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Algorithms for an FPGA Switch Module Routing
Problem with Application to Global Routing

Shashidhar Thakur,Member, IEEE,Yao-Wen Chang,Associate Member, IEEE, D. F. Wong, and S. Muthukrishnan

Abstract—We consider a switch module routing problem for
symmetrical-array field-programmable gate arrays (FPGA’s).
This problem was first introduced in [21]. They used it to
evaluate the routability properties of switch modules which they
proposed. Only an approximation algorithm for the problem was
proposed by them. We give an optimal algorithm for the problem
based on integer linear programming (ILP). Experiments show
that this formulation leads to fast and efficient solutions to
practical-sized problems. We then propose a precomputation
that eliminates the need to use ILP on-line. We also identify
special cases of this problem that reduce to problems for whom
efficient algorithms are known. Thus, the switch module routing
problem can be solved in polynomial time for these special cases.
Using our solution to the switch module routing problem, we
propose a new metric to estimate the congestion in each switch
module in the FPGA. We demonstrate the use of this metric in
a global router. A comparison with a global router guided by
the density of the routing channels shows that our metric leads
to far superior global and detailed routing solutions.

Index Terms—Field-programmable gate array, global routing.

I. INTRODUCTION

I N the symmetrical-array FPGA architecture [1], [8], [20],
routing resources consist of horizontal and vertical channels

and their intersecting areas. The layout in such an architecture
is shown in Fig. 1. An intersecting area of horizontal and
vertical channels is referred to as a switch module. A net
can change its routing direction via a switch module, and
such a direction change requires going through at least one
programmable switch inside the switch module. Researchers
have shown in [2], [18], and [19] that the feasibility of FPGA
design is most constrained by routing resources, and circuit
performance in FPGA’s is most limited by routing delays.
Thus, switch-module design and routing are of significant
importance in the design and use of FPGA’s.

Due to the area constraints of switch modules and delay
constraints of routing, the number of switches which can be put
inside a switch module is usually limited. On the other hand,
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Fig. 1. Symmetrical array architecture.

fewer switches in a switch module would reduce routability.
Thus, this presents a problem of designing switch modules
to maximize the routability under area and delay constraints.
An experimental evaluation of the effect of varying different
parameters, like switch-module and connection-module flexi-
bilities, on the amount of routing resources needed to complete
routing was reported in [3]. This provides an empirical way
to choose a routing architecture. In contrast, Zhuet al. in
[21] presented an algorithm for switch-module design that
generated designs, given a distribution for the nets, that
provide good routability. They did it for more general switch-
module architectures than [3]. In order to evaluate their
designs, they introduced a switch-module-routing problem,
which was the key problem for analyzing the routability of a
switch module with respect to various routing instances in the
provided distribution. This switch-module-routing problem is
addressed in this paper.

Informally, the switch-module-routing problem is described
as follows. The input is a switch-module description and a
sextuple specifying the number of nets that have to pass
through the switch module in the six possible directions
through the switch module, namely, the four directions that
require a 90-degree turn and the two that pass through. The
problem is to determine a configuration of the switches in the
switch module that allows the specified number of routings. A
more formal definition will be given in the next section.

A network flow based algorithm was developed in [21]
for the switch-module-routing problem. But the algorithm was
approximate in the sense that it overestimated routability. In
this paper, we present an optimal algorithm for the problem,
based on integer linear programming (ILP). Although the
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Fig. 2. An infeasible FPGA routing instance.

algorithm, in the worst case, does not run in polynomial time,
experimental results consistently show that our algorithm is
very efficient for practical-sized switch modules. For exam-
ple, running times for all the 20 20 switch modules we
considered averaged about 0.25 s of central processing unit
(CPU) time. We further improve this approach by proposing a
method that avoids having to solve the integer programming
problems when actually solving the switch-module-routing
problem. This is done by performing some preprocessing on
the given switch module. We also identify interesting special
cases of the switch-module-routing problem which can be
solved optimally in polynomial time. This is achieved by
reducing them to instances of bipartite-matching problems and
network-flow problems.

Some previous work on FPGA routing [3], [4] suggested
that it was a sensible goal for global routers to balance
channel densities in all the channels of the FPGA. However, in
FPGA’s, the physical architecture of the switch modules con-
strains the routing more than channel capacity, as illustrated
by the following example.

Example 1: For the switch module and the net specification
in Fig. 2, let us suppose the global route for all four nets uses
the shown switch module. The density of each channel is two
and hence does not exceed the capacity of the channels. Thus,
this would be a valid global route if one were concerned about
channel density only. Nevertheless, given this global route, the
switches available in the switch module do not permit a valid
detailed route of all the nets. The thick lines show a feasible
detailed route for three of the nets, which is the largest possible
number of nets that can be routed through this switch module.

Based on our optimal solution for the switch-module-routing
problem, we give a way of estimating congestion at individual
switch modules in an FPGA. We propose a novel metric for
quantifying the congestion level at each switch module in
the FPGA. This can be used to generate global-routing paths
which avoid heavily congested switch modules. We developed
a global router based on this congestion metric. The router was
able to route benchmark circuits, consistently using smaller
routing resources as compared to a channel-density-guided
global router (22% less channel width required for routing
completion on an average using Xilinx XC4000-like switch
modules on the CGE [4] and SEGA [14] benchmarks).

