
8 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 15, NO. 1, JANUARY 1996 

Planar-DME: A Single-Layer 
Zero-Skew Clock Tree Router 

Andrew B. Kahng, Member, ZEEE, and Chung-Wen Albert Tsao 

Abstract- This paper presents new single-layer, i.e., planar- 
embeddable, clock tree constructions with exact zero skew under 
either the linear or the Elmore delay model. Our method, called 
Planar-DME, consists of two parts. The first algorithm, called 
Linear-Planar-DME, guarantees an optimal planar zero-skew 
clock tree (ZST) under the linear delay model. The second algo- 
rithm, called Elmore-Planar-DME, uses the Linear-Planar-DME 
connection topology in constructing a low-cost ZST according 
to the Elmore delay model. While a planar ZST under the 
linear delay model is easily converted to a planar ZST under 
the Elmore model by elongating tree edges in bottom-up order, 
our key idea is to avoid unneeded wire elongation by iterating the 
DME construction of ZST and the bottom-up modification of the 
resulting nonplanar routing. Costs of our planar ZST solutions 
are comparable to those of the best previous nonplanar ZST 
solutions, and substantially improve over previous planar clock 
routing methods. 

I. PRELIMINARIES 

HE PLACEMENT phase of physical layout determines 
positions for the synchronizing elements of a circuit, 

which are the sinks of the clock net. Large cell-based designs 
can have thousands of sinks in a clock net, with these sinks 
located quite arbitrarily throughout the layout region. We 
denote the set of sink locations in a clock routing instance as 
S = {SI, 5-2, . . . , s,} c 9’. A connection topology is a rooted 
binary tree, G, with n leaves corresponding to the sinks in S. 
A clock tree T (  S )  is an embedding of the connection topology 
in the Manhattan plane, i.e., a placement in 9’ which assigns 
each internal node v E G to a location which we denote as 
I (T, U ) ,  or more simply as I ( U) when no confusion arises. The 
root of the clock tree is the source, denoted by SO.  When the 
clock tree is rooted at the source, any edge between a parent 
node p and its child U may be identified with the child node, 
i.e., we denote this edge as e,. In our discussion, the distance 
between two points p and q is the Manhattan distance d ( p ;  q ) ,  
and the distance between two sets of points P and Q, d(P, Q), 
is min{d(p, q)Ip E P and q E Q}. The cost of the edge e,  
is simply its wirelength, denoted le,l; this is always at least 
as large as the Manhattan distance between the endpoints of 
the edge, i.e., levl 2 d ( l ( p ) ,  Z(v)). The cost of T ( S ) ,  denoted 
cost ( T ( S ) ) ,  is the total wirelength of the edges in T ( S ) .  

For a given clock tree T (  S) , let t( S O ,  s,) denote the signal 
propagation time on the unique path from source S O  to sink 
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s,. The skew of T ( S )  is the maximum value of It(s0, s,) - 
t ( s0 ,  s,)l over all sink pairs s3 E S. If the skew of T ( S )  is 
zero then T (  S )  is a zero-skew tree (ZST). In what follows, we 
address the Zero Skew Clock Routing Problem: Given a set 
S of sink locations, construct a ZST T ( S )  with minimum cost. 

A. Minimum-Cost Zero-Skew Trees 
In the IC CAD literature, minimum-cost, exact zero-skew 

clock trees for cell-based designs have been constructed by 
applying geometric optimizations over the set of sink locations. 
The associated formulations are perhaps best motivated by the 
“monolithic” single-buffer clocking approach [2], [ 101. From 
the circuits/systems perspective, workers such as Friedman 
[ 141 have considered these geometric methods as “subrou- 
tines” in addressing further concerns such as use of existing 
distributed buffers, nonzero clocking skew, driver and buffer 
sizing, etc. Thus, the zero-skew clock routing problem, along 
with its planar variant, remains a fundamental building block 
in any clock distribution methodology. 

The first clock tree construction for cell-based layouts with 
arbitrary sink locations was that of Jackson et al. [16]; their 
MMM algorithm does recursive top-down partitioning of the 
set of sinks into two equal-sized subsets, always connecting 
the centroid of a set to the centroids of its subsets. Kahng et 
al. [8], [18] constructed clock tree topologies using a bottom- 
up matching approach. Their “KCR’ algorithm obtains zero 
pathlength skew in practice (i.e., zero skew under the linear 
delay model) but has no theoretical guarantee. The work of 
Tsay [23] was the first to guarantee exact zero skew for any 
input; this was accomplished with respect to the Elmore delay 
model. In the same spirit as [18], Tsay recursively combines 
pairs of zero skew trees at “tapping points” to yield larger 
zero skew trees. To maintain the exact zero skew, wires are 
elongated via “snaking” as necessary. 

The above methods all concentrate on generation of the 
clock tree topology: the topology is then embedded in the 
plane more or less arbitrarily as it is generated. The Deferred- 
Merge Embedding (DME) method, which was discovered 
independently by three groups [3], [4], [ l l ] ,  is a linear-time 
algorithm which optimally embeds any given topology in the 
Manhattan plane, i.e., with exact zero skew and minimum total 
wirelength. Because the properties of the DME construction 
are central to our present work, we now provide a review of 
DME following the development in [3]. 

B. The DME Algorithm 
Given sink set S and topology G, DME embeds internal 

nodes of G via: i) a bottom-up phase that constructs a tree of 
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merging segments which represent loci of possible placements 
of internal nodes in the ZST T ;  and ii) a top-down embedding 
phase that determines exact locations for the internal nodes in 
G (see Fig. 3, reproduced from [3]). 

In the bottom-up phase (Fig. 3(a)), each node w E G is 
associated with a merging segment which represents a set of 
possible placements of 'U in a minimum-cost ZST. The merging 
segment of a node depends on the merging segments of its 
two children, hence the bottom-up processing order. More 
precisely, let a and b be the children of node 'U in G, and let 
T S ,  and TSb denote the subtrees of merging segments rooted 
at a and b,  respectively. We seek placements of w which allow 
TS, and TSb to be merged with minimum added wire while 
preserving zero skew. This means that we want to minimize 
(e,/ + lebl in T ,  while balancing delays from Z(v) to all leaves 
in the subtree rooted at w .  The values of le, I and (eb I which 
achieve this are unique; they are computed and stored for use 
in the top-down embedding phase of DME. 

To formally describe this construction, the following ter- 
minology is useful. A Manhattan arc is defined to be a line 
segment, possibly of zero length, with slope +1 or -1; in 
other words, a Manhattan arc is a line segment tilted at 45" 
from the wiring directions. The collection of points within a 
fixed distance of a Manhattan arc is called a tilted rectangular 
region, or TRR, whose boundary is composed of Manhattan 
arcs (Fig. 1, reproduced from [3]). The Manhattan arc at the 
center of the TRR is called its core. Finally, the radius of a 
TRR is the distance between its core and its boundary. Note 
that a Manhattan arc is itself a TRR with radius 0. 

A formal recursive definition of ms(w), the merging seg- 
ment of node w E G, is as follows. If w is a sink s,, then 
ms(v)  = {s,} (note that this single point is a Manhattan arc). 
If w is an internal node, then ms(v) is the set of all placements 
l ( v )  which merge TS,  and TSb with minimum wire cost, i.e., 
all points within distance leal of ms(a)  and within distance 
le61 of ms(b).  If ms(a)  and ms(b) are both Manhattan arcs, 
then ms(w) = trr, f l  trrb is obtained by intersecting two 
TRRs, trr, with core ms(a)  and radius leal, and trrb with 
core ms(b) and radius lebl  (see Fig. 2, also reproduced from 
[3]). Boese and Kahng [3] show that if ms(a)  and ms(b) are 
both Manhattan arcs, then ms(v)  is also a Manhattan arc. Since 
the merging segment ms(s,)  for each sink sz is a single point 
and thus a Manhattan arc, by induction all merging segments 
are Manhattan arcs. 

