
836 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 9. NO. 8. AUGUST 1990

GM-Plan: A Gate Matrix Layout Algorithm Based
on Artificial Intelligence Planning Techniques

Abstract-In this paper, the CMOS gate matrix layout problem is
formulated and solved as a n artificial intelligence planning problem in
which a “plan” (the solution algorithm) is to be generated to achieve
a “goal” (the gate matrix layout). The overall goal consists of many
subgoals, each of which corresponds to the placement of a gate to a
slot, and to the routing of associated nets connecting to that gate. As
different nets compete for track (resource) usage, these subgoals inter-
act (interfere) with each other, rendering suboptimal solutions. In this
paper, such interaction among subgoals is managed with two artificial
intelligence planning techniques: hierarchical subgoal organization and
domain independent search control policies. The subgoal hierarchy fa-
cilitates an objective classification of the subgoals into priority classes
according to a proposed distance measure of connectivity. Two search
control policies (general problem solving heuristics)-most-constraint
(MC) and least impact (L1)-are used to guide the search process. The
MC policy states that the subgoal whose solution has most constraints
should be attempted first. The LI policy states that among many alter-
nate solutions, the one that consumes the least amount of resources,
and hence, preserves the most flexibility should be chosen. Using these
techniques, we developed a planning-based gate matrix layout algo-
rithm, called GM-Plan, which combines the gate placement and net
routing into a single, incremental problem solving loop. Encouraging
results have been observed in a number of test examples.

I. INTRODUCTION
ATE matrix layout is a systematic CMOS layout G methodology developed at Bell Laboratories [11.

Owing to the regular structure and relatively high gate
density, the gate matrix layout has become an increas-
ingly popular layout design style and has been adopted by
a number of automatic layout and leaf-cell module gen-
eration systems [2]-[5].

In a gate matrix style layout, a gate refers to a circuit
node which connects to both a PMOS transistor and an
nMOS transistor. In the complementary CMOS layout
style, these nodes usually correspond to the common in-
put gate terminals’ of the PMOS and nMOS transistors.
This may be the reason they bear the name gates. Some-
times a gate may connect to other transistor terminals of

Manuscript received January 30, 1989; revised June 21. 1989. This work
was supported in part by DARPA under Contract MDA 903-86-C-0182 and
by the National Science Foundation under Contract MIP-88961 1 1 . This
paper was recommended by Associate Editor A. E. Dunlop.

Y. H. Hu is with the Department of Electrical and Computer Engineer-
ing, University of Wisconsin-Madison, Madison, WI 53706.

S.-J. Chen is with the Department of Electrical Engineering, National
Taiwan University, Taipei, Taiwan, 10764 China.

IEEE Log Number 9035472.
‘In gate matrix layout literatures, the gate refers to the polysilicon gate

terminal of a MOS transistor (the other two terminals being the source and
the drain), rather than a logic gate such as A N D gate and OR gate.

a

Vdd

Vdd

vss

(a) (b)
Fig. I . (a) A two-input N A N D circuit. (b) Gate matrix layout of the N A N D

circuit.

the PMOS and nMOS transistors. For example, the output
node c in Fig. l(a) will be regarded as a gate. Each gate
in the gate matrix layout is realized by a vertical polysil-
icon wire which are placed in parallel forming a linear
array as shown in Fig. l(b).

Transistors are realized by laying out horizontally dif-
fusion wires across corresponding polysilicon gate seg-
ments. Interconnections are made through metal wire seg-
ments. An example of a gate matrix layout of the circuit
shown in Fig. l(a) is depicted in Fig. l(b). Both the dif-
fusion wires and the metal wires may overlap each other
occupying the same horizontal track. Moreover, adjacent
wire segments on the same track can be lumped together
to form a single net. On the circuit schematic of Fig. l(a),
a net n l may be identified as the path from V,, to the
output node c, trespassing gate a and b. Note that the ver-
tical gates and the horizontal nets intersect each other,
forming a grid matrix which may inspire the name of gate
matrix layout.

The realization of a gate matrix layout requires the so-
lution of two major problems: placing gates in a linear
array of slots and routing nets on horizontal tracks. Since
the number of columns (slots) is fixed, the design objec-
tive thus is to select an appropriate ordering of gates in
order to minimize the total number of tracks taken by the
nets. It has been shown that this is a difficult (NP-com-
plete) problem [6], [24]. Hence, heuristics are used to
derive practical and efficient gate matrix layout algo-
rithms.

In the past, there have been two major approaches for
solving the gate matrix layout problem. The first approach

0278-0070/90/0800-0836$01 .OO O 1990 IEEE

HU A N D CHEN: GATE MATRIX LAYOUT ALGORITHM BASED O N ARTIFICIAL INTELLIGENCE 837

aims at finding a good “gate ordering” in order to mini-
mize the total number of tracks. After the gate ordering
is determined, a left-edge algorithm [7] then will be ap-
plied to perform the task of track assignment (net rout-
ing). To solve the one-dimensional gate assignment prob-
lem, Ohtsuki et al. [8] used a graph-theoretic approach
and formulated the problem into an interval graph prob-
lem. Wing [9], [IO] proposed a solution by finding a min-
imal augmentation to transform a connection graph, which
is derived from the topology of the given circuit into an
interval graph. Another similar heuristic approach was
presented by Li [111 which finds the minimal augmenta-
tion on a “vertex-versus-dominant-gates’’ matrix. In ad-
dition to these interval graph-based approaches, Cheng
[12] proposed a min-cut algorithm and Hwang et al. [13]
used a “modified min-net-cut” method to solve this lin-
ear placement problem.

The second approach, proposed by Asano and Tanaka
[141, attacked the gate matrix layout problem by first “as-
signing nets” to tracks. The gate ordering was subse-
quently determined. An “exact algorithm” using a per-
mutation tree representation and exhaustive search was
presented to ensure an optimal solution [151. Since this
algorithm is impractical for large-size circuits, a subop-
timal “approximate algorithm” based on a greedy heu-
ristic has also been proposed by Asano [151. Tested with
benchmark circuits, Huang and Wing [16] recently re-
ported that the Asano’s approximation algorithm always
takes less time to compute and results in using fewer tracks
compared with the interval graph-based method.