The rest of the paper is organized as follows. In Section
II, we introduce the notation we shall use. Section III gives
an ILP-based solution to the switch-module-routing problem

defined formally in the next section. Section IV explores some
special cases that can be solved efficiently and optimally.
Section V shows how preprocessing can be used to avoid use
of ILP at run time. Section VI shows the use of this theory
in the development of a global router. Finally, Section VII
shows the experimental data.

II. DEFINITIONS AND PROBLEM SPECIFICATION

A switch moduleis a rectangular box with
terminals on the left and right faces and terminals on
the top and bottom faces. Within a switch module, various
terminals are interconnected in some manner dependent on the
module. A switch module can be one of two types, namely, a
switch matrixor a switch block.

A switch matrix is a rectangular grid of horizontal
tracks and vertical tracks. These tracks are electrically
noninteracting. The horizontal tracks are numbered top to
bottom and the vertical tracks left to right. A switch matrix
comprises two types of switches, namely,crossing switches
andseparating switches. These switches are utilized in estab-
lishing connections between the tracks. Crossing switches are
found at the intersection of a horizontal track and a vertical
track. A crossing switch between a horizontal trackand
a vertical track has the following property. When on, it
connects tracksand electrically. When off, these two tracks
are electrically noninteracting. Separating switches are found
anywhere along a track, subject to the constraint that each
horizontal or vertical track has at most one separating switch.
A separating switch on track, when off, splits track into two
electrically noninteracting tracks. When on, trackbecomes a
single electrical track. A switch matrix is the specification
of the placement of crossing switches and separating switches
on a given grid. An example switch matrix is shown
in Fig. 3(b).

A switch block is a rectangular box with terminals
on the left and right faces and on the top and bottom.
Some pairs of terminals on different faces of the box may
have programmable electrical links, i.e., these pairs can be
programmed to be connected or disconnected. Moreover,
these links are electrically noninteracting, unless they share
a terminal. The specification of the switch block gives a list
of such terminal pairs. An example switch block is shown in
Fig. 3(a).

Henceforth, aconnectionis an electrical path in the switch
module between two terminals on different faces of the switch
module. Connections can be of six types as shown in Fig. 3(c).
The connection labeled , in Fig. 3(c) is said
to be of Type . Type 1 and Type 2 connections are called
straight connections and Types 3, 4, 5, and 6 are calledbent
connections. For a switch matrix, it is additionally required that
at most one switch be found on the electrical path comprising
the connection. Thus, only straight connections can use a
separating switch. For a switch block, connections have to
be chosen from the programmable links specified.

A routing requirement vector( ) is a sextuple
where ,

and . For a given switch
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(a)

(b)

(c)

Fig. 3. Models for switch module. (a) Switch Block. (b) Switch Matrix. (c)
Six types of connections.

module and , a routing is a set of connections which are
electrically noninteracting such that there are of Type
connections, for . Note that a set of connections
are electrically noninteracting only if the terminals on any two
paths are distinct. In case of the switch matrices, for the set of
connections to be electrically noninteracting, it is additionally
required that the paths be disjoint, that is, no two paths share
parts of a track. For switch matrices, notice the following role
of separating switches. By setting the separating switch on
the horizontal track to off, the track to the left is electrically
disconnected from the track to the right. Therefore, these two
segments can be part of two different connections in any
routing. An is said to beroutableon a switch module

, if there exists a routing for on .
Example 2: In Fig. 4 a switch matrix and the routing for

the on this switch matrix are shown. The
is not routable on the same switch matrix as

only the two crossing switches on vertical track 2 can be used
for a Type 3 routing, and both cannot be used simultaneously.

We consider the following problems.
Routing Decision Problem (RDP):Given a switch module
(either a switch matrix or a switch block) and an , is
routable on ?
Routing Solution Problem (RSP):Given a switch module
(either a switch matrix or a switch block) and an ,

determine a routing for on , if any.
For convenience, we often refer to these problems as simply

RDP with or RSP with , omitting the input .

Fig. 4. Example of routing.

III. I NTEGER PROGRAMMING FORMULATION

In this section we solve the RDP using an ILP. The solution
to the RSP is obtained from the solution to the ILP. We
show our formulations for switch matrices and switch blocks
separately.

A. Switch Matrix

Consider the RDP with the and switch
matrix . We formulate this problem as an ILP. In the
resultant ILP, there are two main sets of constraints. The first
set contains at most two constraints for each horizontal or
vertical track. For each horizontal track one constraint ensures
that the segment of the track to the left of the separating switch,
if any, is part of at most one connection. The other constraint
ensures this for the segment to the right of the separating
switch. Similarly, at most two constraints are generated for
each vertical track. Note that if a track does not contain a
separating switch, then only one constraint is generated for
this track. A set of constraints and an objective function are
generated to ensure that a maximum number of connections
specified by the are routed in the solution of the ILP. We
introduce some notation to succinctly describe the ILP.

Let , and be fourconstantmatrices defined as
follows:

if a crossing switch is found between
horizontal track and vertical track such
that a separating switch, if any, in this
horizontal track is to the right of this
crossing switch
otherwise

. is similarly constructed as
an indicator matrix of the crossing switches to the right of
separating switches in the horizontal tracks. Likewise,( )
is an indicator matrix of the crossing switches above (below)
the separating switches in the vertical tracks.