Given the tree of merging segments corresponding to G, 
the top-down phase (Fig. 3(b)) chooses exact embeddings of 
internal nodes in the ZST as follows. For node v in topology G, 
(i) if w is the root node, then DME selects any point in ms(w) to 
be Z(w); '  or (ii) if w is an internal node other than the root, DME 
chooses Z(v) to be any point in rns(v) that is at distance levi or 
less from the placement of U ' S  parent p (the merging segment 
ms(p)  was constructed such that d(ms(v),ms(p))  5 lev\, so 
there must exist some Z(w) satisfying this condition). In case 
(ii), Z(v) can be any point in the intersection of ms(v )  and the 
square TRR trr, which has radius levl and core {Z(p)}. 

'If a fixed clock source location clk has been specified, DME chooses 
Z(s0) E ms(s0)  with minimum distance from clk and connects a wire directly 
from cllc to Z(s0). 

Fig. 1. An example of a TRR. 

trr, 

. .  

. .  . *  

Fig. 2. Construction of merging segment ms(v). 

Note that DME requires an input topology. Several 
works have thus proposed topology constructions that yield 
low-cost routing solutions when DME is applied. Below, 
we compare against the nonplanar KCR+DME [3] and 
Greedy-DME 1121 methods. 

C. Planar-Embeddable Trees 

None of the clock tree solutions given by the above "exact 
zero skew" algorithms is easily embedded in the layout plane: 
it is often impossible to perform the actual layout without 
introducing many vias. This difficulty was first noted by Zhu 
and Dai [25], who stated compelling reasons to seek a single- 
layer, or planar-embeddable clock routing solution. 

The clock routing layer may be prescribed, or we may 
prefer the layer with smallest RC delay. 
Routing on fewer distinct layers (i.e., having fewer dis- 
tinct electrical parameters) makes the layout more inde- 
pendent of process variation. Uniform electrical parame- 
ters also simplify buffering optimizations. - Single-layer routing eliminates the delay and attenuation 
of the clock signal through vias, thus improving both 
performance and signal integrity. 

Given these observations, the Planar Zero-Skew Clock 
Routing problem is of interest, i.e., given sink set S,  find 
a planar-embeddable ZST T(  S )  with minimum cost. 
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Procedure Build-Tree-ofsegments (G,S) 
Input: Topology G; set of sink locations S 
Output: Tree of merging segments T S  containing 

ms(w) for each node U in G, and edge length l ev l  
for each v # so 

1. 
2. 

4. else 
5 .  
6. Calculate-Edge-Lengths( leal , l e b l )  

7. 

9. radius(trr,) + leal 
10. C O r e ( t T r b )  + ms(b) 

for each node v in G (bottom-up order) 
if v is a sink node, 

3.  m s ( v )  +- { l ( v ) }  

Let a and b be the children of v 

Create TRRs t r r ,  and trrb as follows: 
8. C O T e ( t T T , )  + m S ( a )  

11. radius(tr?‘b) + lebl 

12. m d v l  + t r r ,  n t T T h  

(a) Bottom-up Phase: Construction of the tree 
of merging segments T S .  

Procedure Find-Exact-Placements(TS) 
Input: Tree of segments T S  containing ms(v), 

Output: ZST T ( S )  
1. 
2. if v is the root 
3. 
4. else 
5 .  
6. Construct t r r ,  as follows: 

8. radius(trr,) +- le,,[ 
9. 

and value of lev l  for each node v in G 

for each internal node v in G (top-down order) 

Choose any I (v)  E m s ( v )  

Let p be the parent node of v 

7 .  core( trr , )  - {G)l 

Choose any l ( v )  E ms(v )  n trr,  

(b) Top-down Phase: Construction of the ZST 
by embedding internal nodes of G within T S .  

Fig. 3 .  The DME algorithm. The procedure Calculate-Edge-Lengths in (a) 
finds the values le and leb I such that le, I + leb I is minimized and zero-skew 
is achieved; this calculation depends on the delay model. 

“Planar-embeddable” intuitively means that the tree “can be 
drawn in the plane without edges crossing,” but this concept is 
not easily characterized in the Manhattan plane. Existing work 
[25] implicitly relies on Euclidean planar-embeddability being 
sufficient for Manhattan planar-embeddability (a line segment 
in the Euclidean plane can be approximated to any desired 
accuracy by a monotone staircase in the Manhattan plane). 
Thus, we define two edges as crossing each other when the 
corresponding open line segments in the Euclidean plane prop- 
erly intersect (share exactly one point). This definition allows 
optimal planar clock routing solutions where the embeddings 
of edges are superposed. Fig. 4 shows this phenomenon: four 
sinks that are collinear will have an optimal “planar” clock 
tree whose edges pass over each other. Since this overlapping 
can be made planar with minimum increase in wirelength, we 

Fig. 4. For these four sinks on a line, edges of the optimal planar ZST will 
overlap. We accept this since the ZST can be made non-overlapping with 
minimal increase in wirelength. (The convex polygons Ps,, Psr , and Ps1 
and the points p and o pertain to the later discussion about the bartitionin; 
rules for Linear-Planar-DME.) 

accept such a degenerate solution as planar. This is also the 
convention of [25]. 

The clock routing method of Zhu and Dai [25] was the first 
to guarantee a planar ZST; the solution has minimum possible 
source-sink pathlength, and runs in between R(n1ogn) and 
O(n2) time. However, the method basically creates an “X’ 
clock tree, where an “H’ would considerably reduce the tree 
cost. Khan et al. [19] have observed this deficiency, and 
have proposed a guaranteed-planar heuristic which reduces 
the tree cost by applying the top-down horizontallvertical 
partitioning approach of [16] for a user-specified number of 
levels, then applying the Zhu-Dai X-tree construction within 
each of the resulting regions. When the user-specified number 
of levels is zero, the method reduces to that of Zhu-Dai. The 
authors of [19] claim that their algorithm guarantees mini- 
mum source-sink pathlength delay, and report approximately 
10% wirelength reduction over [25]. Both [19] and [25] rely 
completely on the linear delay model to achieve their results. 

D. Organization of Paper 

The remainder of this paper is organized as follows. Section 
II shows that under the linear delay model, the two passes 
(bottom-up and top-down) of the DME algorithm can be 
replaced by a single top-down pass which yields exactly 
the same (optimal) solution. From this “Single-Pass DME’ 
method, we develop a version called Linear-Planar-DME 
which guarantees a planar, optimal ZST solution under the 
linear delay. Because Single-Pass DME cannot be applied 
to the Elmore delay model, Section I11 presents the Elmore- 
Planar-DME heuristic, which can transform the Linear-Planar- 
DME solution to a planar Elmore-ZST with little cost increase. 
Section IV discusses Linear-Planar-DME variants which can 
produce good input topologies for Elmore-Planar-DME, and 
Section V gives experimental results and comparisons with 
previous work. We conclude in Section VI by listing several 
extensions and directions for future work. 

11. THE LINEAR-PLANAR-DME ALGORITHM 
Describing our new planar clock routing algorithm requires 

a little more terminology. For any sink subset S’ C S, we de- 
fine the diameter of s’ as diarn(S’) = max{d(s,, s3)1s,, s3 E 
SI}. The radius of S’ is then radius(S’) = diam(S’)/2. A 
Manhattan disk is a TRR with a core consisting of a single 
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point; we use M D ( s z ,  r )  to denote the Manhattan disk with 
core {sz} and radius r 2 0. In other words, a Manhattan disk 
is the “diamond-shaped” set of all points within a prescribed 
radius of a central point. For any sink set S’ E S with 
radius(S’) = r’, we define center(S’) = nSzEsl MD(s,,  r’), 
which is so named because the the distance from center(S’) 
to any sink in S’ is at most r’. We use c(S’) to denote the 
midpoint of center( S’). 

