 

M A X ( i , j ) (1 < i , j  < C, C being the total number of FF’s in the circuit) are computed, which are 

the times required for a signal edge to propagate from F F i  to F F j .

To avoid double-clocking between F F i  and F F j , the data edge generated at F F i  by a clock 

edge may not arrive at F F j  earlier than Thoid. after the latest arrival of the same clock edge arrives 

at F F j .  The clock edge arrives at F F i  at st-, the fastest propagation from F F i  to F F j  is MI N( i , j ) .  

The arrival time of the clock edge at F F j  is Sj .  Thus, we have

Si +  MI N ( i , j )  > Sj + Thoid- (17)

Similarly, to avoid zero-clocking, the data generated at FFi by the clock edge must arrive at 

FFj no later than Tsetup amount of time before the next clock edge arrives. The slowest propagation 

time from FFi to FFj is MAX( i , j ) .  The clock period is P, so the next clock edge arrives at FFj  

at Sj + P. Therefore,

F Tsetup + MA X ( i , j )  < Sj + P. (18)
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Inequalities (17) and (18) dictate the correct operation of a synchronous sequential system.

Our problem requires us to represent path delay constraints between every pair of FF’s. This 

may be achieved by performing PERT [15] on the circuit and setting all FF’s except the FF of 

interest (say FF{) to —oo (oo) for the longest (shortest) delay path to from FF{ to all FF’s, and 

the arrival time at the FF of interest is set to 0 [10]. Therefore in addition to longest-path delay 

variable, m k, for the shortest-path delay, we introduce new variables, pk, k = 1 • • • Af, correspond 

to the shortest delay from P i’s (the outputs of FF’s are considered as pseudo P i’s) up to the output 

o f Gk.

Pj + dk > pk, V j  G Fanin(k). (19)

To represent path delays between every pair of FF’s, we need intermediate variables m \  (p\ ) 

to represent the longest (shortest) delay from FF{ to the kth gate. The number of constraints so 

introduced may be prohibitively large. An efficient procedure for intelligent selection of intermediate 

m \  and pk variables to control the number of additional variables and constraints without making 

approximations has been developed. Deferring a discussion on these procedures to Section 5.2, we 

now formulate the linear program for a general synchronous sequential circuit as

AT
minimize  ^  7^ • Xk

k=i

subject to dk > D(xk, xk,i, .. .**,/<,(*)), 

x k > M insize(k), 

x k < Maxsize(k),

For all FF i,

"i" Pk ^  &j "F Tfrold
$i  "F T sg tUp -(- 771 ̂  ^  Sj  ~F P spec

For all gates = 1, • • • ,A/* 

m] + dk < m \,

P} + dk > p{,

1 < k < N  

1 < k < J \ f  

1 < k < Af

1 < i < C

1 < j  < £ , k = Fanin(FFj)  

1 < j  < C, k = Fanin(FFj)

( 20)

V / G Fanin(k)

V l G Fanin(k)
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The above is a linear program in the variables xt-, <£, rat-,p,- and Si. Again, the entries in the 

constraint matrix are very sparse, which makes the problem amenable to fast solution by sparse 

linear program approaches.

5.2 S ym b olic  P rop agation  o f C onstraints

We begin by counting the number of LP constraints in (20). We ignore the constraints on the 

maximum and minimum sizes of each gate since these are handled separately by the simplex 

method. The dk inequalities impose q constraints for each of the gates in the circuit to the LP 

formulation (see 8). Let T  — Fanin(i), where Af is total number of gates in the circuit. 

Then for each FF z, there are 0 { T  + £) constraints, where £  is the total number of FF’s in the 

circuit. Therefore the total number of constraints could be as large as 0(A f  • q + £  • [T  + £)). 

Assume that the average number of fanins to a gate is 2.5 and q = 5. Then T  — 2.5Ai, and £ • T  

is the dominant term in the expression above. For real circuits, £  is large, and hence the number 

of constraints could be tremendous. In this section, we propose a symbolic propagation method 

to prune the number of constraints by a judicious choice of the intermediate variables m  and p, 

without sacrificing accuracy. Basically, for any PI, we introduce m  and p variables for those gates 

that are in that P i’s fanout cone. Also, we collapse constraints on chains of gates wherever possible 

(line 6 in Figure 7).

The synchronous sequential circuit is first levelized. For this purpose, the inputs of FF’s are 

considered as pseudo PO’s the outputs of FF’s are considered as pseudo P i’s. Two string variables, 

mstring(i) and pstring(i), are used to store the long-path delay and short-path delay constraints 

associated with gate z, respectively. For each gate and each FF, an integer variable W{ € {0,1} 

is introduced to indicate its status. W{ has the value 1 whenever mstring(i) and pstring(i) are 

non-empty, i.e., when the constraints stored in mstring(i) and pstring(i) must be propagated; 

otherwise, W{ — 0.
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The algorithm for propagating delay constraints symbolically is given in Figure 7. In the 

following discussion of the algorithm, we elaborate on the formation of mstring ; the formation 

of pstring proceeds analogously. At line 2, for each gate j ,  Wj and mstring(j)  are initialized by 

setting Wj = 0, and mstring(j) to the null string. At line 5, we check if wi = 0 for all l £ fanin(k), 

i.e., if all of gate fc’s input gates have a null mstring. If so, no constraints need to be propagated, 

and no operations are needed. Next, at line 6, we check whether exactly one of all of gate fc’s input 

gates, say gate has a non-empty mstring, others are have null mstring'1 s. If so, we may continue 

to propagate the constraint. This is implemented by concatenating mstring{l') and “d*.” , and 

storing the resulting string in mstring(k). Also Wk is set to 1 to indicate that further propagation 

is required at this gate. Finally, if more than one of gate fc’s input gates have non-empty mstring , 

we add a new intermediate variable, mxk, and the string ”m lk” is stored at mstring(k) (line 9). For 

each input gate whose mstring is non-empty = 1), we need a delay constraint (line 12).