Four variable matrices are as follows:

if has a crossing switch between
horizontal track and vertical track
and this can be used to achieve a
connection of Type
otherwise

. Variable
is an indicator variable that indicates if the switch between
horizontal track and vertical track is utilized in a connection
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Fig. 5. ILP formulation for switch matrix.

of Type . Note that not every switch can be used for every
type of connection. For example, if a crossing switch is above
a separating switch for that column, then the switch cannot
be used to realize a connection of Type 6. In Fig. 3(b), the
crossing switch in row 2, column 1 can only route connections
of the Types 3 and 4 and not of Types 5 and 6. The one in
row 4, column 1 can route connections of Types 5 and 6 and
not of Types 3 and 4.

Define the binary operator on matrices as the component-
wise multiplication, i.e., . Thus, each entry
in is the product of the corresponding entries inand

.
Define avariable column vector of dimension as

if horizontal track is used in a connection of
Type 1
otherwise

for .
Define avariable column vector of dimension as

if vertical track is used in a connection of
Type 2
otherwise

for .
Let and be two constant column vectors of dimensions

and , respectively, with all components one. The
integer programming formulation is shown in Fig. 7. In Fig. 5,
inequality (1) ensures that the track to the left of the separating
switch on each row, if any, are part of at most one connection.
Inequality (2) does the same for the track to the right of the
separating switch. Similarly, inequalities (3) and (4) ensure
that the tracks above and below the separating switch on
each column, if any, are part of at most one connection. The
objective function, together with the last three inequalities,
guarantees that the is routable if the maximum

Fig. 6. Switch matrix.

value of the objective function is . This will be
shown in Theorem 1. The number of variables

number of switches and
the number of constraints

number of switches .
Theorem 1: The problem ILP1 has a solution with objective

value if and only if the is routable
on .

Proof Sketch: If ILP1 has a solution with objective value
, then constraints (5)–(7) are satisfied with equality.

Since the problem has a solution, the “on” variables give a
way to route using the convention established
before for naming variables. Constraints (1)–(4) ensure that
the routing thus generated is valid.

Similarly, if is routable, then there exists an
assignment to variables such that the constraints (1)–(4) are
satisfied and (5)–(7) are satisfied with equality. Hence, the
value of the objective function is .

Example 3: Consider the switch matrix in Fig. 6. Fig. 7
shows a set of important constraints in the corresponding ILP.

B. Switch Block

Consider an RDP with and switch block .
We write an ILP for the corresponding RDP. We have two sets
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Fig. 7. Example of ILP1 (important constraints).

Fig. 8. ILP formulation for switch block.

of inequalities. One set of inequalities is used to ensure that
every terminal is used at most once. A set of six inequalities
with the objective function are used to ensure that the routing
generated by the solution to the ILP routes as many of the
connections specified by the .

Label the terminals as starting from
the lower most terminal on the left face and proceeding
clockwise. The programmable links are specified bysets
containing pairs of the terminals they connect. The terminals
of a given connection come from different faces, as stated
before. Let there exists a programmable link
between terminals . Let

, ,
and . These sets
identify the terminals of each of the four faces of the switch
block. Define a variable for each programmable link

. This is a decision variable that is chosen to be
one, if the corresponding connection is chosen for the routing,
else it is zero. The integer linear program is shown in Fig. 14.
The number of variables and number of constraints

.

Theorem 2: The problem ILP2 has a solution with objective
value if and only if the is routable
on .

Proof Sketch: If ILP2 has a solution with objective value
, then constraints (9)–(14), shown in Fig. 8, are sat-

isfied with equality. Since the problem has a solution, the
“on” variables give a way to route using the
convention established before for naming variables. The first
constraint ensures that the routing thus generated is valid, i.e.,
each terminal is used in at most one connection.

Similarly, if is routable, then there exists an
assignment to variables such that the first constraint is satisfied
and (9)–(14) are satisfied with equality. Hence, the value of
the objective function is .

Example 4: A switch block and the corresponding set of
important constraints are shown in Figs. 9 and 10, respectively.

IV. SPECIAL CASES

Since the integer-programming problem is NP-complete [7],
polynomial time algorithms are not known for RDP and RSP
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Fig. 9. Switch block.

Fig. 10. Example of ILP2 (important constraints).

using the approach in Section III. In this section we identify
several interesting classes of switch modules for which RDP
and RSP can be solved in polynomial time.

Again, for convenience, the cases of switch blocks and
switch matrices are considered separately. In what follows, we
consider solving the RDP. The solutions to the corresponding
RSP’s are directly obtained from the proposed solutions to the
RDP.

Define a generic to be a sextuple in which each
component is either a number or a special symbol “.” Any
generic represents the class of all ’s which differ only
in the components marked “.”

Example 5: The vector is a generic . The
vector , represents the class containing all ’s
which have zeros in components 2–5. They may have zeros
in components 1 and 6 but that is not necessary. Examples of

’s in this class include and .
In what follows, RDP (or RSP) with generic stands

for the problem of RDP on any in the class of ’s
represented by .