Finally, we use two terms that are defined in the Euclidean 
plane: i) PSI denotes any Euclidean convex polygon containing 
S’, and ii) convex-hull(S’) is the Ps, with minimum interior 
area. We say that a point p lies inside PSI if p is on the 
boundary of PSI or is strictly interior to PSI.  These terms 
will be used in proving that the Linear-Planar-DME algorithm 
defined below yields a planar solution: wires embedded along 
the boundary between two disjoint (Euclidean) convex poly- 
gons cannot intersect subsequent wires embedded internally 
to these polygons. 

A. Single-Pass DME 

Our first theoretical result is that under the linear delay 
model, a single top-down phase can yield the same output as 
the original two-phase DME algorithm. We prove that the tree 
of merging segments constructed in the bottom-up phase can 
be generated during the top-down phase. This result follows 
from properties of the minimum-pathlength zero-skew subtree 
over any sink set S’, notably that the root of the subtree over 
S’ must be located at center( SI). More precisely, center( SI) 
is equal to rns(v), where v is the root of the tree of merging 
segments constructed by DME over SI, and rns(v) is hence 
independent of tree topology. This leads to what we call the 
Single-Pass DME algorithm. 

The following Facts and Theorem are crucial to the develop- 
ment of the Single-Pass DME and then the Linear-Planar-DME 
algorithms. Two useful facts are due to [3]. Fact 1 is a 
straightforward extension of Theorem 2 in [3],2 and Fact 2 
is proved in the analysis of the same Theorem 2. 

Fact 1: For any sink set S and topology G, let S, be the 
set of sinks in the subtree rooted at v in the DME solution. 
Let ~ L D ( U )  be the linear delay (i.e., pathlength) from point 
U E rns(v) to each sink in S,. Then ~ L D ( U )  = radius(S,).O 

Fact 2: For any sink set S and topology G, let r = 
radius(S) and let T R R ( v )  denote the special tilted rectangu- 
lar region that corresponds to either T R R ( v )  = MD(Z(v), r )  
if v is a sink node, or T R R ( v )  = T R R ( a )  n TRR(b) if v is 
an internal node of G with children a and b. Then for each 

0 
Fact3: For any sink subset S’ C S,diarn(S’) can be 

computed in linear time. 
Proof: Under a 45-degree rotation of the coordinate 

axes (and scaling by a fi factor), Manhattan distance is 
transformed into L,  distance. Such a rotation can be accom- 
plished in constant time per point in S’. Let xmax(ymax) and 
xmln(ymin), respectively, denote the largest and smallest x- 

node v E G, rns(w) = core(TRR(v) ) .  

2Theorem 2 in [3] states that for any sink set S and topology G, the DME 
algorithm will find a ZST with source-sink pathlength delay T L D ( S O )  = 
diam (S )  1 2 .  

coordinates (y-coordinates) among all the points in the rotated 
5’’. Then diarn(S’) = max(z,, - xmin, ymax - y,in) and is 

0 
Theorem 1: Given a set of n sinks S E Rz and connection 

topology G, we can produce the same output ZST T ( S )  that 
the DME algorithm will produce under the linear delay model, 
using only a single top-down phase with time complexity 
between R(n1ogn) and O ( n 2 ) .  

Proof: We determine the merging segments and incident 
edge lengths for all nodes in top-down order as follows. Let 
v be a node in G with parent p (if v is not the root). As in 
the statement of Fact 1, let S, and S, be the sets of sinks in 
the subtrees rooted at nodes v and p in the DME solution. For 
any sink subset S, C S,  the value of r’ = radius(S’) can be 
found in O(lS,l) time (Fact 3), and in O(lS,l) time we can 
build MD(Z(u),  r’) for all sinks U E S,. 

Let T R R ( v )  be defined as in the statement of Fact 
2, then recursive application of Fact 2 shows that 
rns(v) = core(TRR(v) )  = core(n,,s, TRR(u)) = 
core(nuesu M D ( I ( u ) , r ) ) .  From lemmas 1, 2, and 3 
in [3], we have rns(v) = core(nUEsv MD(l(u) ,r’)  = 
nuES, MD(l(u) ,r’)  = center(S,), where T’ = radius(S,). 
Since the intersection of any two TRR’s can be found in 
constant time and is also a TRR, we can compute rns(v) 
in time @(IS,/). 

By Fact 1, the length of the edge incident to node U 

in G, levi, is equal to t ~ ~ ( p )  - t ~ ~ ( v )  = radius(S,) - 
radius(S,). By Fact 3, we can compute lev[ for node v in time 
O(lS,l) since we already have t ~ ~ ( p )  = radius(S,). Thus, 
we can compute rns(v) and le,[ in O(lS,l) time, and we now 
have all the information that would have been determined in 
the bottom-up phase of DME, and the single top-down phase 
is sufficient. Finally, let L, denote the set of nodes at level 
i of the ZST, and let I be the height of the ZST. We have 
CVEL, [SUI 5 n, and logn 5 I 5 n. Thus, the overall time 
complexity is I x C V E ~ ,  IS,l 5 In = O(ln ) ,  which is between 

Because Single-Pass DME outputs the same optimum ZST 
as the original DME with respect to the given connection 
topology, established properties of the output tree (minimum 
source-sink pathlength, and minimum total tree cost) are 
maintained. The worst-case and best-case time bounds are the 
same as those for the method of [25]. 

found in 0 ( IS’ I) time. 

R(n1ogn) and O(n2) .  0 

B. Linear-Planar-DME 

The impact of Theorem 1 may not be immediately apparent, 
since DME can already accomplish the same construction 
in linear time. However, the proof showed that as soon as 
Single-Pass DME has been given a partitioning of S, into 
Sa and Sb, it can immediately find the rns(a) and rns(b) 
that are compatible with an optimal ZST having this “top 
part” of the clock topology. Thus, Single-Pass DME allows 
the connection topology to be determined dynamically in 
a top-down fashion, yet still finds a minimum-pathlength, 
minimum-cost embedding of whatever topology is eventually 
determined. If Single-Pass DME chooses and embeds the 
connection topology carefully, then a planar routing can be 
achieved. 
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A1 
A2 

The Linear-Planar-DME algorithm is essentially a version 
of Single-Pass DME wherein the connection topology is 
determined based on the existing routing, such that future 
routing cannot interfere with this existing routing. We use the 
(Euclidean) convex polygon concept to guide the top-down 
partitioning of both the routing area and the set of sinks. 
Given S’ C S and a convex polygon Ps/ containing S’, we 
recursively divide Ps, into two smaller convex polygons such 
that routing inside each smaller polygon cannot interfere with 
routing inside the other polygon or on the boundary between 
the polygons. 

Location of p Embedding point for node v ’ 

Regions 11.1, IV.1 
Regions I, I11 4s’) 

intersection of plpz with 

C. Embedding and Partitioning Rules 

The Linear-Planar-DME algorithm is derived from Single- 
Pass DME by adopting the following rules for embedding the 
internal nodes of the ZST, and for top-down bipartitioning of 
the sinks in each subtree. 