Example 3: Figure 8 gives an example that illustrates the symbolic delay constraints propagation 

algorithm. Assume that m string(ll)  = “m jj”, mstring( 12) = mstring( 13) = (null string). 

Therefore, from lines 6 and 7 of the pseudo-code, mstring( 14) = “m jj + d14” and w\4 = 1. 

Propagating this further, we find that similarly, mstring( 15) = “m jj + d\4 + di5” , and w45 = 1. 

Finally, for gate 16, we apply lines 9 through 12, and find that we must introduce a variable m \6, 

and set Wi6 = 1. We also write down the two constraints shown in the figure and add these to the 

set of LP constraints. □

Using the symbolic constraints propagation algorithm, although the actual reduction is depen­

dent on the structure of the circuit, experimental results show that this algorithm can reduce the 

number of constraints to less than 7% of the original number on the average for the tested circuits.
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5.3 In sertin g  D elay  Buffers to  Satisfy  Short P ath  C onstraints

The solution of the LP would, in general, provide a gate size, Xk that does not belong to the 

permissible set, <Sjt = {xk,i • • ' xk,qk}- If so, we consider the two permissible gate sizes that are 

closest to Xk; we denote the nearest larger (smaller) size by Xk+ (x^_). As in Section 3, we 

formulate the following smaller problem:

For all k = 1 • • •A/’ : Select Xk — Xk+ or Xk- , such th at

for all FF’s 1 < i , j  < C

-f" .Af Q,xd€lQ,y(̂ i, j ) -I- TsetUp ^  Sj 4- Pspec 

Si + Mindelay(i,j) > Sj + Thold

The mapping algorithm described in Section 3 can be used to obtain a solution for this problem.

After the mapping phase, if some of the delay constraints cannot be satisfied, we have to fine- 

tune some gate sizes in the circuit. In Section 4, we have discussed the approach to resolve violation 

of long path delay constraints. The same strategy can be applied for synchronous sequential circuit 

optimization, except the definition of path slack must be modified.

For each PO j  (including pseudo PO’s at the inputs of FF’s), the required maximum (minimum) 

signal arrival times, reqi(j) (reqs( j )), can be expressed as

r e q i ( j )  =  S j  4 "  P s p e c  P s e tu p

reqa(j) = Sj + Thold (21)

The path slack then can be defined as

Pslack(Pi(n)) =  reqi(n) -  m n (22)

Violations of short path delay constraints, on the other hand, can be resolved by inserting delay 

buffers. However, buffer insertion cannot be carried out arbitrarily, since one must simultaneously 

ensure that the changes in the circuit do not violate any long path constraints.
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For every gate i in the circuit, we define the gate slack, Gslack(i), as

Gslack(i)

' min {rrij + Gslack(j) — (dj + rat)}, if gate i is not at a PO.
J<zFO(i)

< (23)
min{ min [rrij + Gslack(j) — (dj -f mt)], (reqi(i) — rat)}, if gate i is at a PO.

k j£FO(i)

Note that if gate i is at a PO, it could still fan out to other gates in the circuit; this is reflected 

in the definition of the gate slack. Physically, a gate slack corresponds to the amount by which the 

delay of gate i can be increased before its effect will be propagated to any PO’s or FF’s, in terms 

of long path delay. Therefore, it also tell us the maximum delay that a delay buffer can have if we 

are to insert a delay buffer at the output of gate i.

If output gate Gni violates the hold time constraint, its shortest path, Ps(n l), to some PI is first 

identified. If pn\ is the worst-case shortest path signal arrival time of gate n l, and reqs(n 1) is the 

required shortest path delay, then the delay of Ps(nl)  must be increased by at least reqs(n\) — pnl.

At the beginning of this phase, we first back-propagate gate slacks from PO’s and all FF‘s. 

The gate slack of each gate is determined recursively using (23).

The algorithm for inserting buffers is shown in Figure 9. In line (4) of the algorithm, beginning 

from the smallest buffer in the library, we try to insert a buffer at the output of gate Gm. The 

delay of the buffer is denoted by delay(bf). Since the output capacitance of Gn{ is changed during 

this process, we have to recalculate its delay, which is denoted by delay'(Gni).