A. Switch Matrix

Case A—No Separating Switches:Suppose that the given
switch matrix contains no separating switches. We char-
acterize the complexity of routing on in terms of the
complexity of thebipartite-matchingproblem. The bipartite-
matching problem is to determine if a given bipartite graph
has a matching of size [12].

Let and be two problems. We denote if
reduces to , that is, an efficient algorithm for problem
yields an efficient algorithm for .1

1 Formally, we sayP1) P2 if an instance of problemP2 can be reduced

Lemma 1: RDP with RDP with
.

Proof: Consider the instance of RDP on with
. If or the

problem is trivially infeasible. Otherwise
is routable on if and only if is routable
on . This is because, given a routing for ,
we can generate a routing for by utilizing

horizontal tracks and vertical tracks disjoint from the
connections in the routing of .

Lemma 2: RDP with RDP with
.

Proof: We claim that is
routable on a switch matrix if

is routable. We observe that any connection
from left to top, in the absence of separating switches, renders
the corresponding horizontal and vertical tracks unusable for
further connections. Indeed this observation holds for all
bent connections. Therefore, a left to top connection can be
replaced by any other bent connection without causing any
conflicts with the other connections in routing. In particular,
if of Type 3 connections are possible
then we can always replace these withconnections of Type

. Therefore, if
is routable, so is .

Lemma 3: RDP with bipartite-matching
problem.

Proof: Consider the instance of RDP with
. We construct a bipartite graph as

follows. Let be the vertex set where has
a vertex for each terminal on the left face of the switch
module and one for each terminal on the top. Thus,

. For every let
if and only if there is a crossing switch between

the horizontal track and vertical track . Then, we claim
that, has a bipartite matching of size if and
only if the is routable.

If the is routable then crossing switches have been
used in the routing. Choose the corresponding edges into
give a matching of size . Routability criterion ensure that
no row or column is used more than once.

If there is a bipartite matching of size in then choose
the switches corresponding to the edges in the matching to
route connections from the left to the top in the switch
module.

To prove the reduction in the other direction, given a
bipartite graph , construct
a switching matrix as follows: place a crossing
switch between horizontal trackand vertical track if and
only if . We claim that has a matching of size

if and only if the is routable on . The
proof is along the lines sketched above; it is omitted here.

Example 6: A switch matrix with the bipartite graph in
the transformation of RDP with is shown in
Fig. 11. For any integer , the can be

to an instance of problemP1 in timeO(W1+W2+ jT j) whereT is the set
of crossing switches inM , andM is the switch matrix in one of the problems
P1 or P2.



38 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 16, NO. 1, JANUARY 1997

(a)

(b)

Fig. 11. No separating switches. (a) Switch matrix. (b) Bipartite graph.

routed on the switch matrix in Fig. 11(a) if and only if the
graph in Fig. 11(b) has a matching of size. It is easy to see
that any yields a routable .

Now we are ready to prove the following theorem.
Theorem 3: RDP with bipartite-

matching problem.
Proof: Trivially, RDP with RDP with

RDP with . Combined with
Lemmas 1, 2, and 3, this yields the theorem.

The bipartite-matching problem can be solved in time
for a bipartite graph [12]. From Theo-

rem 3, it follows that RDP for a switch matrix with no sep-
arating switches can be solved in time ,
where is the number of crossing switches in . In fact,
Theorem 3 implies something stronger: any algorithm for solv-
ing RDP on which is faster than time
immediately yields an algorithm for the bipartite-matching
problem which is faster than . Note that the
existence of such an algorithm for the bipartite-matching
problem is a long-standing open problem. Therefore, im-
proving the time bound of , for routing
on with no separating switches, is an extremely hard
problem.

Let be a switch matrix without separating switches
such that the corresponding bipartite graph (see proof of
Lemma 3) has a perfect matching. Let be any other switch
matrix without separating switches. The following corollary of
Theorem 3 is easy to see.

Corollary 1: An is routable on only if it can be
routed on .

This corollary asserts that a switch matrix is the most
“powerful” in the class of switch matrices without separating
switches. This means that, given , any that can be
routed on some switch matrix without separating switches can
be routed on . Thus, if the number of crossing switches
is taken as a measure of complexity, then designing a switch
matrix, for which the corresponding bipartite graph does not
have a perfect matching, is, in general, a waste of resource.
This fact can be used in the design of a good switch matrix
without separating switches.

Fig. 12. Noninterfering network.

Case B—Without Separating Switches in Horizontal or Ver-
tical Tracks: Consider RDP or RSP with .
Assume that in the switch matrix for these problems, the hor-
izontal tracks do not contain any separating switches. Similar
results hold for the case where vertical tracks do not have sepa-
rating switches. Under this condition, it is easy to see using the
technique in the proof of Lemma 2 that
is routable if and only if is
routable. The RDP with generic is known
to be solvable using unit-capacity network flows [21]. It
follows that under the given condition, RDP or RSP with

is solvable as well, using unit-
network capacity network flows.

Case C—Class of Problems Solvable by Network Flows:
Consider the following problem which we call thenoninter-
fering network-flowproblem, shown in Fig. 12.