Although the gate matrix layout style has the potential
to “combine the placement and routing into one process”
[17, p. 141, these existing methods often ignore this fact
and regard them as two separate subproblems to be solved
one after the other. Since the tasks of gate placement and
net routing are tightly coupled, solving them one at a time
may lead to inferior solutions for lacking the feedback
from the other half of the problem. In this paper, we pro-
pose a novel gate matrix layout algorithm, called
GM-Plan, in which the processes of gate placement and
net routing are combined into a single, incremental prob-
lem solving loop.

In GM-Plan, the task of gate matrix layout is formu-
lated as an artificial intelligence planning problem [181-
[20] which consists of two interwoven subgoals: gate
placement and net routing. The basic planning approach
used in GM-Plan is to partition the problem on hand into
subproblems (subgoals) of different priority classes.
Subgoals with a higher priority will be attempted first.
Then, the partial plan (partial solution) will be passed
down as constraints to subproblems of lower priority
classes. In this paper, a new clustering distance measure
is proposed to facilitate this partitioning process. During
the problem solving process, subplans, which are steps to
achieve the subgoals of placing a gate and routing corre-
sponding nets, are generated under the control of two do-
main independent search control policies: the most-con-
straint (MC) policy and the least impact (LI) policy.

~

These policies provide guidelines for deriving domain
specific problem solving strategies (heuristics) to manage
the interaction among subgoals.

In Section 11, the gate matrix layout problem will be
formulated with some of its characteristics reviewed. In
Section 111, planning techniques and domain specific heu-
ristics for solving the gate matrix layout problem will be
presented. This leads to the development of the design
process model and the GM-Plan algorithm in Section IV.
Finally, the complexity analysis, simulation examples,
and some implementation issues will be discussed in Sec-
tion V.

11. THE GATE MATRIX LAYOUT PROBLEM
To produce a gate matrix layout, a CMOS circuit will

need to be described in terms of a set of gates { g (i) },
and a set of nets { n (i) } . The set of nets connecting to
the same gate will be called a gate-net (GN) set. For ex-
ample, in Fig. l(a), the GN set corresponding to gate b
is N (b) = { n o , n l } . Similarly, all gates connecting to
the same net will be called a net-gate (NG) set. In Fig.
l(a), the set of gates connecting to the net n l form the
NG set G (n 1) = { a , b, c}. The topology of the circuit
thus can be uniquely described by a GN table listing all
the gates and associated GN sets; or equivalently, by a
NG table listing all the nets and associated NG sets.

In gate matrix layout literatures, a design is often de-
picted in a symbolic format as shown in Fig. 2(a). The
rectangle region represents a MOS transistor channel area.
Vertical wires are polysilicon gates. Horizontal wires rep-
resent interconnections in metal layers. The upward/
downward vertical arrows indicate connections to Vss or
Vdd. For convenience. in the rest of this paper, we shall
use an even more abstract notation as shown in Fig. 2(b)
where only the gate ordering and corresponding track as-
signments of nets are given. The actual wiring can be in-
corporated into the final layout easily once the gate place-
ment and net assignment is accomplished.

Using the above abstract representation, a gate matrix
layout problem can be formally defined as follows.

Given an NG table or a GN table, a set of linearly
aligned array of slots { s (i) } and a set of empty tracks
{ t (i) } , find a one-to-one mapping from the set of gates
{ g (i) } to the set of slots { s (i) } :

f l : g (i) + s (i)

and a second mapping from the set of nets { n (i) } onto
the sets of tracks { t (j) } :

f 2 : n (i) -, t (j)

such that the total number of tracks required is minimum.

2. I Lower Bound of the Solution
In a gate matrix layout, the number of tracks required

must be at least equal to the largest number of nets con-
necting to a single gate in the given circuit. Clearly, this
number serves as a lower bound for the number of tracks

838

e b c gates

pMI, a b c gates
metal

0- 0-0 no

1- 1-1 n l

Vdd

diff

m.t.1
vss

(a) (b)
Fig. 2 . (a) The symbolic layout of the N A N D circuit. (b) The symbolic rep-

resentation of the NAND circuit.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN. VOL 9. NO 8. AUGUST 1990

required by that gate matrix layout problem. If the result-
ing gate matrix layout uses no more tracks than this lower
bound, the solution is optimal. However, this lower bound
will not be optimal with the presence of cycles in a given
circuit topology. For example, in the layout below, the
path a-b-c-a forms a direct cycle, and hence, three tracks
are needed even if each gate connects to at most two nets:

a b c

1-1 (net 1)

2-2 (net 2)

3-3 (net 3)

There are also indirect cycles, or sometimes called hy-
percycle in [21, p. 551. Below is an example of a gate
matrix layout where the path a-b-c-d-a forms an indirect
cycle:

a b c d

1 1 4-4 (net 1)

2-2 (net 2)

3- 3 (net 3).

Yu proved that the size of a “bottleneck hypercycle” is
the optimal lower bound of track numbers required in a
gate matrix layout [21, p. 561. Unfortunately, finding this
theoretical optimal lower bound is a very difficult (an NP-
complete) problem. In practice, it does not provide any
guidance for finding an optimal solution.

111. GATE MATRIX LAYOUT: A PLANNING APPROACH
Planning is a general problem solving technique devel-

oped in artificial intelligence researches. Aplan is a course
of actions (subplans) to achieve a certain goal which usu-
ally consists of a collection of subgoals. Subgoals often
interfere (interact) with each other rendering suboptimal
or infeasible solutions. The objective of planning, thus is
to derive a partial ordering of the subplans such that the
overhead due to interaction among subgoals can be re-
duced. In the gate matrix layout problem, a subgoal is
identified as the collection of the following two subse-
quent tasks:

1) to place a gate in a particular slot;
2) to route corresponding nets on available tracks.

a b c d

(a) 1 1 (net 1)
?2 (net 2)

a c b d

(b) 1-1 2-2 (net 1). (net 2)

Fig. 3 . Interactions among subgoals

If the subgoal of each gate in the given GN table is ac-
complished, the gate matrix layout (the overall goal) will
be achieved. Since a net must be connected to two or more
gates, these subgoals interact with each other competing
for empty tracks to route their corresponding nets. For
example, in Fig. 3(a), net 1 and net 2 both demand the
track segment between gate b and gate c. As a result, two
tracks are used.