Exam ple 4: In Figure 10, let gate 4 be connected to some FF. The required maximum arrival time 

(reqi) is 4.8, and the required minimum arrival time (reqs) is 1.3. The actual long-path delays (m,) 

and short-path delays (pt) for all gates are as indicated. The gate slack of each gate is calculated 

and shown in the figure. Since gate 4 violates shortest-path delay requirement, the shortest-path 

to it, Ps(4), is found; this can be seen to include gate 3. Since the gate slack of gate 3 is 1.0, we 

can insert a delay buffer between gate 3 and 4. If delay(3) = 0.5, the delay after introducing the
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buffer, delay'(3) = 0.4, and delay(bf) = 0.3, then the new value of p4  is 1.4, which satisfies reqs(4).

□

6 Partitioning Large Synchronous C ircuits

As indicated above, the number of constraints in our formulation of the LP is in the worst pro­

portional to the product of the number of gates and the number of FF’s in the circuit. Ideally for 

a given synchronous sequential circuit, all variables and constraints should be considered together 

to obtain an optimal solution. However, for large synchronous sequential circuits, the size of the 

LP could be prohibitively large even with our symbolic constraint propagation algorithm. There­

fore, it is desirable to partition large synchronous sequential circuits into smaller, more tractable 

subcircuits, so that we can apply the algorithm described in Section 5 to each subcircuit. While 

this would entail some loss of optimality, an efficient partitioning scheme would minimize that loss; 

moreover the reduction of execution time would be very rewarding.

It is well-known that multiple-way network partitioning problems are NP-hard. Therefore, 

typical approaches to solving such problems find heuristics that will yield approximate solutions in 

polynomial time [16,17]. Traditional partitioning problems usually have explicit objective functions; 

for example, in physical layout it is desirable to have minimal interface signals resulting from 

partitioning the circuit, and hence the objective function to be minimized there is the number of 

nets connecting more than two blocks. Our synchronous sequential circuit partitioning problem, 

however, is made harder by the absence of a well-defined objective function; since our ultimate goal 

is to minimize the total area of the circuit, there is no direct physical measure that could serve 

as an objective function for partitioning. In the remainder of this section, we develop a heuristic 

measure that will be shown to be an effective objective function for our partitioning problem.

To help us describe our partitioning algorithm, we introduce the following terminology. For a 

synchronous sequential circuit, such as one shown in Figure 2.
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An internal latch is a latch whose fanin and fanout gates belong to the same combinational block.

A sequential block consists of a combinational subcircuit and its associated internal latches.

Boundary latches are latches that act as either a pseudo PI or a pseudo PO (but not both) to 

a combinational block, i.e. latches whose fanin and fanout gates belong to different combina­

tional blocks.

A partition of a synchronous sequential circuit N is a partition of the sequential blocks of N 

into disjoint groups. A 6-way partitioning of the network is described by the 6-tuple (G i, G 2, . . .  G&) 

where the Gjs are disjoint sets of sequential blocks whose union is the entire set of blocks in the 

network. Each Gt is said to be a group of the partition.

For a given sequential block B, let L-q denote the set of boundary latches incident on B, and 

for a given boundary latch L, B/, denotes the set of sequential blocks that L is connected to. For 

each boundary latch L, we define input tightness rtn, output tightness rout, and the tightness ratio 

r as

r (L)

maximum combinational delay from any boundary latch to L in the unsized circuit,

maximum combinational delay from L to any boundary latch in the unsized circuit,

{ Tin/Tout If Tin ^  Tout 
Tout ¡Tin if T{n < Tout (24)

where the adjective “unsized” implies that all gates in the subcircuit are at the minimum size. The 

tightness ratio r{L)  provides a measure of how advantageous it would be to provide a skew at L.

For each pair of blocks (Bt-,B j), define merit mj  as

H 3 = 2  r (L*)
B& B j  .

v

(25)
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where B, £+ By means latch Lk lies between B, and By. fitJ is defined to be 0 if B t and By are 

disjoint. Physically, mj is used to measure the figure of merit if B, and By are in the same group. 

A high fiij means that the tightness ratio is high and hence B, and By should be in the same group.

The cost associated with each block, B,-, is c,-, the number of linear programming constraints 

required for solving B t . This number can be calculated very efficiently. Assume that group G*

consists of blocks Bjt,-,i = 1 ,.. . |G*|. Then we define the cost of G*, C^G*) = e !? î  cki, and the

IG I IG Imerit of G k, M ( G k) = E i= i Ey =t>i AH? • We now formulate the following optimization problem:

N

max X > ( G *)
k=1

subject to C(Gjt) < a • MaxConstraints. (26)

where N  is the number of groups, M  axC onstraints is the maximum number of constraints that 

one wishes to feed to the LP, and a > 1 is introduced so that the partitioning procedure becomes 

more flexible since the cost of a group is allowed to exceed M  axC onstraints temporarily. Now 

that the partitioning problem has been explicitly defined, we develop a multiple-way synchronous 

sequential circuit partitioning algorithm based on the algorithm proposed by Sanchis [16].

For each group G*, and each boundary latch L, define the connection number, $ ,  as:

$Gfc(T) = |{B|B € Gk and B € B i} |. (27)

Since each boundary latch connects exactly two blocks, $Gfc(L) 6 {0,1,2}. In other words, if

Bt- A  By, then (a) if B,- ^ Gk and By £ G k , $Gk(L) = 0, (b) if B t G* and By 6 G*, or vice 

versa, $ g*(T) = 1, and (c) if B t € G* and By 6 G*, $Gk(L) = 2.