Consider a directed network with four blocks of nodes,
namely, and . In addition there exist special nodes

and , respectively, the pair of source nodes and
the pair of sink nodes. Arcs between nodes in the blocks, if
any, exist between nodes in block and or and , or
between nodes in block and . In particular, there are no
arcs between nodes in the same block. The source( ) is
connected to each node in ( ). Every node in ( ) is
connected to the sink ( ). Each arc has capacity one. The
noninterfering network-flow problemis the following. Given
such a network, and integers , and , does there exist
a feasible flow such that source supplies a flow of ,
source supplies a flow of , sink receives a flow of ,
and sink receives a flow of ? It is easy to see that
such a flow exists if and only if there is a matching between
the vertex sets and such that there exist exactly
arcs between nodes in and , exactly arcs between nodes
in and , and exactly arcs between nodes in and .

Following are two categories of RDP’s which can be solved
using a transformation to the noninterfering network-flow
problem. In what follows, the switch matrix is assumed to have
the following property. Each horizontal and vertical track of
the matrix has precisely one separating switch.

1) RDP’s with generic in which the components corre-
sponding to any three bent connections are marked “,”
and the remaining components are zero. For example,
RDP with .

2) RDP’s with ’s in which the components correspond-
ing to any two bent connections which do not share
a face of the switch matrix are marked “,” and the
component of any one straight connection is marked “.”
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(a)

(b)

(c)

Fig. 13. Example of a transformation into the noninterfering network-flow
problem. (a) Switch matrix. (b) Network. (c) Requirements.

The remaining components are zero. For example, RDP
with .

We now sketch the transformations from problems listed
above to noninterfering network-flow problems.

Consider an example of a problem in Category 2 above, for
example, RDP with . We create a node for
every terminal of the switch matrix. The nodes of the left face
form block , those on the right form , those on the top form

, and those on the bottom form . For a crossing switch
which is found between the horizontal trackand vertical
track , create an edge from the node in to the one in

corresponding to the terminalsand . It is crucial to
note that since each horizontal and vertical track has precisely
one separating switch, a crossing switch can be utilized in
precisely one bent connection. It is now easy to observe that

is routable if and only if there is a matching
between the vertex sets and such that there
exist exactly arcs between nodes in and , exactly
arcs between nodes in and , and exactly arcs between
nodes in and . Thus, RDP with is
transformed to the noninterfering network-flow problem.

Example 7: Fig. 13 gives an example of this transforma-
tion. The sources and sinks are omitted for clarity.

A similar construction suffices for transforming a problem in
Category 2 above to the noninterfering network-flow problem.

Using standard techniques for computing the max-flow in
networks [9], the noninterfering network-flow problem on a

network can be solved in time [16].
Therefore, problems in Categories 1 and 2 above can be solved
in time .

B. Switch Block

The problem of routing in switch blocks is, in some sense,
simpler than that on switch matrices. This is because connec-
tions can interfere with each other if and only if they share a
terminal. In the case of a switch matrix, they could additionally
interfere if the connections shared a part of a track.

We show a few special cases of routing on switch blocks
that have polynomial-time algorithms. The explanations are
similar to the corresponding switch matrix cases, and we just
give brief ideas about the algorithms or reductions.

Case A—Problems Solvable by Flows in Noninterfering Net-
works: The concept of noninterfering networks has been
introduced earlier in Section IV-A, Case C. The category of

’s that can be routed on switch blocks using these network-
flow techniques is the same as those enumerated in Section
IV-A, Case C.

The only difference in the transformation is that only arcs
corresponding to relevant programmable links are considered.
For example, for the RDP with , only arcs
corresponding to left to top, right to bottom, and left to bottom
programmable links are drawn.

Example 8: An illustration of the above transformation is
shown in Fig. 14. The sources and sinks are omitted for clarity.

Case B—Problems Solvable by Single Source Network
Flows: Consider the case in which the nonzero routing
requirements in the share a common face of the switch
block. An example is RDP with generic .
RDP with such ’s can be transformed to a single source
network flow problem. We show how to do this for the
RDP with . There is one node for each
terminal. Call the block of nodes corresponding to the left, top,
right, and bottom faces , and , respectively. There
are four special nodes, a sourceand three sinks , and

. For each node in , there is an arc to a node in if there
is a programmable link between the corresponding terminals.
Similarly, there are arcs from the nodes into those in
and . There is an arc from to every node in and from
each node in , and to , and , respectively. All
arcs have capacity one. The problem now is that given such
a network, is there a feasible flow wheresupplies a flow of

and , and receive flows of , and ,
respectively? This can be solved by network-flow algorithms
in time where is the set
of programmable links as in Section III-B [16].

Example 9: An example of this transformation is shown in
Fig. 15. The sources and sinks are omitted for clarity.

V. MINIMAL DOMINATING SET

For this section,fix a switch module . Consider solving
either RDP or RSP on for various ’s. Using our algorithm
in Section III, an instance of integer programming problem is
solved for each . In this section, we describe a precom-
putation on so that following this precomputation, either
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(a)

(b)

(c)

Fig. 14. Example noninterfering network-flow transformation for switch
block. (a) Switch block. (b) Network. (c) Requirements.

