
836 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 9. NO. 8. AUGUST 1990 

GM-Plan: A Gate Matrix Layout Algorithm Based 
on Artificial Intelligence Planning Techniques 

Abstract-In this paper, the CMOS gate matrix layout problem is 
formulated and solved as a n  artificial intelligence planning problem in 
which a “plan” (the solution algorithm) is to be generated to achieve 
a “goal” (the gate matrix layout). The overall goal consists of many 
subgoals, each of which corresponds to the placement of a gate to a 
slot, and to the routing of associated nets connecting to that gate. As 
different nets compete for track (resource) usage, these subgoals inter- 
act (interfere) with each other, rendering suboptimal solutions. In this 
paper, such interaction among subgoals is managed with two artificial 
intelligence planning techniques: hierarchical subgoal organization and 
domain independent search control policies. The subgoal hierarchy fa- 
cilitates an objective classification of the subgoals into priority classes 
according to a proposed distance measure of connectivity. Two search 
control policies (general problem solving heuristics)-most-constraint 
(MC) and least impact (L1)-are used to guide the search process. The 
MC policy states that the subgoal whose solution has most constraints 
should be attempted first. The LI policy states that among many alter- 
nate solutions, the one that consumes the least amount of resources, 
and hence, preserves the most flexibility should be chosen. Using these 
techniques, we developed a planning-based gate matrix layout algo- 
rithm, called GM-Plan, which combines the gate placement and net 
routing into a single, incremental problem solving loop. Encouraging 
results have been observed in a number of test examples. 

I. INTRODUCTION 
ATE matrix layout is a systematic CMOS layout G methodology developed at Bell Laboratories [ 11. 

Owing to the regular structure and relatively high gate 
density, the gate matrix layout has become an increas- 
ingly popular layout design style and has been adopted by 
a number of automatic layout and leaf-cell module gen- 
eration systems [2]-[5]. 

In a gate matrix style layout, a gate refers to a circuit 
node which connects to both a PMOS transistor and an 
nMOS transistor. In the complementary CMOS layout 
style, these nodes usually correspond to the common in- 
put gate terminals’ of the PMOS and nMOS transistors. 
This may be the reason they bear the name gates.  Some- 
times a gate may connect to other transistor terminals of 
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‘In gate matrix layout literatures, the gate refers to the polysilicon gate 

terminal of a MOS transistor (the other two terminals being the source and 
the drain), rather than a logic gate such as A N D  gate and OR gate. 
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Fig. I .  (a) A two-input N A N D  circuit. (b) Gate matrix layout of the N A N D  

circuit. 

the PMOS and nMOS transistors. For example, the output 
node c in Fig. l(a) will be regarded as a gate. Each gate 
in the gate matrix layout is realized by a vertical polysil- 
icon wire which are placed in parallel forming a linear 
array as shown in Fig. l(b). 

Transistors are realized by laying out horizontally dif- 
fusion wires across corresponding polysilicon gate seg- 
ments. Interconnections are made through metal wire seg- 
ments. An example of a gate matrix layout of the circuit 
shown in Fig. l(a) is depicted in Fig. l(b). Both the dif- 
fusion wires and the metal wires may overlap each other 
occupying the same horizontal track. Moreover, adjacent 
wire segments on the same track can be lumped together 
to form a single net.  On the circuit schematic of Fig. l(a), 
a net n l  may be identified as the path from V,,  to the 
output node c, trespassing gate a and b. Note that the ver- 
tical gates and the horizontal nets intersect each other, 
forming a grid matrix which may inspire the name of gate 
matrix layout. 

The realization of a gate matrix layout requires the so- 
lution of two major problems: placing gates in a linear 
array of slots and routing nets on horizontal tracks. Since 
the number of columns (slots) is fixed, the design objec- 
tive thus is to select an appropriate ordering of gates in 
order to minimize the total number of tracks taken by the 
nets. It has been shown that this is a difficult (NP-com- 
plete) problem [6], [24]. Hence, heuristics are used to 
derive practical and efficient gate matrix layout algo- 
rithms. 