The gain associated with moving B from G, to Gy is defined as 

r *j(B ) = S ( r (£/)|£i € LB and $ g3(Li) = 1) -  ^ ( r ( L n)|Ln G LB and $ Gi{Ln) = 2) (28)
l n
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The first term of (28) measures the benefit of moving B to G w h i l e  the second measures the 

penalty of moving B out of G t .

Before beginning the partitioning procedure, the number of linear programming constraints, ct , 

required for each block i is calculated using modified symbolic constraints propagation algorithm. 

If C{ > MaxConstraints for some block B t, then it is placed in a group alone, and will not be

processed later. Let T otalConstraints =  y ^(c7jc 7 <  MaxConstraints). Each remaining block is
j

put into one of the N '  groups,

,T/ \TotalC onstraints’jy' = _______________  (29)

such that for each group k, C( G*) < MaxC onstraints. This is an integer knapsack problem, 

and many heuristic algorithms can be used to obtain an initial partition (see, for example, [18], 

Chapter 2). In some cases, it may be impossible to put all blocks into N  groups without violating 

the restriction on C(G*) above; if so, the number of groups may be larger than that given in (29).

Given the initial partition, the algorithm improves it by iteratively moving one block of parti­

tion from one group to another in a series of passes. A block is labeled free if it has not been moved 

during that pass. Each pass in turn consists of a series of iterations during each of which the free 

block with the largest gain is moved. During each move, we ensure that the number of constraints 

in a group does not violate the limit given by (26). The gain number, I \j(B ), is updated constantly 

as blocks are moved from one group to another. At the end of each pass, the partitions generated 

during that pass are examined and the one with the maximum objective value, as given by (26), is 

chosen as the starting partition for the next pass. Passes are performed until no improvement of 

the objective value can be obtained.

After the partitioning, we apply the optimization algorithm described in Section 5 to each 

group.
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7 E xperim ental R esults

The algorithms above were implemented in a program GAL ANT (G A te sizing using Linear pro­

gramming ANd heuricTics) on a Sun SparclO station. The test circuits include many of the 

ISCAS85 combinational benchmark circuits [19] and ISCAS89 synchronous sequential circuits [20]. 

Each cell in the standard-cell library has five different sizes of realization with different driving capa­

bilities. Section 7.1 provides experimental results for the combination circuit optimization problem. 

The experimental results for synchronous sequential circuits with clock skew optimization are given 

in Section 7.2.

7.1 E xp erim en ta l R esu lts  for C om binational C ircu its

To prove the efficacy of the approach, a simulated annealing algorithm and Lin’s algorithm [7] were 

implemented for comparison. The parameters used in Lin’s algorithm have been tuned to give the 

best overall results. The simulated annealing algorithm that we have implemented is similar to that 

described in [8], which is briefly described in Section 1.1. However, unlike in [8], all gate sizes were 

allowed to change during the simulated annealing procedure; while the run-times for this procedure 

were extremely high, the solution obtained can safely be said to be close to optimal. Although 

simulated annealing does not guarantee the global optimal solution, a well-designed algorithm and 

a very slow annealing procedure can provide a solution that is very close to the global optimum.

The results of our approach, in comparison with Lin’s algorithm and simulated annealing, are 

shown in Table 1. The test circuits include most of the ISCAS85 benchmarks, and vary in size from 

160 gates (824 transistors) to 3512 gates (15,396 transistors). It can be seen the accuracy of the 

results of our approach ranges from being as good as simulated annealing for c499 to an discrepancy 

of 7.4% in comparison with simulated annealing; the run times are considerably smaller than those 

for simulated annealing. It is also worth pointing out that this procedure finds the solution for 

the circuit c6288, a 16-bit multiplier with a large number of paths, in a very reasonable amount
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of time. It is likely that such a circuit would cause immense problems for an approach such as [5] 

which depends on path enumeration.

Although Lin’s algorithm runs much faster than GALANT, it does not always provide good re­

sults. For loose timing constraints, its solution is comparable to the result obtained using GALANT. 

For somewhat tight specifications, however, its solution becomes excessively pessimistic. For even 

tighter delay constraints, it cannot obtain solution at all. As mentioned previously, Lin’s algorithm 

essentially is an adaptation of the TILOS algorithm [1] for continuous transistor sizing, with a few 

enhancements. While the TILOS algorithm is known to work reasonably well for the continuous 

sizing case, the primary reason for its success is that the change in the circuit in each iteration is 

very small. However, in the discrete sizing case, any change must necessarily be a large jump, and 

a TILOS-like algorithm is likely to give very suboptimal results.

Table 2 shows the amount of time taken by the mapping and adjusting algorithm in comparison 

with the time required to solve the linear program, for some of the results in Table 1. It is clear 

that for all circuits, the chief component (over 98%) of the run-time was the linear programming 

algorithm; the heuristic was extremely fast in comparison. The discrepancy between the sum of LP 

solution time and the time required for mapping and adjusting in Table 2, and the total run-time 

in Table 1 is attributable to the preprocessing step which performs miscellaneous administrative 

steps such as reading in the circuit description and levelizing the circuit.