RDP or RSP on can be solved for any given without
resorting to the integer programming problem. For a given

, a set of routing requirement vectors are identified during
the precomputation. This involves solving several integer
programs. Following this computation, RDP or RSP on any
given can be solved fast by comparing it with this set of

’s. Both the computation of this set and the comparison of
a given with the ’s in this set are now described. First
consider solving RDP.

An is said to dominate another
if and only if

and for some . It is a simple observation that any
is routable if another is routable on , and

dominates . Intuitively, we wish to compute the set of
all ’s which dominate all the routable ’s for . We
formalize this below.

A set of ’s is called adominating setfor a switch
module , if for an , is routable on if and only
if either , or there exists an such that
dominates . A dominating set for is calledminimal if

neither dominates nor dominates . The
following property is crucial.

Lemma 4: The minimal dominating set for a switch module
is unique.

Proof: Suppose for contradiction that are two dis-
tinct minimal dominating sets for . Consider the case when

(a)

(b)

(c)

Fig. 15. Example of a transformation into single source network-flow prob-
lem. (a) Switch block. (b) Network. (c) Requirements.

. In this case there exists a such that and
. Since is a dominating set, there exists a

that dominates . Since is a dominating set as well, either
, or for some , dominates . In either case,

there exists an in that dominates . This contradicts the
assumption that is minimal. Similarly it can be shown that
if then cannot be minimal.

Observe that the set of routable ’s for is partially
ordered under dominance relation. An is called atop
elementif it is routable and there exists no other that
dominates . The following lemma is the key in computing
the minimal dominating set for .

Lemma 5: Let is a top element . Then is the
minimal dominating set.

Proof: is a dominating set since for any which is
not a top element, there exists a top element that dominates it.
Also, if and are two top elements, does not dominate

, and does not dominate. Therefore, is minimal. By
Lemma 4, is the unique minimal dominating set.

Let . Let be the set of ’s for .
Define An is a child
of if , and if differs from
in exactly one component. The is called aparentof .
For , the th parent of is the only parent of
that differs from it in the th component. Thus, each has
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Fig. 16. Algorithm for computing the dominating set.

up to six parents and up to six children. Note that the’s
and have no children

and no parents respectively.
We describe an algorithm to compute the minimal dominat-

ing set for a given switch module. Our algorithm proceeds
in levels . At level , the set of ’s in
is considered. In particular, only those ’s in , all of
whose children in are routable, are considered. For
each such , using the integer programming approach in
Section III, it is determined if the is routable. All the

’s that were considered in level , which have the
property that none of their parents in levelare routable, are
output as top elements. Note that it is sufficient to stop the
algorithm after level , since in succeeding levels, the

’s satisfy the trivial infeasibility condition from Section II.
From Lemma 5, it is easy to see that the set of top elements in
the output of our algorithm is the minimal dominating set. The
pseudocode is shown in Algorithm Minimal_Dominating_Set
(see Fig. 16).

Computing the minimal dominating set for completes
the precomputation. Following this, consider solving RDP with

. Clearly, is routable if and only if or there
exists some in which dominates . This can be checked
quickly by successively performing a binary search on the
components of the sextuples in a straightforward manner. Note
in particular that no integer programming problem needs to be
solved.

To solve RSP, we modify the precomputation described
above. Along with each determined to be in the minimal
dominating set , we determine and store the routing for.
Following this, RSP for any given can be solved fast.
First determine if or find an element , if any, in
which dominates . In the second case, it is easily seen that a
routing for , if any, can be generated from the routing for
if exists. Again, no integer programming problem is solved
in RSP.

To sum up, by precomputing the minimal dominating set
of off-line, the need to solve an integer programming

problem while solving RDP or RSP on-line is avoided.

VI. GLOBAL ROUTING

We now show how the minimal dominating set, whose
computation has been described in the previous section, can be
used in global routing. In this paper we shall limit ourselves to
switch modules being switch blocks. A similar approach can
be used for switch matrices. Ourdemonstrativealgorithm will
closely follow the maze-routing algorithm. A description of the
maze-routing approach is given in [13]. We shall model the
FPGA as a weighted graph. Paths in the graph will represent
routes in the FPGA. The novelty of our approach lies in the
way we compute the weights of the graph edges. For this
we will propose a new metric that makes use of the minimal
dominating set. This metric captures the constraints imposed
by the limited switches available in the switch block. We
assume that no jogs are used within switch blocks.

For simplicity, we shall assume that all switch modules
in the FPGA are identical and that . This
is the case with most commercially available FPGA’s. The
techniques to be described can be easily generalized to avoid
making these assumptions.

We first introduce two definitions. We define theswitch-
block densityof a switch block , denoted by , as a vector

, where is the
number of Type connections currently routed through.
Let denote the dominating set of each switch block in the
FPGA. We define the set

dominates

Thus, is the set of ’s in the dominating set of which
dominate . Since the feasibility condition with respect to a
switch block can be characterized by its minimal dominating
set, we can model congestion as a function ofand . The
global-routing algorithm is based on a graph search technique
guided by the congestion information associated with switch
blocks. The router assigns higher costs to route nets through
congested areas of the FPGA to balance the net distribution
among routing channels. At the end of global routing, we say
that a switch block in the FPGA isfeasibleif is routable
on .