If, on the other hand, the order of these two gates are
interchanged, then only one track will be sufficient to route
both nets as shown in Fig. 3(b). Hence, formulated as a
planning problem, the objective of a gate matrix layout is
to find a proper ordering of subplans (gate assignment and
net routing) so as to minimize the overhead due to subgoal
interaction (excessive usage of tracks). In this paper, two
planning techniques, hierarchical subgoal organization
and domain independent search control, will be applied
to develop the algorithm-GM-Plan.

3.1 Hierarchical Subgoal Organization
Hierarchical subgoal organization by partitioning a

problem into subproblems of different priority classes is a
popular “divide-and-conquer” technique used by many
planning-based problem solvers. The main objective of
this partitioning step is to improve the search efficiency
to overcome the combinatorial explosion of the solution
space [30]. If only the highest priority subproblems on the
top level are considered, a partial plan achieving these
subgoals can be accomplished rather quickly because there
are fewer subgoals to be considered at the same time. The
underlying assumption of this technique is that subprob-
lems can be arranged according to the degree of difficulty
(criticality or relevance) in achieving their corresponding
subgoals. This calls for an objective measure to evaluate
the degree of criticality or relevance among subgoals. In
GM-Plan, a novel distance measure and a notion of near-
est-neighbor group are proposed to facilitate this hierar-
chical classification of subgoals.

3.1.1 Connectivity-Based Distance Measure: For se-
rially connected transistors, permutation of their order
does not affect the correctness of the specification. A sim-
ilar argument can also be applied to parallel connection
transistors.2 Hence, it would be meaningless to measure

‘There are special cases where this permutation is prohibited: for ex-
ample. interchanging two transistors may cause a charge sharing problem.
or the driving capability of the transistor5 will be afected due to this per-
mutation of orders.

HU A N D C H E N G A T E MATRIX L A Y O U T ALGORITHM BASED O N ARTIFICIAL INTELLIGENCE 839

>()<

>(

the “distance” between two gates in terms of the differ-
ence between their respective physical locations (i.e., slot
numbers). Since the problem requirement is to connect all
gates within a NG set, it seems more appropriate to con-
sider two gates to be adjacent if they are linked directly
by at least one net. Therefore, we propose a new defini-
tion of distance between two gates as follows.

Dejinition I . Distance Between Two Gates:

Let d (g 1, 8 2) denote the distance between two differ-
ent gates g l and 82; then

d(g l , g 2) = 1 if 3 a net connecting both g 1 and 82,
and
d (g l , g 2) = n (n 2 2) if

d(g1, 8 2) > n - 1 and
3 another gate, say, g 3 such that

d(g1, 8 3) = n - 1, and d(g2, 8 3) = 1; or
d(g1, 8 3) = 1, andd(g2 , 8 3) = n - 1.

This definition can be generalized to define the distance
between two sets of gates.

Dejinition 2. Distance Between Two Sets of Gates: Let
G(1) and G(2) be two disjoint, nonempty sets of gates,
and d (G (1), G (2)) denote the distance between G (1)
and G (2) ; then

d (G (l) , G (2)) = n i f 3 g l ~ G (l) a n d g 2

E G (2) , such that Min[d(g l , g2)] = n.

For illustration purposes, in Fig. 4, d(g 1, g i) = 1, and
d(g2 , g i) = 1, but d(g1, 8 2) = 2. Also, the distance
between the gate set G (1) and G (2) is two. That is,
d (G (l) , G (2)) = 2. Please note that this distance mea-
sure is based on the connectivity between gates, or sets of
gates, and hence, has nothing to do with their physical
locations.

3.1.2. Nearest-Neighbor Group: In GM-Plan, the set
of gates that have been placed is called PLaced Gate Set
(PLGS). Using the proposed distance measure, the re-
maining unplaced gates can be classified into different
priority classes, each of which contains gates having the
same distance from the PLGS. On top of this hierarchy is
the nearesr-neighbor group (NNG) that consists of the
most relevant gates (most critical subgoals). Each mem-
ber in the NNG has direct connection with the PLGS. That
is, the distance from each gate in the NNG to the PLGS
is equal to one. For example, in Fig. 5 , if PLGS = { sg 1,
then NNG = (g 2 , 83 , g4).

It should be noted that the contents in the NNG, and
the remaining levels in the hierarchy can be incrementally
updated during the design process. Whenever a gate is
placed, it pulls its distance-I neighbors from a lower
priority class into the current NNG. This change, in turn,
ripples to the rest of levels in the hierarchy by updating
their respective contents. In GM-Plan, however, only the
NNG is scanned in order to find the next gate to be placed.
Hence, only the top of this subgoal hierarchy, namely
NNG, is maintained and incrementally updated.

I <

rn(sq) = (S2.G3,94)
Fig. 5 . The concept of the N N G

3.2. Domain Independent Search Control Policies
Domain independent search control is a technique con-

cerned with the control of planning decisions-knowing
when to and when not to make commitments of resources
in a subplan to achieve a subgoal. To avoid premature
commitments,3 a control policy, called “least-commit-
ment,” was used in [20] which avoids making a decision
(committing certain resources) until compelling evidence
appears. However, when applied to the gate matrix layout
problem, this policy leads to too many deferred commit-
ments and renders the later decision-making process more
difficult if not infeasible. In the past, we have devised two
domain independent search control policies [22], [23]
which may also be applicable to the current gate matrix
layout problem.

The first one, MC, is the policy of selecting a subgoal
that has most constraints, i.e., one that has the smallest
solution space, and achieving it before other subgoals.
The idea is that since all subgoals must be accomplished
to achieve the overall goal, the one with most constraints
must be addressed first, even at the expense of consuming
some resources of potential use by other subgoals. In
GM-Plan, this MC policy will be applied to the gate se-
lection and net selection phases.

The second one, LI, is the policy of choosing a solution
among many feasible ones to the subgoal so as to have
the last impact on the remaining subgoals. The rationale
is to preserve as much flexibility or as many resources as
possible for achieving future subgoals. In GM-Plan, the
LI policy is applied during the gate assignment and net
routing phases.