A comparison of the run-times for GALANT, Lin’s algorithm, and simulated annealing on the 

circuit c432, for various timing specifications, is shown in Table 3. It is clear that GALANT is 

orders of magnitude faster than simulated annealing, with results of comparable quality. It can be 

seen that as the timing specification becomes more tight, the area increases; the increase in area 

is very rapid for tighter timing specifications. In all cases, the solution obtained by GALANT is 

very close to the solution obtained by simulated annealing. In comparison with the results of Lin’s 

algorithm, we find that GALANT provides results of substantially better quality, with reasonable
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run-times.

The run-time of GALANT is seen to go up as the timing specifications become tighter. This 

can be ascribed to the fact that there are many more solutions of the linear program that are 

close to the optimal solution, and hence the simplex procedure takes a longer time. This is in 

contrast with the case for a loose timing specification, where most gates are at minimum size at 

the solution, and the vertices of the feasible region where these gates are at nonminimum sizes are 

clearly suboptimal.

Finally, the circuit areas obtained using GALANT after LP phase as well as after mapping and 

adjusting phases are shown in Table 4. It can be seen that our mapping and adjusting algorithms 

are very efficient in that the final total areas are close to those given by LP. On the average, the 

final circuit areas after mapping and adjusting phases are within 1.7% of those obtained at the 

conclusion of the linear programming phase. Also notice that for some cases, the area given by the 

linear programming is slightly larger than that by simulated annealing. This could be attributed 

to the deficiency of the piecewise linear approximations to the actual delay curves.

7.2 E xp erim en ta l R esu lts  for Synchronous Sequential C ircu its

In Table 5, the experimental results of fifteen ISCAS89 circuits are listed. For information on the 

number of P i’s, PO’s, FF’s, and logic gates in the circuits, see [20]. For each circuit, the number 

of longest-path delay constraints without using symbolic constraint propagation algorithm and the 

number of constraints pruned by the algorithm are given. It is clear that our pruning algorithm is 

very efficient. The number of delay constraints is reduced by more than 93% on the average. For 

a given desired clock period (Pspec)> the optimized results for both with and without clock skew 

optimization are shown. Depending on the structure of the circuits, the improvement over total 

area of the circuit ranges from 1.2% to almost 20%. As for the execution time, the runtime ranges 

from about the same for some circuits, to less than double or triple for most circuits.
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One may raise the question of whether it is worthwhile to minimize circuit area through clock 

skew optimization, since the reduction of area is not very significant for some circuits. However, 

Table 6 provides some more in-depth experiments of two circuits, s838 and sl423. In this experi­

ment, we try to minimize the area using different specified clock periods. As one can see, for sl423, 

the minimum clock period without clock skew optimization is about 32.5. On the other hand, using 

clock skew optimization, the minimum period can be as small as 22, which gives an almost 33% 

improvement in terms of clock speed. For s838, using clock skew optimization also gives an 30% 

improvement. Hence, using clock skew optimization can not only reduce the circuit area, but also 

allows a faster clock speed.

Table 7 gives the experimental results for the partitioning procedure. Since most of the 

ISCAS89 circuits consist of only one combinational block, we generated some synchronous se­

quential random logic circuits. The number of gates and FF’s in those circuits are shown in Table 

3. For each circuit, we conduct three experiments.

1. First, we minimize the area using clock skew optimization, but without partitioning.

2. Secondly, we minimize the circuit area using both clock skew optimization and partitioning.

3. For comparison, we minimize the circuit with neither clock skew optimization nor partitioning.

From the table, it can be seen that the first approach is able to obtain the best result as 

expected. Since it considers all variables at the same time, it provides the best solution. However, 

the runtime is large. Compared to the first approach, the second approach runs much faster, at a 

very slight area penalty. Not surprisingly, the third approach gets the worst solution. We also note 

that the introduction of clock skew provides a significantly faster clock speed for circuit ml337. 

Although it has not been shown here, the same result also holds for ml783. For ml783, we also 

specify several different MaxConstraints. The result shows that as the specified MaxConstraints 

increases, the number of groups after partitioning decreases. As the number of groups decreases, the 

optimized solution using partitioning procedure improves, while the runtime only increases slightly.
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When N  = 6, the solution is comparable to that without using partitioning, and the runtime is 

still far less than that without using partitioning.

8 Conclusion

In this paper, an efficient algorithm is presented to minimize the area taken by cells in standard-cell 

designed combinational circuits under timing constraints. We present a comparison of the results 

of our algorithm with the solutions obtained by our implementation of Lin’s algorithm [7] and 

by simulated annealing. In [7], it was shown that Lin’s algorithm is able to obtain better results 

than the technology mapping of MIS2 [21]. Although Lin’s algorithm is fast, its solution becomes 

excessively pessimistic for tight delay constraints. For very tight timing constraints, it fails to 

obtain a solution at all. Experimental results show that our approach can obtain near-optimal 

solution (compared to simulated annealing) in a reasonable amount of time, even for very tight 

delay constraints. By adding additional linear programming constraints to account for short path 

delay [9], and slightly modifying the mapping and adjusting algorithm, the same approach can be 

used to tackle the double-sided delay constraints problem.