A. Modeling the FPGA

Before we can apply the graph search technique to FPGA
routing, we first need to model the FPGA as a graph such
that the graph topology can represent the FPGA architecture.
Fig. 17 illustrates the FPGA modeling. As shown in Fig. 17,
each logic block or connection block is represented by a
node, each routing channel is modeled as an edge called a
channel edge, and each connection between a logic block and
a connection block is modeled as an edge called aconnection
edge. We use six edges and four nodes to model the six
possible types of nets routing through a switch block. These
six edges are referred to asswitch edges. See Fig. 17(b) and
(c) for the modeling. Paths in the graph represent global routes
on the FPGA and vice versa. Weights associated with edges
represent congestion information. Henceforth, we shall denote
the graph used to model an FPGAby . The edge
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(a) (b) (c)

Fig. 17. The FPGA graph modeling. (a) A symmetrical-array FPGA architecture. (b) The switch-block modeling. (c) The FPGA modeling.

(a) (b) (c)

(d) (e)

Fig. 18. Dynamically update congestion information during routing. An
illustration in a two-dimensional plane with axesxi andxj . (a) The initial
stage. (b) and (c) UpdatedS andDS . (d) Only one vector remains inDS .
(e) The state whendS 2 R;DS = �.

set is partitioned into , the set of channel edges,, the
set of connection edges, and, the set of switch edges.

B. The Global Routing Algorithm

The global router is based on a modified Dijkstra’s shortest
path algorithm [6]. Unlike the traditional global router which
is guided by channel density, our FPGA global router is guided
by switch-block density. The main goal is to evenly distribute
the nets among routing channels so that the channel width
required to route all nets is minimized. The algorithm does
the routing net by net. For the net being routed currently, we
prefer to route it along uncongested routing regions. For a
switch edge , denote the switch block corresponding
to by . Similarly, for a channel edge , denote the
routing channel corresponding toby .

The cost function that guides the global
routing is defined by

where is a constant. This cost function is used to weight
each of edges in .

Fig. 19. Global-Routing Algorithm.

The whole routing procedure is illustrated in Fig. 18. Given
an FPGA , we first construct the graph to model .
Initially, for every switch block in the
FPGA. The cost of every edge in is computed using the
function above. See Fig. 18(a) for the initial configuration.
After a net is routed, and need to be updated to reflect
the additional congestion resulting from the routing of the
net. The weights associated with the edges on the route are
recomputed using the updated and and the cost function
shown above. See Fig. 18(b) and (c) for an illustration of the
update. In Fig. 18(c), those ’s which no longer dominate

are removed from during the update. The process
continues as routing proceeds. Notice that the cardinality of

monotonically decreases during the process. We assign
a high cost to the switch edges corresponding to the switch
block when the set is empty. Essentially, at this stage,

, and hence, no more nets can be routed through.
This is graphically shown in Fig. 18(e). The last step ensures
that a saturated switch block gets low priority while routing
further nets. Algorithm FPGA_Global_Routing summarizes
the process (see Fig. 19).
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TABLE I
RUNNING TIMES FOR ILP METHOD

In contrast, the classical channel-density-based router will
assign weights to the graph edges based on the following
metric. A description of such a cost function is given in [11].
The cost function that guides such a
method is defined by

where is a constant, and is the density in the
channel , corresponding to the channel edgeof the FPGA.
The overall strategy is quite similar to the one in Algorithm
FPGA_Global_Routing. The difference is that update steps
need to update the values of for each channel edge
along the newly routed path.

VII. EXPERIMENTAL RESULTS

Our experimental results fall into two parts. In Section VII-
A, we demonstrate the improvement in solutions to the RDP
and RSP. In Section VII-B, we show the effects of the two
metrics and on routing.

A. Results of Using Exact Solutions for RDP and RSP

We wrote programs that take in routing problems and
switch-module descriptions and generate integer programming
problems as described in Sections III-A and III-B. We used a
popular integer linear programming code calledlp_solvethat
uses branch-and-bound techniques combined with the simplex
algorithm for linear programming to generate integer solutions.
We ran the program on a Sun Sparc 1 workstation. We tested
the sizes of the problems and running times for both switch-
matrix and switch-block models. The results are tabulated in
Table I where the second column gives the size of the switch
module ( ), the third gives maximum observed
running time, and the fourth column gives the average running
time over 100 experiments. The last three columns give an
idea about the size of the ILP. In all cases the RDP was being
solved. The fast running time of our algorithms makes our
approach an attractive one to use in practice for evaluating
designs of switch modules as well as for the application to
global routing.

We also compared the routabilities of several switch mod-
ules as computed by our exact algorithm with those obtained
by the approximate algorithm in [21]. This is shown in Table

TABLE II
COMPARISON WITH APPROXIMATE ALGORITHM

II. All experiments used 100 ’s on the switch modules.
The extent of overestimation that results from an approximate
algorithm justifies the use of our algorithms. The approximate
algorithm was off by about 16%, on an average.

We tested the technique mentioned in Section V. We ob-
served a dramatically small search-space size, i.e., the car-
dinality of the minimal dominating set. For example, it was
observed that for a 10 10 switch-matrix design the cardi-
nality of the minimal dominating set was 1254 which is just
0.12% of the possible 10possible ’s. For a 15 15 switch
block of the type to be used in the routing in the next section,
the cardinality of the dominating set was 1368. As explained
before, a binary search could be used on this set of vectors to
test for the routability of a specified .