IV. GM-PLAN: THE DESIGN PROCESS MODEL
Based on the above two planning techniques, the design

process model of GM-Plan can now be presented. In
GM-Plan, the two subproblems (gate placement and net
routing), which constitute a subgoal, are solved for each
gate and corresponding nets iteratively. At the beginning

’Premature commitment of scarce resources to certain subgoals should
be avoided because it may cause other subgoals to take unnecessary detours
and render the overall solution suboptimal.

840 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN. V O L . Y. NO. 8. AUGUST I Y Y O

of each iteration, a gate is selected from the set of un-
placed gates and placed according to the MC and LI pol-
icies. After a gate is placed, these two policies will be
applied again to choose a subset of nets connecting the
current gate and to route them on available tracks. This
concludes a single iteration. The routing of the remaining
nets, which connect to the current gate, but are not routed
in the current iteration, will be deferred until a later de-
ferred routing phase or the final wrap-up routing phase.

A distinctive feature of GM-Plan is to route some nets
to tracks before all the gates are placed. A main advantage
of this approach is that the net routing information can be
fed back as constraints to later iterations so that more sen-
sible decisions (gate selection and slot assignment) can be
made. Moreover, in many occasions, there is only one
unique solution available (e.g., only one track available
to route a net). Hence, routing that net immediately after
the current gate is placed does not constitute a premature
commitment of resources (tracks), and should not affect
the optimality of the overall solution. For example, in
GM-Plan, the first gate to be placed, called the seed gate,
is the gate having the maximum number of nets in its GN
set. After this seed gate is placed, all the nets connecting
to it will be routed immediately to tracks as this action
will not affect the optimality of the solution.

Conventional gate matrix layout algorithms defer the
routing of nets until all gates are placed. Owing to the
lack of routing information, the gate placement decisions
are made largely independent of the requirements of net
routing. On the other end, if we route every net connect-
ing to the current gate right after it is placed, we may end
up with suboptimal solutions due to premature commit-
ment.4 In GM-Plan, compromises are sought by i) routing
only a portion of nets immediately after the gate is placed,
and ii) deferring further actions on the remaining nets un-
til two later stages (the deferred routing phase, and the
wrap-up routing phase), where more information will be
available to facilitate a better decision.

In the rest of this section, the implementation details of
the gate placement process, and the net routing process
will be discussed.

4.1. The Gate Placement Process
Gate placement in GM-Plan is implemented in two

steps: gate selection (selecting a gate), a slot assignment
(choosing a slot). In each interation, the following steps
will be applied.

4.1.1 Gate Selection: The task here is to decide which,
among all the yet-to-be placed gates, should be selected
and placed next. The MC policy is used to choose a gate
presently with the most constraints to be placed. In
GM-Plan, the MC gate is interpreted as the gate that has
the most relevance (connections) to the PLGS. The de-
gree of relevance (criticality) is expressed with the con-
nectivity-based distance measure defined earlier in Sec-

‘In fact. this corresponds to the exercise of the so called greedy hrurisrit
~ 4 1 .

tion 111-3.1. Whenever a tie is encountered, more domain
specific heuristic rules, based on the same MC policy,
will be used to break the tie. These gate selection rules,
arranged in the order of their priorities, are listed below.

a) Select the gate g such that the intersection between
its GN set N (g) and the set of nets corresponding to the
PLGS set, N (PLGS), has the maximum number of nets.

b) If there is more than one such gate or no such gate,
select the gate that is of distance one to the seed gate.

c) If there is more than one such gate or no such gate,
select the gate that has a maximum number of nets per
gate. This is also the rule used for selecting the seed gate
at beginning as the first gate to be placed.

d) If there is more than one such gate, arbitrarily select
one.

4.1.2. Slot Assignment: Once a gate is selected, it will
be placed into a slot. In GM-Plan, slots are dynamically
defined as the interval between each pair of adjacent
placed gates, including the two ends of the array of placed
gates. The total number of possible slots at present itera-
tion, is the total number of the currently placed-gates plus
one.

The LI domain independent search control policy,
which governs the slot assignment process, is accom-
plished using heuristic research. To avoid an exhaustive
search for every slot, those slots whose neighboring gates
having no direct connection to the current gate will be
excluded from the candidate list.

The heuristic search is accomplished by evaluating a
cost function f for each of the remaining slots. This cost
function consists of a linear combination of four terms:

Gate selection procedure:

f = hO (connection cost of fixed nets)

+ h 1 (expansion cost of fixed nets)

+ h2 (connection cost of floating nets)

+ h3 (expansion cost o f floating nets).

Here the fixed nets are nets which have already been
routed to a track; and thejoating nets are those yet to be
routed. The connecting cost is an estimate of the increase
in track area usage due to the connection of nets to the
current gate should it be placed into that slot. The expan-
sion cost is an estimate of the increase in track area usage
due to the expansion (stretching) of nets trespassing that
slot.

Four possible scenarios are illustrated in Fig. 6 where
g is the current gate to be placed in a slot between g l and
gr. Nets n l and n2 are both fixed nets connecting to the
current gate and contribute to the cost of hO. In the case
of n 1, as it extends to both sides of the current gate, only
1 unit of cost is assigned. In the case of n 2 , as it extends
to only one side of the current gate, the physical length
(number of slots it covers) will be used as an estimate of
its cost. Nets n 3 and n 4 are examples of h 1 type cost, n5 ,
n6 are examples of h2 type cost, and n7, n 8 are examples
of h3 type cost. In GM-Plan, each net of h 1 type is as-

HU A N D C H E N : GATE MATRIX LAYOUT ALGORITHM BASED ON ARTIFICIAL INTELLIGENCE 84 I

x -
. =

fixed net connection
floating net connection

Fig. 6 . The Heuristic cost functions

signed with 1 unit of cost. As for floating nets of both the
h2 and h3 types, only 1 / 2 unit of cost will be assigned
to each of them. For example, in Fig. 6, hO = 1 + 2 =
3 , h l = 2, h2 = 2 (0 . 5) = 1, and h3 = 2 (0 . 5) = 1.
Hence, the total cost is

f = 3 + 2 + 1 + 1 = 7.