In the past, there have been two major approaches for 
solving the gate matrix layout problem. The first approach 
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aims at finding a good “gate ordering” in order to mini- 
mize the total number of tracks. After the gate ordering 
is determined, a left-edge algorithm [7] then will be ap- 
plied to perform the task of track assignment (net rout- 
ing). To solve the one-dimensional gate assignment prob- 
lem, Ohtsuki et al. [8] used a graph-theoretic approach 
and formulated the problem into an interval graph prob- 
lem. Wing [9], [IO] proposed a solution by finding a min- 
imal augmentation to transform a connection graph, which 
is derived from the topology of the given circuit into an 
interval graph. Another similar heuristic approach was 
presented by Li [ 111 which finds the minimal augmenta- 
tion on a “vertex-versus-dominant-gates’’ matrix. In ad- 
dition to these interval graph-based approaches, Cheng 
[12] proposed a min-cut algorithm and Hwang et al. [13] 
used a “modified min-net-cut” method to solve this lin- 
ear placement problem. 

The second approach, proposed by Asano and Tanaka 
[ 141, attacked the gate matrix layout problem by first “as- 
signing nets” to tracks. The gate ordering was subse- 
quently determined. An “exact algorithm” using a per- 
mutation tree representation and exhaustive search was 
presented to ensure an optimal solution [ 151. Since this 
algorithm is impractical for large-size circuits, a subop- 
timal “approximate algorithm” based on a greedy heu- 
ristic has also been proposed by Asano [ 151. Tested with 
benchmark circuits, Huang and Wing [16] recently re- 
ported that the Asano’s approximation algorithm always 
takes less time to compute and results in using fewer tracks 
compared with the interval graph-based method. 

Although the gate matrix layout style has the potential 
to “combine the placement and routing into one process” 
[17, p. 141, these existing methods often ignore this fact 
and regard them as two separate subproblems to be solved 
one after the other. Since the tasks of gate placement and 
net routing are tightly coupled, solving them one at a time 
may lead to inferior solutions for lacking the feedback 
from the other half of the problem. In this paper, we pro- 
pose a novel gate matrix layout algorithm, called 
GM-Plan, in which the processes of gate placement and 
net routing are combined into a single, incremental prob- 
lem solving loop. 

In GM-Plan, the task of gate matrix layout is formu- 
lated as an artificial intelligence planning problem [ 181- 
[20] which consists of two interwoven subgoals: gate 
placement and net routing. The basic planning approach 
used in GM-Plan is to partition the problem on hand into 
subproblems (subgoals) of different priority classes. 
Subgoals with a higher priority will be attempted first. 
Then, the partial plan (partial solution) will be passed 
down as constraints to subproblems of lower priority 
classes. In this paper, a new clustering distance measure 
is proposed to facilitate this partitioning process. During 
the problem solving process, subplans, which are steps to 
achieve the subgoals of placing a gate and routing corre- 
sponding nets, are generated under the control of two do- 
main independent search control policies: the most-con- 
straint (MC) policy and the least impact (LI) policy. 

~ 

These policies provide guidelines for deriving domain 
specific problem solving strategies (heuristics) to manage 
the interaction among subgoals. 

In Section 11, the gate matrix layout problem will be 
formulated with some of its characteristics reviewed. In 
Section 111, planning techniques and domain specific heu- 
ristics for solving the gate matrix layout problem will be 
presented. This leads to the development of the design 
process model and the GM-Plan algorithm in Section IV. 
Finally, the complexity analysis, simulation examples, 
and some implementation issues will be discussed in Sec- 
tion V. 

11. THE GATE MATRIX LAYOUT PROBLEM 
To produce a gate matrix layout, a CMOS circuit will 

need to be described in terms of a set of gates { g ( i  ) }, 
and a set of nets { n ( i  ) } . The set of nets connecting to 
the same gate will be called a gate-net (GN) set. For ex- 
ample, in Fig. l(a), the GN set corresponding to gate b 
is N ( b )  = { n o ,  n l  } .  Similarly, all gates connecting to 
the same net will be called a net-gate (NG) set. In Fig. 
l(a), the set of gates connecting to the net n l  form the 
NG set G ( n 1 )  = { a ,  b, c}. The topology of the circuit 
thus can be uniquely described by a GN table listing all 
the gates and associated GN sets; or equivalently, by a 
NG table listing all the nets and associated NG sets. 