* Embedding Rules: In each recursive call, Linear-Planar- 
DME accepts a subset of sinks S‘ 5 S, some convex 
polygon Ps, containing S‘, and some point p inside PSI 
which is to connect to a point v on ms(v)  = center(S’). 
The point p is the embedding of the parent of the 
root of the subtree over S’; this point has already been 
determined earlier in the top-down p a x 3  The existing 
routing is outside Ps,, hence if we can select a feasible 
DME embedding point U inside PSI,  the routing from p 
to w will not interfere with the routing external to Psf. 
Thus, the resulting routing will be planar and compatible 
with the DME solution. The embedding rules in Fig. 5 
ensure that such an embedding point will be selected in 
O(1) time. 
Partitioning Rules: Our goal is to find a splitting line 
which i) divides Ps, into two convex polygons Psi and 
Ps; and thus also partitions the sink set between the two 
subtrees of w, and ii) allows the routing from p to v 
to be on the boundary between Ps; and Ps;. The rules 
to determine the splitting line for S’ are shown in Fig. 
5. Sinks lying inside one of the convex polygons are 
assigned to that polygon to determine sets Si and Si; 
a sink on can be assigned to either polygon, so long 
as neither Si or S; is empty. In the example of Fig. 4, 
S’ = { a ,  b }  is divided into Si = { a }  and Si = { b } ,  and 
Ps, is divided into Psi and Ps; accordingly. A total of 
O(lS’1) time is needed to partition the sinks in set S’. 

The overall Linear-Planar-DME algorithm is given in Fig. 
6. Steps 4 and 6 in Linear-Planar-DME-Sub are the key 
difference between Linear-Planar-DME and generic Single- 
Pass DME. Single-Pass DME would more or less arbitrarily 
choose a feasible embedding point at Step 4, and partition the 
sinks in the subtree according to the given connection topology 
at Step 6. In contrast, Linear-Planar-DME chooses both the 
embedding and the partition of the sinks (thus dynamically 
determining the topology) so that planarity is maintained. 
If the clock source location is not specified, then Linear- 

When the meaning is clear, our discussion will use, say, v to denote either 
a node in the tree topology, or the point at which that node has been embedded 
in the Manhattan plane (that is to say, Z(v)). 

IV.2 : I 

horizontal line through p 
A3 I Regions 11.3, IV.3 I intersection of plpz with 

vertical line through p 
A4 1 Region 11.2 (IV.2) I p2 (PI) 

The Partitioning Rules 
I Locations of D. v I S d i t t i w  line 

- 
B2 I p = v ; p #  c(S’) 
B3 I p = v; p = c(S’) 

I pip2 
I Vertical line through p 

Fig 5. Rules used by Linear-Planar-DME (I) to choose the embedding 
point of v (the root of the subtree over sink set S’ C S in any DME 
soluuon), and (11) to choose the sphttmg line to partition the sink set S’ 
based on the relative positions of w’s parent p and center(S‘) = 2)11)2. 
Without loss of generality, assume that the Manhattan arc center(S’) has 
slope - 1 Let the coordinates of e( S’ ) , p1  and p z  be ( zc , yc) , (z 1 ,  yl ) , and 
(x*,yz), respectively. We define Region 1 z 2 zc,y 2 yc; Region 11.1 
y 2 -z + yi  + x1 ,y  5 yc,y 2 m; Region 11.2. z 2 zz,y 5 y2, and 
Region 11.3: y 5 -x  + y1 + z1,x 2 x,, x 5 2 1 .  Regions 111, IV.l, IV.2, 
and I V 3  are defined similarly. 

Planar-DME will set the root of the clock tree to be the 
clock location. Fig. 7 illustrates how the planar clock routing 
is achieved by Linear-Planar-DME. For any given sink set, 
applying the partitioning and embedding rules takes the same 
(linear) time that is required to compute merging segments 
and edge lengths, hence Linear-Planar-DME has the same time 
complexity as Single-Pass DME. 

D. Correctness of Linear-Planar-DME 

We now show that Linear-Planar-DME yields a planar- 
embeddable, i.e., single-layer optimal ZST. The following 
Fact 4 states that for any sink set S’ C S, the midpoint 
of center( S’) must lie inside convex-hull( SI). Note that 
center(S’) does not necessarily lie entirely in convex- 
hull(S’)+onsider the case of S’ containing two points along 
a diagonal line. 

Fact 4: For any S’ C S, e( S’) lies inside convex-hull( SI). 
Proo) Without loss of generality, assume that the 

Manhattan arc center(S’) = plpz has slope -1, as shown 
in Fig. 8, where p1 = ( ~ 1 , y l )  and p2 = ( 2 2 , y 2 ) ,  with 
2 1  <x2 and y2 <yl. Let radius(S’) = r’ and R = 
MD(p1,r’)  n MD(p2,r’) .  Since d ( p l , p z )  5 diam(S‘) = 
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Algorithm Linear- Planar- D M E ( S ,  cl k )  
Input: Set of sinks S; 

clock location clk in Ps. 
Output: Planar ZST T(S) with root S O ;  cos t (T) .  
1. r + radius(S);  
2. Build M D ( l ( s , ) , r )  for all sinks sI E S;  
3. c e n t e r ( S )  + ns,Es M D ( l ( s , ) ,  r ) ;  
4. i f c l k  not specified 
5. Embed SO at  c ( S )  (i.e., I(s0) +- c ( S ) ) ;  
5. else 
7.  Embed SO at  clk (i.e., l (s0)  + c lk ) ;  
8. t m ( s 0 )  t r + d( l ( so ) ,  c e n t e r ( S ) ) ;  
9. PS t a rectangle containing S and c lk ;  
10. Linear-Planar-DME-Sub( S ,  Ps ,so) ; 
11. c o s t ( T )  + CvET,v;ts,, leul; 

Procedure Linear-Planar-DME-Sub (S‘, Ps/ , p )  
Input: Set of sinks S’ C 5’; convex polygon Ps/ 

OutDut: Planar ZST T(S’1 with root w. 
containing Sf ;  parent node p lying inside Ps, . 

1. t L D ( V )  = r f  t radius(S’); 
1. ms(v)  = c e n t e r ( 9 )  + ns,ESj MD(l ( s , ) ,  r’);  
3. leul +- t m ( p )  - ~ L D ( v ) ;  
4. Embed node w a t  I (v )  E rns(v)  

by embedding rules in Figure 5 ;  
5. Connect a wire from I ( p )  to  I ( v ) ;  
6 .  Divide S‘ and Ps/ into Si, S; and Psi,  Ps; 

by partitioning rules in Figure 5;  
7 .  p a r e n t ( v )  t p ;  
8. if ISf/ = 1 return; 
9. Linear-Planar-DME-Sub($ ,Psi ,v); 
10. Linear- Planar- DME-Su b( S; ,Psi, w ) ; 

Fig. 6. The Linear-Planar-DME Algorithm. 

2 ~ ’ ,  R is nonempty and has the following vertices: A = 

D = ( 2 2  + 6,y l )  where S = T’ - d ( p l  , p 2 ) / 2  2 0. Since 
any sink in S’ must be located within distance T’ from pl 
and p2, S’ C R. Since no sinks of S‘ lie outside R, AB and 
CD must each contain a sink of S’; otherwise, center(S’) 
would become a TRR with non-zero width. Similarly, AC and 
B D  must each contain a sink of S’; otherwise, center(S’) 
would extend into region N.2  or 11.2 in the figure. Thus 
we can assume that there are sinks x ,y , s ,  and t lying on 
AB, C D ,  AC and m, respectively (these correspond to 
between two and four distinct points, e.g., x and s can 
coincide at A) .  Furthermore, it is easy to see that c(S’) is 
the center of gravity of R. These facts imply that .(SI) lies 
inside convex-hull({z, y, s ,  t } ) .  Since (2, y, s, t }  2 S’, we 
conclude that e( S‘) lies inside convex-hull( S’) . 

We now prove that the embedding and partitioning rules 
have the following properties. Our discussion again refers to 
Fig. 8. 