Since the value of this cost functionfis a rough esti-
mate of the increase in track area usage when the current
gate is placed to the particular slot. According to the LI
policy, one should choose the slot which minimizes the
value of f . The detailed slot assignment procedures are
now summarized below.

Slot assignment procedure:
a) Choose the slot that, when the selected gate is

placed, no additional tracks will be added immediately.
b) If more than one slot satisfies a) , go to c); otherwise

if no such slot exists, (i.e., some tracks have to be added
no matter what slot is assigned), choose the slot that min-
imizes the number of tracks to be added.

c) If more than one slot satisfies a) or b), choose the
slot that minimizes the heuristic cost function f .

d) If more than one slot satisfies c), choose the one that
is the closest to one of the two ends of the gate matrix
layout.

e) If there is still more than one such slot, arbitrarily
choose one.

4.2. The Net Routing Process
After a gate is placed, the next step is to route the nets

connecting to that gate by assigning them to unoccupied
tracks. As mentioned above, in GM-Plan, nets are distin-
guished into “fixed nets” and “floating nets.” First, the
fixed nets, having been assigned to specific tracks in ear-
lier iterations, present constraints which must be satisfied.
Hence, tracks on the currently selected slot must be as-
signed to fixed nets that are either connected to the current
gate, or simply trespassing it. Moreover, a track may be
reserved by a neighboring hanging fixed net which still
has more gates, not yet in the PLGS, to be connected.
These constraints could significantly reduce the number
of tracks needed to be examined, and therefore, enhance
the search efficiency of the algorithm.

As for the floating nets, they will be converted into fixed
nets and routed to tracks immediately if the following
unique-route criteria, mentioned earlier, is met.

Convert a floating net to a fixed net if i) it connects to
two or more gates in the PLGS, and ii) there is only one
unique track (among the existing vacant tracks) which can
route it.

In GM-Plan, the routing of the remaining floating nets
will be accomplished later in the deferred routing phase,
or the final wrap-up routing phase. Deferred routing is
performed after all the distance- 1 neighboring gates to the
seed gates are placed. Since all the NNG gates of the seed
gate are usually tightly coupled, postponing routing the
remaining floating nets after all these gates are placed will
enable us to pay more attention to the interactions among
these subgoals. The net selection and routing procedures
during the deferred routing phase are also implemented
with domain specific heuristics based on the MC and LI
policies.

4.2. I . Net Selection: Since not every net will be routed
during the deferred routing phase, the MC policy is ap-
plied to first identify the subset of the floating nets to be
converted into fixed nets, and next help ordering the nets
in this subset. In order to identify this subset of nets, we
have the following two heuristic rules.

1) Net selection procedure
a) Select a floating net into the to-be-converted subset

of nets if it only connects to two gates.
b) Select a floating net into the to-be-converted subset

of nets if it connects to two or more gates in the placed
gate set PLGS, and it can be routed to an unreserved tracks
without adding new tracks.

After these subsets of nets are identified, its individual
members will be routed to tracks one by one according to
a prioritized order determined by the heuristics below.

2) Net selection procedure
a) Select the net that has the largest number of gates in

its NG set.
b) If more than one net satisfies a), select the net that

has the largest number of gates in the intersection between
its NG set and the PLGS.

c) If there is more than one such net, arbitrarily select
one.

4.2.2. Track Assignment: To route the selected subset
of nets to tracks, first, constraints are used to eliminate
tracks which have already taken by fixed nets from the
candidate list. Tracks which are “reserved” by a hanging
fixed net shall also be avoided when possible. New tracks
will be added only if the number of available tracks is less
than that of the unrouted nets. The heuristic rules for this
purpose are the following.

Track assignment procedure :
a) Choose the track whose vacant track area best fits

b) If more than one such track exists, choose the track
the net to be routed.

on which fewer nets may be routed.

~

842

c) If more than one such track exits, arbitrarily choose
one.

4.3. The Deferred Routing and the Wrap-up Routing
Phases

As explained earlier, the purpose of deferred routing
and wrap-up routing is to route those floating nets which
have not been converted into fixed nets during previous
iterations. The difference between these two phases is that
in the deferred routing phase, only high priority subgoals,
selected using the net selection procedure (1) will be
routed. While in the wrap-up routing phase, which is car-
ried out after all the gates are placed, every unrouted net
has to be routed, with the procedure outlined in net selec-

IEEE TRANSACTIONS O N COMPUTER-AIDED DESIC;N. VOL. Y. NO. X. AUGUST 1990

Algorithm GM-Plan ():

0. Prepare-Table (NG, GN);

1 . Unique-pl&route ()
2. { select-seed (sg);
3. unique-place (sg);
4. unique-route (N (s g)) ;
5. PLGS = { s g } ;

7. Form-NNG ()

6. 1

8. { NNG = G(N(sg))\{ -sg} ; }

9. CRGS = N N G ;

10. Layout ()
11.
12.
13.
14.

15.
16.
17.
18.

19.
20.
21.
22.
23.
24.

{ While (CRGS! =NULL) repeat
{ Place-gate ()

{select(g, CRGS) with MC policies;
place (g , slot) with LI policies;

1
Route-net (N (8))

{select (n , N (g)) with MC policies;
if (routable) route (n , track) with LI
policies;
1

if (end of NNG) deferred-routing (N (sg));
PLGS = PLGS U { g};
CRGS = {CRGS U G(N(g)} \PLGS;

1

25. Wrap-up-Route (all-nets)

decisions until the wrap-up routing phase since the gate
assignment process will not be benefit from the availabil-
ity of the net routing information. On the other hand, we
want to withhold making premature decisions. The com-
promise made in GM-Plan-to perform deferred routing
once after all NNG gates of the seed gate are placed-
seems to be working satisfactorily for the set of test cir-
cuits. Clearly, for problems with many tightly couple gate
clusters, more than one deferred routing may be needed.
The criteria for determining the frequency and timing to
perform deferred routing is still an open research ques-
tion.

We are now ready to present the complete GM-Plan
algorithm.