B. Routing Results

To explore the effects of the two congestion metricsand
on routing, we implemented the global-routing algorithms

described earlier and then integrated them into the CGE [4]
and SEGA [14] detailed routers.

We tested the performance of the metrics on 14 indus-
trial benchmark circuits used in [4] and [14]. As mentioned
earlier, the new metric uses switch-block capacity as a
congestion control parameter while the traditional metric
is based on channel density. All benchmark circuits were
first routed by the two global routers, one based on the
metrics and the other on , using the same net ordering
to obtain respective global routes. The global routes were
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TABLE III
COMPARISON OF THEEFFECTS OF THETWO METRICS� AND � ON ROUTING USING THE CGE ROUTER AND CIRCUITS. FROM LEFT TO RIGHT: NAMES OF CIRCUITS,

SIZES OF FPGA (NUMBERS OFLOGIC MODULES IN THE FPGA’S), NUMBERS OF NETS IN THE CIRCUITS, NUMBERS OFEQUIVALENT 2-P-I-N CONNECTIONS,CHANNEL

WIDTHS REQUIRED FORGLOBALLY ROUTING ALL NETS KEEPING ALL SWITCH BLOCKS FEASIBLE USING THE GLOBAL-ROUTING ALGORITHMS PRESENTEDEARLIER

(GLOBAL ROUTING), AND CHANNEL WIDTHS REQUIRED FORROUTING COMPLETION USING THE CGE DETAILED ROUTER (DETAILED ROUTING)

(a) (b)

Fig. 20. (a) The switch-block architecture (FS = 3). (b) The corresponding
switch-block model.

Fig. 21. The connection-block architecture (FC = W; W = 3).

then fed into the CGE/SEGA detailed routers to determine
final routing solutions. Notice that the most important concern
in the experiment shall be the investigation of the effects
of the two metrics. For the purpose of fair comparison, we
kept our experimental factors simple. For instance, we used
the shortest path-based algorithm to explore the effects, and
no optimization such as rip-up and reroute was incorpo-
rated.

For FPGA’s, the capacity of a channel is the size of the
corresponding side of a switch block, . In our experiments,
we used the parameter . The FPGA architectures used
in the routing based on the two metrics were identical. The
switch block used was similar to that of Xilinx XC4000 series
FPGA’s [20]. We refer to theflexibility of a switch block

, denoted by , as the number of programmable links
connected to a terminal in and that of a connection block,

, as the number of tracks that a logic-block pin can connect
to [15]. For the architecture we used , and .
Figs. 20 and 21 illustrate the respective switch-block and
connection-block architectures for the case .

We evaluated a metric based on the channel width
required for global- and detailed-routing completion by using
the metric. Since smaller implies the capability of routing a
larger circuit on a given FPGA, a metric leading to a smaller

requirement for routing is desirable. As defined before,
at the end of global routing, a switch block is feasible if

is routable on , i.e., if , or if there exists a
such that dominates . The columns “Global routing

( )” in Tables III and IV list the channel widths required for
routing all the nets based on the metricor such that
all switch blocks are feasible. The columns “Detailed routing
( )” give the channel widths required for routing completion,
using the global routes generated from the corresponding
metric. The results show that better global-routing topologies,
in general, lead to better detailed-routing solutions, and the
new metric has better area performance than the traditional
metric . An average of 22% channel-width reductions on the
14 CGE/SEGA benchmarks is achieved. Fig. 22 shows the
detailed-routing solution for the circuit example 2 with the
parameters , and , using the SEGA
detailed router and the global routes generated by our new
metric .

VIII. C ONCLUSIONS AND FUTURE WORK

In this paper, we described an integer programming ap-
proach to solving a routing problem on switch modules. The
problem was originally proposed in [21] as an important part of
their approach to switch-module design. Experimental results
consistently showed that our algorithm was very efficient for
practical-size switch modules. We also identified in this paper
several special cases of the problem which reduce to well-
known problems and to which polynomial-time algorithms are
known.

The techniques proposed provide an efficient way of es-
timating congestion at switch modules which can be used in
computing good global routes. We demonstrated the success of
this scheme by showing that a substantial reduction of channel
widths are required as compared to methods guided by channel
capacity alone. We propose to extend this method to more
general FPGA routing architectures, e.g., the one proposed in
[10] and other global-routing approaches, e.g., the Steiner-tree
formulation.
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TABLE IV
COMPARISON OF THEEFFECTS OF THETWO METRICS � AND � ON ROUTING USING THE SEGA ROUTER AND CIRCUITS.

FROM LEFT TO RIGHT: SAME AS IN TABLE III, EXCEPT THAT THE SEGA ROUTER WAS USED FOR DETAILED ROUTING

Fig. 22. The routing solution for the circuit example 2 with the parametersW = 13; FS = 3, and FC = 13, using the SEGA detailed router and
the global routes generated by metric�.
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The integer programming package we used was general,
and we did not attempt to customize it to make use of the
specific nature of the problem matrix. As can be seen from
Table I, the problem matrix is quite sparse. Exploiting this
would further speed up the solution process. Also, whether
the routing problem RDP is NP-complete is still open.
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