Theorem 2: Given a subset S‘ C S with IS’I 2 2 ,  a 
convex polygon PSI containing S’, and a point p inside PSI,  

(21 - S,y2) ,B = ( 2 1 , Y Z  - S),C = ( 2 2 , Y l  + 4, and 

- 

- 

-__-  

Pa 

‘b PC 

Fig. 7. Example with 9 sinks (squares at leaf nodes in tree), illustrating 
the execution of Linear-Planar-DME. The entire routing region (Pa)  is 
recursively divided into convex polygons (boundaries of polygons indicated 
by thick dashed lines and tree edges) until only one sink lies within 
each convex polygon. The tree of merging segments is given by thin 
dotted lines. The root of the clock tree, SO, is embedded as specified by 
Linear-Planar-DME in Fig. 6. The internal nodes a, b, . . , h arc embedded 
by Rules A l ,  A2, A l ,  A3, A l ,  A3, A4, and A l .  Note that SO = a. Polygon 
Pa is divided by the vertical line through a (Rule B3) into polygons Pb and 
P, which contain sink sets rooted at nodes h and c. All other partitioning 
steps invoke Rule B1 only. 

.I.. Y .... 

1.11 -..... 

Fig. 8. For any sink set S‘ C S with radius(S‘)  = r’, the mid-point 
of center(S’) = plp2 must he inside convex-hull(S’). The dotted region 
R = MD(p1, r’) f l  M D ( p 2 ,  r’) is the smallest TRR that contains S’. The 
hollow circles arc the sinks in S‘ which he on the boundary of R. 

(i) the embedding rules will embed v inside PSI such that 
the embedding is compatible with the DME solution and (ii) 
the partitioning rules will divide Ps, into two smaller convex 
polygons Ps: and Ps; that contain nonempty sink subsets Si 
and S;, respectively, such that the routing from p to II is on 
the boundary between Ps; and Ps;. 

Proo$ First, note that for all the embedding cases v lies 
on the portion of center(S’) that is closest to p; thus, v is a 
feasible DME embedding point. 

Second, we show that v always lies inside Ps, , as follows. 
Recall that AB and CD must each contain a point of S’. Let 
x and y be these two points on AB and CD respectively. 
If point p lies inside Region I or Region IIZ, then by Fact 4, 
v = c(S’) is inside convex-huZl(S‘) which is contained in PS,, 



14 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL 15, NO 1, JANUARY 1996 

whence v lies inside PSI.  If point p is in Region II or Region 
IV, it is easy to see from Fig. 8 that v lies inside convex- 
hull( { p ,  e( SI),  2, y}), which in turn lies inside convex-huZZ( S‘) 
and thus inside Ps,. 

Third, we show that for each case for the location of p ,  
divides Sf into two non-empty subsets. 

0 p # v ,  and p located in Regions I, III: Since v = c(S’), 
by Fact 4 we have that v is inside convex-hull(S’), 
whence ;;;;’ divides convex-huZl(S’) into two regions each 
containing at least one point from S‘. 

* p # v ,  and p located in Regions II, IV: The line 
separates AB from CD. 
v = p = c(S’): The vertical line through v separates 
Regions I and III and hence separates AB and m. 

0 v = p ,  p # c(S’): The line p y z  again separates AB and 
CD.  

Finally, inductive application of Theorem 2 easily yields: 
Theorem 3: The zero-skew clock routing tree constructed 

by Linear-Planar-DME is planar. 
Proof: Initially, there is a convex polygon Ps (e.g., a 

rectangle) which contains the set of sinks S and a clock 
location clk;  the clock location clk is the embedding point 
of the parent node p of v ,  where v is the root of the ZST 
T ( S )  in any DME ~olution.~ The embedding rules guarantee 
that we can find embedding point l ( v )  within PS so that the 
routing from 1 ( p )  to l ( v )  lies within PS . The partitioning rules 
guarantee that we can partition P into two smaller convex 
polygons Ps, and Ps, that, respectively, contain nonempty 
sink subsets SI and Sz, such that the routing from l ( p )  to 
l ( v )  is on the boundary between Ps, and Ps,. Node v will 
become the parent node for the ZST’s T(S1) and T ( S z ) ,  
and is contained in both Ps, and Ps,. Inductively, all future 
routing over SI and Sz will be confined within Ps, and Ps,, 
respectively. We conclude that no routing crosses any other.0 

- 

111. THE ELMORE-PLANAR-DME ALGORITHM 
Several works on clock tree design use the Elmore delay 

model, which is more accurate than linear delay [4]-[6], [12]. 
In this section, we sketch a simple method which is the 
first to achieve a single-layer Elmore-ZST, i.e., a ZST under 
the Elmore delay model. Note that under the Elmore delay 
model, the DME algorithm is no longer optimal: it does not 
necessarily return a minimum-cost ZST for given S and G 
[3], [5].5 Also, the merging segment for the root of the subtree 
over S‘ C S in the DME solution is no longer independent of 
the subtree connection topology. Hence, the bottom-up DME 
phase cannot be eliminated, i.e., Single-Pass DME cannot 
be applied to the Elmore delay model. To construct a low- 

41f elk is not given, then we arbitrarily set elk = c(S) 
5Let T, denote the subtree rooted at node v in a zero-skew routing. Let 

C(v )  and tED(v)  respectively denote the total capacitance of T, and the 
Elmore delay from v to each sink in T,. Assume that loading capacitance 
C(st )  is given for each sink sz. Finally, let r and c be the per unit wire 
resistance and capacitance, and let I1 and Iz be lengths of edges from 0 

to V I  and v2, respectively. Then, C, and t ~ ~ ( w )  for an internal node v 
with children vi and v2 are calculated as follows [13], [21], [22]: C ( v )  = 

t , q ~ ( w ~ )  + T .  12 . ( e .  1 ~ / 2  + C(v2)) .  Typically, we assume t E D ( s , )  = 0, 
i.e., there is no “internal delay” at a sink node. 

C ( v l ) + c ( v 2 ) + c ~ ( l 1  f l z ) ,  t E D ( V )  = ~ED(~l)+r~z1~(C~Z1/2+C(vl)) = 

cost planar-embedded Elmore-ZST, we propose the following 
Elmore-Planar-DME heuristic. Two important issues are: i) 
choice of the topology G, and ii) embedding to achieve zero 
Elmore delay skew. 

First, any connection topology can be trivially embedded 
with exact zero skew onto a single routing layer; however, 
re-embedding the topology of a nonplanar ZST (e.g., from 
[ 121) onto a single layer can drastically increase the tree cost. 
The partial correspondence between linear delay and Elmore 
delay (at least in some technology regimes) suggests that the 
(optimum) Linear-Planar-DME solution can be re-embedded 
to have zero Elmore delay skew with very little increase in 
tree cost. Thus, Linear-Planar-DME is a natural choice for 
generating the connection topology within our approach.6 

Second, given a Linear-Planar-DME solution, it is simple 
to obtain a planar Elmore-ZST by elongating tree edges in 
a bottom-up fashion to balance differences in sink delays 
(e.g., by the “snaking” method of [23]). In the experimental 
comparisons of Section V below, we call such an approach 
“Naive-Elmore-Planar-DME”. We find that unneeded elonga- 
tion of tree edges can be saved by iterating both the application 
of DME to the given topology and the bottom-up modification 
of any resulting nonplanar routing, based on a “principle of 
least commitment”. Planarity is enforced in bottom-up order, 
with planar-embedded subtrees being retained so that they 
remain planar, and routing at higher levels being modified. 
Whenever any nonplanar routing at some level of the ZST 
is changed, the merging tree for the ZST above this level is 
rebuilt, and top-down DME embedding is applied to the new 
merging tree. The complementary processes of merging tree 
reconstruction and top-down embedding are iterated until the 
entire ZST is planar. 

Again, we emphasize that the DME algorithm cannot guar- 
antee optimal tree cost under the Elmore model. Thus, our 
approach only heuristically minimizes the cost of the output 
planar Elmore-ZST. 

A. High-Level Description 
Our method marks each point v E T as either planar or 

nonplanar. An edge in T is a planar edge if both its endpoints 
are marked as planar. A path s y‘f t is a sequenc,e of line 
segments from s to t;  aplanarpath is a path that does not cross 
any planar edge of T. We use cost(s uj t )  and hops(s y‘f t )  
to respectively denote the pathlength of a path and the number 
of segments in the path. Finally, the bounding box bboz(s ,  t )  
denotes the smallest rectangle containing points s and t .  