The GM-Plan Algorithm

/* Prepare NG, GN tables.*/

/*Select a seed gate from the given GN table; and assign
it to a slot. Route each net of the seed gate to a
track.*/

/*Identify placed Gate-Set * I

/*Select the nearest-neighbor group gates of the seed

/*Nearest-Neighbor-Group. The notation ‘‘ \” is the set

/*Current Gate-Set * /

gate from the set of unplaced gates */

difference operator */

/*The gate selection procedure will be applied to select
a gate to be placed next. Then, the slot assignment
procedure will be applied to place this selected gate
into an available slot. */

/*The fixed nets will be routed first. The net selection
procedures and the net routing procedures will be
applied also to route part of the floating nets */

/* Adding g to the placed gate set */
/* Update current gate set CRGS *I
/* End of While loop */

tion (2) and track assignment above, in order to complete
the gate matrix layout.

The timing for deferred routing is a delicate issue. On
one hand. we do not want to D u t off making any routine

4.4. An Example

Now, an example (w 1) from [9] will be given to dem-
onstrate the gate matrix layout procedures of GM-Plan.

V I d

HU A N D CHEN: GATE MATRIX LAYOUT ALGORITHM BASED ON ARTIFICIAL INTELLIGENCE 843

The original input NG table contains 21 gates, and 18
nets:

Net 1 Gates

n l I I 2 3 n 1 0 1 3 I I 12
112134 nll 1 I I 14
n 3 / 5 6 1112 1 I I 16
n415 6 7 n13 I 14 15
11517 8 1114 I 16 17
n6189 1115 I 13 19
n 7 1 7 8 9 . n16 1 13 18
n8 14 8 I O 12 n17 1 19 20
n9 13 I I 13 n18 I 18 21

Net I Gates

It can be found that the seed gate is gate #3 (sg = 3).
The associated gate set is N (3) = { n 1, n2, n9, n 10 }.
Hence, the NNG gates are derived as:

NNG = G (N (3)) \ (3) = { G (n l) U G(n2)

U G(n9) U G(nlO)] \ (3)

= { (1, 2, 3 ,) U (3 , 43 U (3 , 11, 1 3)

U (3 , 11, 12}} \ (3)

= { 1, 2, 4, 11, 12, 1 3) .

Some snapshots taken during the gate matrix layout
process are presented in Fig. 7. In Fig. 7(a), the place-
ment and routing of the first seed gate is shown. In Fig.
7(b), a second gate #11 is brought into the picture, and
nets n 9 and n10 are assigned to tracks and connected.
However, nets n 11 and n 12 are not placed now due to
lack of sufficient information. In Fig. 7(c), all the NNG
gates of the seed gate are placed and the deferred routing
performed. Note that as a result of deferred routing, nets
n l l , n12, of gate 11, and n15 of gate 13 are now routed
to tracks becoming fixed nets. They are assigned to dif-
ferent tracks to avoid potential conflict. In Fig. 7(d) and
(e), the snapshots before and after the final wrap-up rout-
ing are depicted. Since the final number of track used
(= 4) is equal to the lower bound (maximum number of
nets connecting to the seed gate #3), it is an optimal so-
lution.

The snapshots before wrap-up routing and afrer wrap-
up routing illustrate the distinctive feature of GM-Plan:
higher priorities are set for more critical tasks, such as
gates with more net connections, and nets with more gate
connections. Less demanding tasks then can be completed
later without affecting the overall quality of the gate ma-
trix layout.

V. COMPLEXITY ANALYSIS, SIMULATION RESULTS,
A N D IMPLEMENTATION ISSUES

Two criteria are used in this paper to compare GM-Plan
with other gate matrix layout algorithms. First, a theoret-
ical complexity analysis is conducted to show that
GM-Plan is a polynomial time algorithm. Next, the per-
formance of GM-Plan is compared with the best known
results by using a set of benchmark problems.

3 3 11 4 12 2 1 3 11 13

1 1 8-8 1-1-1 11
2 2 2 2 12
9 9-9 9-9-9

10 10-10 10- 10-10 15

-_ -

- -

9 5 6 7 8 10 4 12 2 1 3 11 16 17 14 15 13 19 20 21 18

8-8-8-8 1-1-1 11- 11
2- 2 12-12

9-9 9 17-17 18-18
10- 10-1 0 15-1 5

(d)

9 5 6 7 8 10 4 12 2 1 3 11 16 17 14 15 13 19 20 21 18

4-4-4 8-8-8-8 1-1-1 11- 11 16- 1 6
1- 7-7 2- 2 12-12 13-13
6---6 9-9 9 17-17 18-18

3-3 5-5 10- 10-10 14-14 15-1 5

(e)

Fig. 7. Snapshots of the GM-Plan design example

5.1. Complexity Analysis
Let us adopt the following set of notations: n = the

number of gates, m = the number of nets, a = the max
number of gates per net, /3 = the max number of nets per
gate, and t,, = the number of tracks used for the gate ma-
trix layout. Clearly, it must be n L a and rn L t , 1 p.
Now, by referring to the GM-Plan algorithm, one has the
following operation counts.

The procedure “select-seed,” (line 2), which selects a
seed-gate from the GN table, takes O (n) time. The pro-
cedures, “unique-place” (line 3) and “unique-route”
(line 4) both take only constant time. The NNG (line 8)
can be formed in O(a* /3) time. The “Gate Selection”
procedure (line 13) requires O (n * m) time units. This is
because the intersection of N (g) and N (PLGS) will need
O (m) time units, while there are at most n gates to be
evaluated. The “Slot Assignment” procedure (line 14)
also needs O (n * t) time, where each gate may connect to
O(t , ,) nets, and at most O (n) slots to be evaluated. The
“Net Selection” procedure (line 17) needs at most O (0)
time. Also, the “Track Assignment” procedure (line 18)
searches t,, tracks, and hence, needs O(t , ,) time to route
a current net. There is also a hidden cost of O(n*t,,) in
order to check the range of a routed net. The time spent
on updating existing floating nets and perhaps converting
some of them into fixed net is also O (p) . The “wrap-
up-route” procedure (line 25) needs O (n*t,,) time. The
same is also needed for the procedure “deferred-routing”
in line 20.

To summarize, the maximum time required is O (n * m)
and the iteration count is O (n) . Thus the overall time
complexity of GM-Plan is O (n 2 m) . As to the space com-
plexity, we use two double-linked lists (taking O (n)
memory space) to store the placed gates and available
slots, respectively, and a single-linked list (taking O (t,,)
space) to store the routing track information. In total, the
memory space taken is of O(n*t , ,) .