A unified approach to minimizing synchronous sequential circuit area and optimizing clock 

skews has also been presented. The skews at various latches in a circuit may be set using the 

algorithm in [22]. Traditionally, the circuit area of a synchronous sequential circuit is minimized 

one combinational subcircuit at a time. Our experiments have shown that this may lead to very 

suboptimal solution in some cases.

We formulate the discrete gate sizing optimization as a linear program, which enables us to 

integrate the equations with clock skew optimization constraints, taking a more global view of the 

problem. Experimental results show that this approach can not only reduce total circuit area, 

but also give much faster operational clock speed. For large synchronous sequential circuits, we 

also present a partitioning schema. Our experiments show that our partitioning procedure is very
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effective in making our optimization algorithm run at a much faster speed, with no significant 

degradation in the quality of the solution.

The major bottleneck of our approach was the time required to solve the linear program. Our 

approach used a linear program which is solved using a package available in the public domain [23], 

whose base is a sparse matrix dual simplex linear program solver. It is possible to reduce the CPU 

usage using vector processors; as pointed out in [23], the CPU usage can be reduced by about 

40% on an Alliant FX/8 machine. Although the computational complexity of simplex method 

can be exponential in the worst case, it has been observed that for most practical problems, the 

complexity ranges from 0 ( ( l /n  + l/(m  — n i))_1) to 0 ( ( l /n  + l/(m  — n + 1) — l/m )_1) for m  

inequality constraints and n variables [24]. Other polynomial-time linear programming algorithms 

such as Karmarkar’s algorithm [25] may also be employed; however, in practice, its average run-time 

has been found to be similar to that of the simplex algorithm.

Finally, the clock skew scheme may appear similar to maximum-rate pipelining technique used 

in pipelined computer systems [26]. However, the clock in a maximum-rate pipeline cannot be 

single-stepped or even slowed down significantly. This makes maximum-rate designs extremely 

hard to debug. In the clock skew scheme, by constrast, single-stepping is always possible [10]. 

Therefore circuits implemented using clock skew technique can be debugged without difficulties.
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Table 1: Performance comparison of GALANT with Lin’s algorithm and simulated annealing for

ISCAS85 benchmark circuits.

Circuit Tsptc Simulated Annealing GALANT Lin’s Algorithm

Area 

(a s a )

Runtime Area

(Aa)
Runtime 4 a-Asa

Area

(Al )

Runtime Aft
A sa

c432 16.0 2360 20m 29s 2389 4.75s 1.012 2429 0.28s 1.029
14.0 2475 20m 38s 2513 4.91s 1.015 2715 0.20s 1.097
12.0 2793 24m 7s 2887 5.50s 1.025 5996 0.14s 2.147

c499 9.0 3809 30m 3s 3809 8.60s 1.000 3809 0.16s 1.000
8.0 4039 35m 34s 4039 9.14s 1.000 4791 0.48s 1.186
7.0 4916 37m 54s 5279 11.05s 1.074 6467 0.33s 1.316

c880 12.0 5972 55m 51s 5980 23.57s 1.001 6445 0.77s 1.079
11.0 6106 57m 25s 6177 25.57s 1.010 - - -

10.0 6377 lh lm 6479 27.59s 1.016 - - -

cl355 17.0 7522 2h 51m 7527 42.16s 1.000 7704 0.87s 1.024
15.0 7700 3h 5m 7700 44.81s 1.000 7856 0.89s 1.020
14.0 8226 3h 29m 8621 49.66s 1.048 8875 2.07s 1.079

C1908 20.0 11245 5h 3m 11248 lm 40s 1.000 11375 2.59s 1.011
18.0 11439 5h 15m 11476 lm  52s 1.003 17938 3.20s 1.563
15.0 13663 6h lm 13740 3m 28s 1.006 - - -

c2670 20.0 17451 7h 15m 17459 3m 5s 1.000 17617 2.48s 1.010
18.0 17518 7h 32m 17533 3m 12s 1.000 19281 4.06s 1.101
15.0 17977 8h lm 18098 4m 19s 1.007 - - -

c3540 24.0 24430 lOh 2m 24448 5m 57s 1.001 24486 3.01s 1.002
20.0 25040 lOh 19m 25127 8m 25s 1.003 29767 10.89s 1.189
18.5 25611 lOh 47m 26199 10m 2s 1.023 - - -

C5315 22.0 36651 12h 2m 36662 11m 5s 1.000 37296 15.96s 1.020
20.0 36853 12h 58m 36957 12m 48s 1.003 44701 26.79s 1.213
17.0 38269 13h 21m 38756 17m 22s 1.013 - - -

c6288 75.0 32886 15h 42m 32908 14m 47s 1.000 36889 12.90s 1.122
72.5 32976 16h 4m 33026 14m 52s 1.002 57557 8.57s 1.745
70.0 33118 16h44m 33296 16m 4s 1.005 61634 9.40s 1.861

c7552 20.0 50123 20h 24m 50152 27m 26s 1.001 50910 25.70s 1.016
18.0 50425 21h 16m 50469 32m 15s 1.001 62965 59.54s 1.025
16.0 51968 22h lm 52376 57m 34s 1.008 - - -

Average Area Ratio 1.009 1.206
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Table 2: Execution times for the Linear Program and the Mapping h  Adjusting Algorithms.