The Elmore-Planar-DME algorithm is described in Fig. 9. 
For simplicity, the template assumes that no clock source 
location has been prescribed. Accommodating a fixed clock 
source is straightforward, as seen from Fig. 6. Initially, a 
ZST T is obtained by applying the original DME algorithm 
(using the Elmore delay model) to the given topology G and 

Interestingly, we find that relaxing the planar-embeddable constrant 
in variations of Linear-Planar-DME leads to improved planar Elmore-ZST 
solutions (see Sechon IV below) This is possible because the method we 
use to achieve exact zero Elmore delay skew does not depend on an initial 
planar-embedded solution 
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Algorithm Elmore-Planar-DME (G, S) 
Input: Topology G; set of sinks S 
Output: Planar ZST T having topology G 
1. ZST T t DME(G,S) 
2. Mark all sinks of T planar 
3.  Mark all internal nodes of T non-planar 
4. E + 0 /* set of planar edges */ 
5 .  while T still has a non-planar node do 
6. 
7 T + Find-Exact_Placements(TS) 

Procedure Rebuild-Tree-of-Segments(T, E )  
InDut: ZST T:  Set of ulanar ednes E 

Merging tree T S  +- Rebuild-Tree-of-Segments(T, E )  

1 
U 

Output: Merging tree TS  
I 1.  L +- Lowest level in T containing non-planar nodes I 

2. 
3. 
4. 
5. if Sur and do not cross any planar edges 
6. 
7. E E U {E, G} 
8. 
9. 
10. 
11. Improve-Path(E, v,  s 2) 
12. 
13. Construct merging tree TS for all non-planar nodes 

A + { v 1 v is non-planar and at level L in T }  
for each node v E A (increasing order of merging cost) 

Let node ‘U have embedding point M and children s, t 

Mark v as planar (ms(v) = {I(v)}) 

else /* modify non-planar routing at node v */ 
Planar path s --+ t 6 Find-Merging-Path(E, v)  
if c o s t ( s  ̂ rf t )  = d ( s ,  t )  

Partial-Route(E, v ,  s ̂ v) t )  

Fig. 9. The Elmore-Planar-DME Algorithm. 

sink set S. Then, every sink is marked planar and all other 
nodes are marked nonplanar. As long as the ZST T has a 
nonplanar node, Elmore-Planar-DME iterates at Steps 6 and 
7. Note that Step 6 constructs the merging tree T S  only for 
nonplanar nodes in the upper part of the ZST; Step 7 calls 
Find-Exact-Placements( T S )  in Fig. 3 to embed the shrinking 
set of nonplanar nodes. 

Because nonplanar nodes are made planar in bottom-up or- 
der, Procedure Rebuild-Tree-of-Segments identifies the lowest 
nonplanar nodes in the tree, i.e., the node set A at level L of 
the tree. Nodes in A have planar children and will be made 
planar in the current iteration. Even though there may be other 
nonplanar nodes at higher levels whose children are all planar, 
their processing is deferred since subtrees at lower levels of 
the ZST tend to contain shorter tree edges, and it is easier for 
longer edges to detour around shorter edges than vice-versa. 
This same intuition suggests processing the nodes of A in 
order of increasing merging cost. 

To make the discussion more concrete, for each nonplanar 
node ‘U E A ,  let v have DME embedding point w and children 
s and t .  If edges SW and t.W do not cross any existing planar 
edges of T (i.e., edges in E ) ,  then v is marked planar (Step 
6), and edges S’UI and % are added into the set of planar 
edges E (Step 7). Otherwise, the nonplanar routing at node 
U will be modified at Steps 9-12 as described below. The 
merging segment m s ( w )  will be either reduced to w’s current 
embedding point if v is marked planar, or re-calculated if 
the nonplanar routing at v is modified (see the discussion of 
subroutine Partial-Route below). Because the structure of the 
merging tree above the current level L will be changed, Step 

13 constructs the tree of merging segments for the remaining 
nonplanar nodes. 

B. ModiJication of Nonplanar Routing 

Now we consider the case where SW or % crosses a planar 
edge. Recall that the DME embedding point w is the point 
on rns(v) which is closest to the embedding point of U’S 

sibling (so that the merging cost for node v and U ’ S  parent can 
be minimized). Our heuristic (Steps 9-12 of Rebuild-Tree-of- 
Segments) is to find a planar merging path s -.-+ t such that 
s e t is as short as possible and as near point w as possible. 
Specifically, we first use Procedure Find-Merging-Path to seek 
a planar path s -.-+ t with low merging cost at both v and p 
(e.g., see Fig. 10). If the s -.-+ t path has minimum possible 
pathlength (= d( s ,  t ) )  , then Procedure Improve-Path is applied 
to further reduce the merging cost at U’S parent by modifying 
the s ut t path so that it passes closer to the DME embedding 
point w without increasing its pathlength (e.g., see Fig. 12). 
Otherwise, Procedure Partial-Route is used to bring s and t 
one hop closer together. 

C. Details of the Subroutines 
Details of Procedure Find-Merging-Path are given in Fig. 

11. We use the term detour point to denote an endpoint of a 
planar edge which serves as an intermediate point in the s e t 
path. Note that finding a shortest path over all detour points 
may not minimize the merging cost at p ,  and that slightly 
greater merging cost at v may result in much lower merging 
cost at p .  Fig. 10 shows an example in which path PI is slightly 
longer than path P2, but is a better choice since it passes much 
closer to the DME embedding point w. To balance between 
efficiency and solution quality, Find-Merging-Path gradually 
increases the set of possible detour points, in the hope that a 
feasible path will be found early (i.e., when the problem size 
is small). 

Let Tu denote the subtree of a ZST T rooted at point U E T. 
Also recall that edge e, denotes the edge connecting U and 
U’S parent. Experimental results below use VI = {xlx E Tu, 
where edge e, intersects SW or %} and V, = {X~X E Tu, 
where edge e,  intersects 33, %, or 8). For the example 
in Fig. 10, Find-Merging-Path will use VI = {a,b,c}  and 
V, = { a , b , c , d , e , f } .  These choices of VI and V, allow 
planar paths near w to be selected first. If Find-Merging- 
Path fails to discover a feasible path using VI and Vz, the 
procedure considers a succession of larger point sets V,, i 2 3;  
in our experiments, these are simply increasing dilations7 of 
the bounding box bbox(s, t ) .  

Procedure Improve-Path in Fig. 13 is applied only when 
the merging path s -.-+ t obtained by Procedure Find-Merging- 
Path has minimum length equal to d( s, t )  . The procedure tries 
to modify s ut t without increasing its length so that it passes 
closer to U ’ S  DME embedding point w. The procedure first 
selects a set of candidate embedding points on ms(v).  Then, 
each selected point U in increasing order of d(u, w) is checked 
to see whether the shortest planar path s e U *c) t has cost 

7 0 ~ r  experiments increase each bounding box dimension by 10% at each 
iteration. 
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T t 

a 
Fig. 10. Find-Merging-Path heuristically searches for a planar merging path 
s -+ t with low merging cost at both v and its parent p .  Point w is the 
embedding point for node w that is computed by DME. 

Procedure Find-Merging-Path(E, w)  
Input: Set of planar edges E ;  

Node U E G with children s and t 
OutDut: Planar Dath s -.+ t 

i t 1  
do 

Construct E ith set of candidate detour points 
s cuf t t Find-Shortest-Planar-Path(E,E,s,t) 
i t i S 1  

while (s cuf t has not yet been found) 

Fig. 11. Procedure: Find-Merging-Path. 