844 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN. VOL. Y, NO. 8. AUGUST 1990

The above numbers may be compared with the com-
putation complexities of several existing gate matrix lay-
out algorithms. The results are conveniently summarized
in Table 1. For the purpose of comparison, various nota-
tions are converted (with our best efforts) to equivalent
notations used in this paper. However, a conclusion in
terms of efficiencies of various algorithms cannot be
drawn from this table due to different problem formula-
tions and the lack of implementation details.

5.2. Benchmark Examples
The GM-Plan algorithm has been implemented in C

programming language on a VAX 11/750 computer run-
ning UNIX (version 4.3 BSD). It accepts an NG table as
input and generates a character-based symbolic gate ma-
trix layout. Sixteen benchmark circuits were tested, the
results are listed in Table 11. The first four examples are
from Heinbuch’s book [25]: “ ~ 4 0 0 0 ” is a 4 x 1 mux,
“ ~ 4 0 5 0 ” a 2 x 4 decoder, “ ~ 4 0 9 0 ” a 3 x 8 decoder,
and “ ~ 4 4 7 0 ” a 4-b comparator. There are another four
examples from Wing and Huang [27]: “w2” is ITT1,
“w3” is a 4-b ALU, “w4” is ITT2, and “wan” a full-
adder. The remaining examples are collected from the
published literatures and their sources are given in column
2. The third, fourth, and the fifth column give the sizes
of the problem. The column titled “known solutions”
contains the track numbers of each example reported in
the corresponding references. The solutions obtained
using GM-Plan are listed in the column under the title
“GM-Plan Solution.” Those entries in this column fol-
lowed by a “*” indicate that they are the minimum track
numbers (optimal solutions). The CPU time in the last
column is the time GM-Plan takes to run in the VAX 750
for corresponding examples.

Note that both the optimal track numbers of “vw2”
and “wsn” in Table I1 use more tracks than their corre-
sponding lower bounds. This is due to the existence of
direct or indirect cycles in these circuits. The optimality
of the 5-track solution of “vw2” is verified by hand, and
the 8-track solution of “wsn” is proved to be optimal by
Yu [21, p. 571 as it is the size of the “bottleneck hyper-
cycle” in that circuit.

Of the last 12 examples in Table 11, optimal solutions
are reached in seven of them. The GM-Plan solution of
“w3” is 21-tracks, better than the known 23-track solu-
tion obtained from Wing [27]. The solutions of the other
six examples (“ v l , ” “vwl ,” “vw2,” “wl ,” “wan,”
and ‘‘wsn”) are equal to the known ones. Three examples
(“w4,” ‘‘wli,” and “ v c l ”) produce slightly inferior so-
lutions (larger-track numbers).

5.3. Implementation Issues
The planning methods employed in GM-Plan is very

general in that various design constraints may be added
without the need to reformulate the entire algorithm. For
example, in certain gate matrix layout problems, some
gates must be located at fixed locations (boundary con-
straint). In GM-Plan, this constraint can easily be incor-

TABLE 1

ALGORITHMS
COMPARISON OF COMPUTATION COMPLEXITIES OF GATE M A T R I X LAYOUT

Authors Ref. T i m compluiry Ow Nornrion Nore

* There i s noqwalent notanon fa R in our lxwnons H m C is some number having
the same orda d magnindc as h a t of n

TABLE I1
GATE MATRIX LAYOUT WITH GM-PLAN

#of Lower Known G M - P h CPUtime
N m Ref. :+% Gores Bound Solution Solution Vox750

porated in the slot assignment procedure by fixing those
gates at the beginning. As another example, if transistor
sizing is considered, a large transistor may be regarded as
a parallel connection of several standard transistors which
have to be laid out on adjacent tracks. These implemen-
tation details can be incorporated in the GM-Plan without
difficulty.

VI. CONCLUSION
In this paper, we have presented a polynomial time al-

gorithm GM-Plan for the gate matrix layout of CMOS
digital circuits. Using both hierarchical subgoal organi-
zation and two domain independent search control poli-
cies, this new method is designed to be more sensitive to
the interaction among subgoals. Testing results from
benchmark examples have been very encouraging. Fur-
ther research is underway aiming at the following direc-
tions. 1) The implementation of an efficient backtracking
facility to further reduce the chances of making premature
commitment during the problem solving process. 2) The
use of iterative learning techniques to further improve the
quality of the output.

ACKNOWLEDGMENT
The authors wish to thank Prof. D. Y . Y. Yun of the

University of Hawaii, Prof. W. Ho of the University of
Southern California, and Dr. N. P. Keng of Intel Co., all
formerly associated with the Southern Methodist Univer-

HU AND CHEN: GATE MATRIX LAYOUT ALGORITHM BASED ON ARTIFICIAL INTELLIGENCE 845

sity , for stimulating discussions on the applications of generation approach,” Ph.D. dissertation, Univ. Illinois at Urbana-
Champaign, 1986.

switchbox routing.” in Proc. Int. Conf on Comouter Design. 1985.

planning techniques-to vLsl CAD‘ Their ‘anks are
[22] w. p, C , Ho, D, y , y , yun, and y. H, Hu, “planning strategies for extended to Dr. 0. Wing and Dr. S. Huang of Columbia

University for providing examples, and many helpful dis- pp. 463-467.

cussions, and to D ~ . c. K. cheng of U. c . sari ~ i ~ ~ ~ ,
Dr. J . F. BeetemandDr. B. N. Mayoof U. W. Madison,
and Dr. J. T. Li of Advanced Micro Devices for many
useful comments on this manuscript. The anonymous re-
viewers’ constructive suggestions are also appreciated.

1231 D. Y. Y. Yun and N. P. Keng, “A planning/scheduling methodology
for the constrained resource problem,” in Pruc. Int. Joint Con$ Ar-
tijcial Intelligence, 1989, pp. 998-1003.

[24] N . Deo, M. S . Krishnamoorthy, and M. A. Langston, “Exact and
approximate solutions for the gate matrix layout problem,” IEEE
Trans. Compurer-Aided Design, vol. CAD-6, pp. 79-84, Jan. 1987.