Circuit T■L spec LP solution Mapping & Adjusting

c432 12 5.37s 0.05s
c499 7.0 10.73s 0.24s
c880 10 27.21s 0.19s
cl355 14 45.82s 3.46s
cl908 15 3m 26s 1.83s
c2670 15 4m 17s 0.89s
c3540 20 8m 4s 1.45s
c5315 17 17m 18s 3.71s
c6288 70 15m 56s 4.20s
c7552 16 57m 21s 9.48s

Table 3: Performance comparison for c432.

Circuit Tspec Simulated Annealing GALANT Lin’s Algorithm
Area

(As a )

Runtime Area

{Aa)

Runtime 4 s3-A sa
Area

(Al )

Runtime Asa

c432 17.5 2330 8m 3s 2331 4.57s 1.000 2363 0.15s 1.014
17.0 2334 9m 37s 2335 4.71s 1.000 2440 0.21s 1.045
16.5 2341 10m 27s 2346 4.66s 1.002 2526 0.27s 1.079

‘ 16.0 2360 10m 51s 2389 4.75s 1.012 2429 0.28s 1.029
15.5 2379 9m 54s 2390 4.79s 1.005 2549 0.21s 1.071
15.0 2411 11m 31s 2421 4.87s 1.004 2645 0.21s 1.097
14.5 2439 12m 27s 2445 4.91s 1.002 2645 0.22s 1.084
14.0 2475 12m 36s 2513 4.91s 1.015 2715 0.20s 1.097
13.5 2553 12m 34s 2608 5.15s 1.022 2829 0.29s 1.097
13.0 2616 12m 53s 2689 5.21s 1.028 3200 0.19s 1.108
12.5 2685 13m 35s 2750 5.35s 1.024 3869 0.23s 1.441
12.0 2816 19m 57s 2887 5.50s 1.025 5996 0.14s 2.129
11.5 3043 20m 49s 3400 5.97s 1.117 - - -
11.0 3302 21m Is 3533 7.02s 1.070 - - -
10.5 3619 27m 57s 3683 6.89s 1.018 - - -
10.0 3915 29m 50s 4370 7.51s 1.116 - - -

Average Area Ratio 1.022 1.191
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Table 4: Performance comparison of GALANT’s Mapping and Adjusting Algorithms.

Circuit TJ- spec GALANT Simulated Annealing

Area after LP
{Al p )

Final Area 
(Aa)

A g..A-lp Area

c432 16.0 2345 2389 1.019 2360
14.0 2468 2513 1.018 2475
12.0 2741 2887 1.053 2793

c499 9.0 3796 3809 1.003 3809
8.0 3948 4036 1.022 4039
7.0 4711 5279 1.121 4916

c880 12.0 5952 5980 1.005 5972
11.0 6072 6177 1.017 . 6106
10.0 6387 6479 1.014 6377

C1355 17.0 7507 7527 1.003 7522
15.0 7670 7700 1.004 7700
14.0 8015 8621 1.076 8226

cl908 20.0 11233 11248 1.001 11245
18.0 11436 11476 1.003 11439
15.0 12918 13740 1.064 13663

c2670 20.0 17451 17459 1.000 17451
18.0 17515 17533 1.001 17518
15.0 17895 18098 1.011 17977

c3540 24.0 24423 24448 1.001 24430
20.0 24848 25127 1.011 25040
18.5 25443 26199 1.030 25611

c5315 22.0 36650 36662 1.000 36651
20.0 36832 36957 1.003 36853
17.0 38280 38756 1.012 38269

c6288 75.0 32890 32908 1.000 32886
72.5 32980 33026 1.001 32976
70.0 33118 33296 1.005 33118

c7552 20.0 50122 50152 1.001 50123
■ 18.0 50377 50469 1.002 50425

16.0 51620 52376 1.015 51968

Average Area Ratio 1.017
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Table 5: Performance comparison with and without clock skew optimization for ISCAS89 bench-

mark circuits.

Circuit longest-path constraints P1 sp ec with clock skew opt. w/o clock skew opt. t .
original pruned % Area (Ai) Runtime Area (A2) Runtime

s27 133 27 20.3% 3.75 151.12 0.32s 179.29 0.30s 0.842
s208 3276 214 6.5% 6.8 1404.00 3.32s 1745.25 3.06s 0.805
s298 4556 280 6.1% 6.5 2125.50 4.20s 2295.58 4.12s 0.926
s344 6720 401 6.0% 8.0 2093.00 7.10s 2400.67 6.91s 0.872
s349 6816 417 6.1% 8.0 2128.75 6.18s 2498.17 6.01s 0.852
s400 7824 656 8.4% 8.4 2314.00 8.19s 2515.50 7.13s 0.920
s420 11830 544 4.6% 12.0 2522.00 9.06s 2952.63 8.94s 0.854
s444 8592 830 9.7% 8.5 2463.50 11.55s 2724.04 7.22s 0.904
s526 11688 541 4.6% 6.5 3914.08 10.21s 4311.67 9.35s 0.908
s641 30402 1331 4.4% 22.0 4598.75 51.59s 4747.17 26.49s 0.969
s838 55948 2670 4.8% 10.5 6162.00 100.67s 7324.42 43.77s 0.841
s953 34470 1788 5.2% 10.5 5516.87 243.93s 5898.75 67.69s 0.935

sll96 32736 2241 6.8% 12.0 8550.21 288.15s 8752.42 97.43s 0.977
sl423 106379 7953 7.5% 35.0 9871.87 1069.75s 10151.38 80.71s 0.972
s5378 911854 6593 0.7% 10.0 29219.12 2633.78s 29717.53 1414.49s 0.983

Table 6: Improving possible clocking speeds using clock skew optimization.