= d ( s ,  t ) .  The shortest planar path s u3 U -t t is obtained by 
calling Find-Shortest-Planar-Path twice, i.e, by finding s -t U 

and U -t t .  Note that to find a minimum-cost path, say, s +-+ U ,  

we need only consider detour points inside bbox(s,u). The 
procedure terminates when the first s -t U -t t path with cost 
= d ( s , t )  is found. 

In addition to the intersection of ms(v)  and s -t t (shown 
as point U’ in Fig. 12), there are two types of candidate 
embedding points on ms(v):  (i) the intersection of ms(v) 
with any vertical or horizontal line through any detour point 
inside bboz(s,t) (see Fig. 12(a)), and (ii) the intersection of 
rns(v) with any planar edge (see Fig. 12(b)). Again, the key 
property of U is that it is the point on ms(v)  closest to the 
DME embedding point 20, such that the merging path through 
U still has minimum cost equal to d ( s ,  t ) .  

Procedure Partial-Route in Fig. 14 uses a “principle of 
least commitment” whereby the distance between the two chil- 
dren of node v is shortened by one hop at each iteration. Sup- 
pose that the current nonplanar node v has children s and t ,  and 
t h a t w e h a v e a p l a n a r p a t h s - t t  = (s,s’,...,u,...,t’,t}, 
with U being the point where zero skew is acheved. Without 
loss of generality, assume that 0 < d(s ,  s’) 5 d ( t ,  t’). Then, 
Partial-Route implements only the partial path ss’, with s’ 
replacing s as a child of v and ss’ being added to planar edge 
set E.  In this way, U’S children are “pulled closer” toward the 
delay balance point U so that v can be better re-embedded by 
DME in the next iteration. This avoidance of “commitment” 
also allows Partial-Route to minimize the harmful effects of a 

Fig. 12. Improve-Path improves the planar merging path s y‘f t so that 
it passes closer to the DME embedding point w while retaining minimum 
merging cost = d ( s , t )  for node ‘U. Initially, path s y‘f U’ .vs t is obtained 
by Procedure Find-Merging-Path, and is then improved to s ui U t if 
cost(s w U‘ --+ t )  = d(s , t ) .  In (a), U = ms(w)n the vertical line through a 
detour point 1: inside bboz(s,t) (the dotted region). In (b), U = ms(v) n e,, 
and U’’ = ms(v)  n {the vertical line through a detour point z outside 
bboz(s,t)}. Both paths s w+ U .vs t and s .vs U” y‘f t will actually yield 
the same merging cost savings at v’s parent. For such purposes as crosstalk 
minimization, U” may actually be a better choice than U. However, in our 
present implementation we simply select U .  

Procedure Improve-Path(E,v, s - t )  
Input: Set of planar edges E;  Non-planar node U with 

children s, t and DME embedding point w; 
planar path s - t with cost (s  - t )  = d(s ,  t )  

Output: Planar path s - U w t s.t. c o s t ( s  - U - t )  = 
d(s.  t’l and d(u. w) are minimal for point u E rns(v). 

A = { U I u = ms(v)  n I ,  where I is a horizontal or vertical 

B = { I I U = rns(w) n I ,  where I is a planar edge in E }  
c={ I I u = m s ( U ) n s - t }  
1. 
2. do 
3. 
4. 
5 .  
6. 
7. 
8 .  s - t = s w u U u - t  
9. 

l ine  through a detour point in bboz(s, t ) }  

Construct U = A U B U C 

Select point U E U in increasing order of d(u ,  U ) )  

D = set of detour points inside bboz(s, U )  

s crf u = Find-Shortest-Planar-Path(E,D,s,u) 
D = set of detour points inside bboz(t, a) 
U - t = Find-Shortest-Planar-Path(E,D,u,t) 

while cost (s  - t )  > d(s ,  t )  

Fig 13. Procedure Improve-Path 

suboptimal result from Find-Merging-Path or Improve-Path.8 
Notice that since one of U’S children is relocated, the merging 
segments for ?I and U’S ancestors have to be re-calculated. 

Finally, note that both Find-Merging-Path ( E ,  D ,  S, T,) and 
Improve-Path invoke the procedure Find-Shortest-Planar-Path, 
which determines a shortest path between two points s and t 
using the detour points in Din the presence of obstacles (the 
obstacles are the planar edges in E). Our current implementa- 
tion uses Dijkstra’s algorithm in the visibility graph, (e.g., [l], 
[24]), with edge weights computed on the fly; this does not 
cause excessive runtimes (see Section V) since the number of 
possible detour points is small in most procedure calls. 

*Thus, Procedure Rebuild-Tree-of-Segments may iterate several times at 
each level. In our expenence, no more than 56 iterations in total were 
necessary for any of the benchmarks tested 
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benchmark Lin-Pln- Elm-Pln- 
(*Dins) DME-3 DME 

Procedure Partial-Route(E, w,s - t )  
Input: Set of planar edges E; 

ZST height 
(l l le T Z )  

Non-planar node v with children s and t ;  
Merging path s - t = {s, s’, 1 * , e, * . . , t’, t } ,  

New location for one of U ’ S  children; 
Updated planar edge set E 

1. if o < d ( s -  s’) 5 d(t , t ’ )  
2. 
3. s = s’; 
4. E + E U { s s ’ }  
5. else 
6. 

8. 

Connect a wire from s’ to s 

Connect a wire from t’ to 1 

E c E U {tt’) 
7 .  t = t‘; 

priml( 269) 
prim2 ( 60 3) 

r l (  267) 
r2( 598) 
r3( 862) 
r4( 1,903) 
r5(3,101) 

Fig. 14. Procedure Partial-Route. 

115 1 9 (1.1) 
362 34 11 (1.2) 
114 4 11 (1.4) 
382 13 12 (1.3) 
664 36 12 (1.2) 

2512 327 14 (1.3) 
5557 339 15 (1.3) 

IV. LINEAR-PLANAR-DME VARIANTS 
As noted above, Elmore-Planar-DME does not actually re- 

quire a planar-embedded ZST as input. Thus, while we use the 
topology G obtained from the Linear-Planar-DME solution, 
the Linear-Planar-DME construction itself can actually be 
modified. 

We have considered modifications to the partitioning rules of 
Section 11-C which change the splitting line to a splitting path 
of two or more line segments. In other words, rather than draw 
a straight line through points p and v ,  we draw a line segment 
jZ and a ray v’ emanating from v to separate the polygons 
Ps, and Ps,. Since we no longer have a straight splitting 
line, one of the new smaller regions may be nonconvex, 
and more case analysis is required to maintain guaranteed 
planarity of the output ZST. From a theoretical perspective, 
such Linear-Planar-DME variants are unappealing: we lose 
the guaranteed planarity, and the worst-case time complexity 
increases. However, all ZST’s obtained in our experiments 
remain planar, with nonconvex polygons becoming further 
divided into smaller convex polygons within the succeeding 
two or three levels. Furthermore, such variants can achieve 
averages of up to 10.9% wirelength reduction versus results 
for the original Linear-Planar-DME algorithm which we have 
reported in [17]. We now briefly describe two possible Linear- 
Planar-DME variants. 

A. Using a Splitting Path 
Consider a subset of sinks S’ C S that is being partitioned, 

with IS’( 2 2. Recall that the splitting path consists of line 
segment p and v’, a ray emanating from U. The line segment 
p has been determined, but there are I SI I - 1 different choices 
of v’. To consider all possible choices of d, our Linear-Planar- 
DME-2 variant sorts the sinks of S’ in clockwise order around 
point v ;  each pair of consecutive sinks determines a splitting 
path which partitions SI into 5’: and 5’;. To choose among the 
possible splitting paths, Linear-Planar-DME-2 uses a heuristic 
estimate of the cost of the ZST’s over 5’; and Si. We have 
experimentally determined two such estimates: 

TABLE I 

IMPLEMENTATION. NOTE THAT THE TOPOLOGY GENERATION VIA 
SUN SPARC-10 CPU TIME (SECONDS) FOR OUR PLANAR-DME 

LINEAR-PLANAR-DME-3 REQUIRES MUCH MORE TIME THAN THE EMBEDDING 
BY ELMORE-PLANAR-DME. IN THE LAST COLUMN, WE ALSO SHOW THE ZST 

HEIGHT AS A MULTIPLE OF THE MINIMUM POSSIBLE TREE HEIGHT, lg 12. 