[251 D. v. Heinbuch, C M U S ~ cell Library. Reading, MA, Addison-

REFERENCES
[I] A. D. Lopez and H.-F. S . Law, “A dense gate matrix layout method

for MOS VLSI,” IEEE Trans. Electron Devices, vol. ED-27, pp.

[2] Y. C. Chang, S . C. Chang, and L. H. Hsu, “Automated layout gen-
eration using gate matrix approach,” in Proc. 24rh Design Automa-
tion Con$, 1987, pp, 552-558.

[31 J . S:J. Chen and D. Y. Chen, “A design rule independent cell com-
piler,” in Proc. 24th Design Automation Conf., 1987, pp. 466-471.

[4] Y.-L. S . Lin and D. D. Gajski, “LES: A layout expert system,” in
Proc. 24th Design Automarion Con$, 1987, pp. 672-678.

[5] M. L. Yu and W. J . Kubitz, “A VLSI cell synthesizer with structural
constraint considerations,” in Proc. ICCAD, 1985, pp. 58-60.

[6] T. Kashiwabara and T. Fujisawa, “A NP-complete problem on in-
terval graph,” in Proc. ISCAS. 1979, pp. 82-83.

[7] A. Hashimoto and J . Stevens, “Wire routing by optimizing channel
assignment within large apertures,” in Proc. 8th Design Automation
Workshop, 1971, pp. 155-169.

[8] T . Ohtsuki, H. Mori, E. S . Kuh, andT. Fujisawa, ”One-dimensional
logic gate assignment and interval graph.” IEEE Trans. Circuits Syst.,
vol. CAS-26, pp. 675-684, Sept. 1979.

[9] 0. Wing, “Automated gate matrix layout,” in Proc. Int. Symp. Cir-
cuits and Systems, 1982, pp. 681-685.

[IO] 0. Wing, S. Huang and R. Wang, “Gate matrix layout,” IEEE Trans.
Computer-Aided Design, vol. CAD-4, pp. 220-231, July 1985.

[I I] J. T. Li, “Algorithms for gate matrix layout,” in Proc. ISCAS, 1983,
pp, 1013-1016.

[I21 C. K. Cheng, “Decomposition algorithm for linear placement and
application to VLSI design,” in Proc. ISCAS. 1985, pp. 1047-1050.

[I31 D. K. Hwang, W. K. Fuchs, and S . M. Kang, “An efficient approach
to gate matrix layout,” IEEE Trans. Computer-Aided Design, vol.
CAD-6, pp. 802-809, Sept. 1987.

1141 T. Asano and K. Tanaka, “A gate placement algorithm for one-di-
mensional arrays,” J . Inform. Proc., vol. 1, no. 1, pp. 47-52, 1978.

[IS] T. Asano, “An optimum gate placement algorithm for MOS one-di-
mensional arrays,” J . Digital Sysr., vol. VI, no. 1 , pp. 1-27, 1982.

[I61 S . Huang and 0. Wing, “Improved gate matrix layout,” in Proc.

[I71 T . C . Hu and E. S . Kuh, “Theory and concepts of circuit layout.”
in VLSI Circuit Layout: Theory and Design, eds. T. C. Hu and E. S.
Kuh.

[I81 E. D. Sacerdoti, “Planning in a hierarchy of abstraction spaces,’’
Arrif. fnrell. , vol. 5 , pp. 115-135, 1974.

1191 M. Stefik, “Planning with constraints, (MOLGEN: Part I) , ” Artif.
Intell., vol. 16, pp. 111-139, 1981.

1201 -, “Planning with domain independent search control, (MOL-
GEN: Part I I) , ” Arrif. Intell., vol. 16, pp. 141-169, 1981.

[21] M. L. Yu, “Automatic random logic layout synthesis-A module

1671-1675. Aug. 1980.

ICCAD, 1986, pp. 320-323.

New York: IEEE Press, 1985.

Wesley, 1988.
[26] H. W. Leong, “A new algorithm for gate matrix layout,” in Proc

[27] 0. Wing and S . Huang, Pnvate correspondence, Jan.-Aug. 1988.
[28] 0. Wing, “Interval-graph-based circuit layout,” in Proc. ICCAD,

1983, pp 84-85.
[29] K. Nakatani, T Fujii, T. Kikuno, and N. Yoshida, “ A heuristic al-

gorithm for gate matrix layout,” in Proc. ICCAD, 1986, pp. 324-
327.

[30] R. E. Korf, “Planning as search. A quantitative approach,” Am$
Intell., vol 33, pp. 65-88, 1987

ICCAD, 1986, pp. 316-319.

*
Yu Hen Hu (S’79-M’83-SM’87) received the
B.S.E E degree from National Taiwan Univer-
sity. Taipei, Taiwan, in 1976, and the M S E E
and Ph D degrees in electrical engineering from
University of Southern California. Los Angeles.
California in 1980 and 1982, respectively.

He is currently an assistant professor of the De-
partment of Electrical and Computer Engineering,
University of Wisconsin, Madison, Wisconsin
From 1983 to 1987. he was an assistant professor
of the Electrical Engineering Department of

Southern Methodist University, Dallas, Texas His research interests in-
clude VLSI signal processing, spectrum estimation, fast algorithms and
parallel computer architectures, and computer-aided design tools for VLSI
using artificial intelligence He is currently an associate editor for the IEEE
TRANSACTIONS OF ACOUSTIC, SPEECH, A N D SIGNAL PROCESSING in the area
of system identification and fast algorithms

Dr Hu is a member of SIAM and Eta Kappa Nu

*
Sao-Jie Chen (S’85-M’88) received the B.S. and
M.S. degrees in electrical engineering from the
National Taiwan University, Taipei, Taiwan, in
1977 and 1982, and the Ph D degree in electrical
engineering from the Southern Methodist Univer-
sity, Dallas, in 1988.

Since 1982, he has been a member of the fac-
ulty in the Department of Electrical Engineering,
National Taiwan University, where he is currently
an Associate Professor During the fall of 1987,
he held a visiting appointment at the Department

of Electrical and Computer Engineering, University of Wisconsin, Madi-
son His current research interests include VLSI physical design automa-
tion, fault-tolerant computing, and supercomputer architecture.

Dr Chen is a member of the Association for Computing Machinery.