Circuit #  of 
P i’s

#  of 
PO’s

#  of 
FF’s

#  of 
gates

Pspec with clock skew opt. w/o clock skew opt. t
Area (Ai) Runtime Area (A2) runtime

s838 35 2 32 390 10.5 6162.00 100.67s 7324.42 43.77s 0.841
10.25 6165.25 102.18s 7365.58 45.30s 0.837
10.0 6182.04 103.25s - - -
7.5 6637.58 130.20s - - -

6.75 7417.58 172.31s - - -
6.5 - - - - -

sl423 17 5 74 657 35.0 9871.87 1069.75s 10151.38 80.71s 0.972
32.5 9998.63 1130.89s 10545.71 84.05s 0.948
30.0 10154.08 1450.03s - - -
22.0 12178.83 1605.43s - - -
20.0 - - - - -
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Table 7: Performance comparison of the partitioning procedure.

Circuit #  of 
P i’s

#  of 
PO’s

#  of 
FF’s

#  of 
gates

#  of 
blocks

m51 8 8 12 51 5
ml44 16 2 18 144 9
ml337 51 53 97 1337 42
ml783 90 54 124 1783 43

Circuit p1 spec with clock skew opt. w/o clock skew opt.
w/o partitioning wth partitioning

Area RuntimeArea Runtime MaxCnstrT N * Area Runtime
m51 5.0 731 1.74s 300 2 813 1.50s 849 1.29s
ml44 6.2 1872 6.11s 300 5 1953 3.32s 2410 2.87s

ml337 9.5 12364 135.35s 1500 6 12370 58.96s 13055 47.54s
9.25 12353 151.34s 1500 6 12356 57.91s - -
7.5 12685 171.92s 1500 6 12689 60.74s - -
6.75 13049 186.61s 1500 6 13112 60.94s - -
6.5 - - 1500 6 - - - -

m l 783 9.5 18564 427.14s 300 16 18743 155.07s 21074 140.23s
1000 8 18708 156.55s
2000 6 18572 159.93s

t MaxCnstr = MaxConstraints, the maximum number of contraints. 
* N, number of groups after partitioning.
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Figure 1: The advantages of nonzero clock skew.

Figure 2: An example illustrating the definition of a synchronous block.
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Figure 4: An example illustrating the definition of cap(i,j).
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Figure 5: An example illistrating the construction of state space tree in the mapping algorithm.

chain.

42



ALGORITHM Symbolic_propagation()
1. for i * 1 to C
2. Wj <— 0, mstring(j) <— ptring(j) ”” for all gates and Pi’s;
3. for j s 1 to max_level
4. for each gate k at level j
5. if ( wi = 0 for all l € fanin(k) ) ; /* do nothing */
6. if ( among all l € fanin(k) , exactly one wi = 1, others equal 0 )
7. mstring(k) <— mstring(l') + ”dk \  pstring(k) *— pstring(l') + ndk”, Wk <— 1 

/* w/» = 1, /' £ fanin(k) */

8. else
9.

10.
11 .

12.

Wk <— 1, mstring(k) pstring(k) <—
for all w/ = 1, / £ fanin(k)

write down the two constraints,
mstring(l) + dk < mlk, pstring(l) + dk > p\ ,

Figure 7: The symbolic constraints propagation algorithm.

mstring(13) =

Figure 8: An example illustrating symbolic delay propagation algorithm.
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ALGORITHM Insert_buff er(ril)
1. Let P3(nl) be the shortest path to gate ral, and Gnu Gn2, ■ • *, Gnk be on path 

P3(n 1) (Gni fans out to Cjn(,_i), 2 < i < k ,  k = #of gates along Ps(n l).);
2. i *— 1;
3. while ( pni < reqs(nl) )
4. if ( 3 a (smallest) buffer, bf, in the library such that: 

del ay (Gni) < delay'(Gni) + delay(bf) < delay(Gn{) 4- slack(Gn{) )
5. insert 6/at the output of Gn,-;
6. incrementally update slack(j), rrij, pj for each gate j  in the circuit;
7. if ( pni >reqs(nl) ) stop;
8. else goto 1.
9. i <— i + 1;

Figure 9: The buffer insertion algorithm.

mj = 4 .5  
Pi = 1 .5  
s la ck (l)  =  0 .0

m2 =  3.0  
P2 = 1.7 
slack(2) =  1.5

m3 =  3.5  
p3 =  0 .9  
slack(3) =  1.0

x

d4 =  0.3  
m4 = 4.8

req,(4) =  1.3 

slack(4) =  0 .0

insert a delay buffer here

Figure 10: An example illustrating buffer insertion algorithm.
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