TI x IS; 1 + 7-2 x IS; 1 ,  where TI and 7-2 are the respective 
radii of the sink sets Si and Sa; and 
r1 x IS;l + ~2 x IS;[ + 0.5r( lc l  - c ~ [ / c ) ~ ,  where T is 
the radius of S’ and c, c1 and e2 are the respective total 
capacitances of the sink sets S’, Si and S;. 

The latter estimate considers load balance when bipartitioning 
the sinks, and yields slightly better results (it is also the 
estimate used in the experiments reported below). More useful 
cost functions for sink partitioning are no doubt possible. 

In the Manhattan plane, computing the radii of all pairs 
of sink subsets (corresponding to bipartitions of SI) can be 
accomplished in O( IS’l) time. Thus, the sorting operation 
dominates the time complexity, and the overall Linear-Planar- 
DME-2 complexity is 0(1 n Ig n) ,  where 1 is the number of 
levels in the output ZST and n = IS[. In practice, 1 is very 
close to Ign, as we report below. 

B. Using a Splitting Path and Lookahead 

Our Linear-Planar-DME-3 variant is similar to Linear- 
Planar-DME-2, but chooses splitting paths more carefully 
based on lookahead. After determining a set of candidate 
bipartitions of St ,  we estimate the cost of each by actually con- 
structing the ZST that will be output by Linear-Planar-DME- 
2. To maintain practical runtimes, the number of candidate 
bipartitions considered is limited to a small constant (M 16 
in the experiments reported below). Given this constraint, our 
Linear-Planar-DME-3 implementation has worst-case runtime 

Finally, if the clock source is not specified, then the line seg- 
ment jZ of the first splitting line can be arbitrarily determined 
since p’s location is not given. As we determine the possible 
choices of d, we sort the sinks clockwise around v ;  each pair 
of consecutive sinks determines a possible choice of p. Thus, 
there are 15’1 possible cases for p’s location. Again, to maintain 
practical runtime, we test only 16 equally spaced cases for p’s 
locations. Experimentally, very limited improvements result 
from trying more than 16 cases. 

of O(P . nlgn).  

V. EXPERIMENTAL RESULTS 
We implemented the Linear-Planar-DME and Elmore- 

Planar-DME algorithms using Sun SPARC-10 workstations 
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~ TABLE I1 
COM~ARISON OF ELMORE-PLANAR-DME WITH OTHER ALGORITHMS IN TERMS OF TOTAL WIRELENGTH, USING THE SAME BENCHMARKS 

INCREASE IN WIRELENGTH VERSUS THE RESULTS OF CL+I6 [I21 NOTE THAT ALL m WIRELENGTH HAS BEEN DIVIDED BY 1000 UNITS 
STUDIED IN [SI, [12], [25] NO PRESCRIBED CLOCK SOURCE LOCATION WAS ASSUMED AVE COST INDICATES THE AVERAGE PERCENTAGE 

Greedy-DME Naive Elm- 
benchmark (CL+I6 [12]) Lin-Pln-DME-3 Elm-Pln-DME K C R + D M E  [5] Pln-DME Zhu-Dai [25] 

129 2 130 2 132 9 140 1 146 1 167 9 

I I 

t 
(a) Greedy-DME [la] 

W&XW 

( c )  Elmore-Planar-DME 

(b) Linear-Planar-DME 

(d) Zhu-Dai [25] 

Fig. 15. Zero-skew clock routing solutions for the Primaryl benchmark. Six 
instances of detour routing in (c) are highlighted with dotted lines. 

and the CKJnix environment. The same seven examples as 
in [ 5 ] ,  [12], [25] were studied. Benchmarks Primaryl and 
Primary2 both have the same loading capacitance of 0.5 pF 
for all sinks, and also have per-unit wire resistance and wire 
capacitance of 16.6 mR and 0.027 fF, respectively. The z- 
coordinates and y-coordinates of Primaryl sink locations range 
from 120 to 5520 units and from 0 to 5790 units, respectively; 
those of Primary2 range from 20 to 9840 units and from 0 to 
10250 units, respectively. Details of the circuit parameters for 
benchmarks rl-r5 can be found in [23]. 

Table I shows that our Elmore-Planar-DME implementa, 
tion is relatively efficient, with runtimes dominated by the 
generation of a good topology in the call to Linear-Planar- 
DME-3. Note that the Primary2 and r2 test cases have about 

the same number of sinks, but Primary2 leads to relatively 
higher runtimes. This is because Primary2 has a more uneven 
distribution of sink locations, which leads to more detouring. 
The last column of Table I shows that our output ZST’s have 
very balanced structures, with average tree height 1 very close 
to lg n. Thus, the observed time complexity of Linear-Planar- 
DME-3 is O ( n  . ( l g 7 ~ ) ~ ) .  

Table I1 compares our new algorithms with two leading 
nonplanar ZST algorithms in the literature-Greedy-DME 
[12] and KCRfDME [5], [18]-as well as the previous 
planar routing method of Zhu and Dai [25]. Greedy-DME 
corresponds to the CL+I6 method of Edahiro [12], and can 
yield an unbalanced topology. KCRfDME uses a matching 
approach to achieve a balanced topology [5].  Our new planar 
ZST solutions are competitive with the best known nonplanar 
ZST solutions of Greedy-DME (having average 9.8% greater 
wiring cost), and are superior to KCR+DME solutions in all 
cases. Elmore-Planar-DME also uses 22.5% less wire than 
the (linear delay based) method of [25]. It is interesting to 
note that the cost of our Elmore-Planar-DME solutions is only 
slightly increased from the cost of the starting Linear-Planar- 
DME ZST’s. We believe this implies that better solutions can 
be obtained as we continue to improve Linear-Planar-DME. 
Finally, Fig. 15 shows ZST’s for the Primaryl benchmark 
constructed by Greedy-DME, Linear-Planar-DME, Elmore- 
Planar-DME, and the method of Zhu and Dai. 

VI. FUTURE WORK 

We have considered several improvements to our current 

First, the output of our Planar-DME approach may be 
viewed as a planar routing sketch for a ZST. Currently, 
we do not take routing capacity, cross-talk constraints, 
etc. into consideration (recall the example of Fig. 12(b)). 
We hope to use such computational geometry techniques 
as those of Dai et al. [9] to enhance our current approach. 

* Second, although Elmore-Planar-DME has reasonable 
runtime in practice, various heuristic speedups are 
possible. For example, obstacles (planar edges) are 
actually connected as subtrees, and each subtree can 
be replaced by its convex hull to reduce the complexity 
of the path-finding instance. Also the number of candidate 

work. 
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embedding points tested by Procedure Improve-Path can 
be greatly reduced. 
Third, Linear-Planar-DME itself can be improved to yield 
better connection topologies for input to Elmore-Planar- 
DME, through the use of more sophisticated partitioning 
rules (using splitting paths with more than two segments; 
clustering sinks before partitioning) and embedding rules 
(e.g., embed the root of the zero-skew subtree over S’ at 
a more appropriate place than center( 5’‘)). 
Finally, we are pursuing methods which construct single- 
layer clock routing trees with bounded, rather than exactly 
zero, skew; such constructions are useful in the engi- 
neering of general clock distribution solutions, where 
skew and other attributes are controlled by a mix of 
topology generation, embedding, wiresizing and buffer 
optimization [7] ,  [141, [151, [201. 
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