In gate matrix layout literatures, a design is often de- 
picted in a symbolic format as shown in Fig. 2(a). The 
rectangle region represents a MOS transistor channel area. 
Vertical wires are polysilicon gates. Horizontal wires rep- 
resent interconnections in metal layers. The upward/ 
downward vertical arrows indicate connections to Vss or 
Vdd. For convenience. in the rest of this paper, we shall 
use an even more abstract notation as shown in Fig. 2(b) 
where only the gate ordering and corresponding track as- 
signments of nets are given. The actual wiring can be in- 
corporated into the final layout easily once the gate place- 
ment and net assignment is accomplished. 

Using the above abstract representation, a gate matrix 
layout problem can be formally defined as follows. 

Given an NG table or a GN table, a set of linearly 
aligned array of slots { s ( i ) } and a set of empty tracks 
{ t (  i ) } , find a one-to-one mapping from the set of gates 
{ g ( i ) }  to the set of slots { s ( i ) } :  

f l :  g ( i )  + s ( i )  

and a second mapping from the set of nets { n ( i  ) } onto 
the sets of tracks { t ( j ) } : 

f 2 :  n ( i )  -, t ( j )  

such that the total number of tracks required is minimum. 

2. I Lower Bound of the Solution 
In a gate matrix layout, the number of tracks required 

must be at least equal to the largest number of nets con- 
necting to a single gate in the given circuit. Clearly, this 
number serves as a lower bound for the number of tracks 
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Fig. 2 .  (a) The symbolic layout of the N A N D  circuit. (b) The symbolic rep- 

resentation of the NAND circuit. 
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required by that gate matrix layout problem. If the result- 
ing gate matrix layout uses no more tracks than this lower 
bound, the solution is optimal. However, this lower bound 
will not be optimal with the presence of cycles in a given 
circuit topology. For example, in the layout below, the 
path a-b-c-a forms a direct cycle, and hence, three tracks 
are needed even if each gate connects to at most two nets: 

a b c  

1-1 (net 1)  

2-2 (net 2 )  

3-3 (net 3) 

There are also indirect cycles, or sometimes called hy- 
percycle in [21, p. 551. Below is an example of a gate 
matrix layout where the path a-b-c-d-a forms an indirect 
cycle: 

a b c d  

1 1 4-4 (net 1 )  

2-2 (net 2 )  

3- 3 (net 3). 

Yu proved that the size of a “bottleneck hypercycle” is 
the optimal lower bound of track numbers required in a 
gate matrix layout [21, p. 561. Unfortunately, finding this 
theoretical optimal lower bound is a very difficult (an NP- 
complete) problem. In practice, it does not provide any 
guidance for finding an optimal solution. 

111. GATE MATRIX LAYOUT: A PLANNING APPROACH 
Planning is a general problem solving technique devel- 

oped in artificial intelligence researches. Aplan is a course 
of actions (subplans) to achieve a certain goal which usu- 
ally consists of a collection of subgoals. Subgoals often 
interfere (interact) with each other rendering suboptimal 
or infeasible solutions. The objective of planning, thus is 
to derive a partial ordering of the subplans such that the 
overhead due to interaction among subgoals can be re- 
duced. In the gate matrix layout problem, a subgoal is 
identified as the collection of the following two subse- 
quent tasks: 

1) to place a gate in a particular slot; 
2) to route corresponding nets on available tracks. 

a b c d  

(a) 1 1 (net 1) 
?2 (net 2) 

a c b d  

(b)  1-1 2-2 (net 1). (net 2) 

Fig. 3 .  Interactions among subgoals 

If the subgoal of each gate in the given GN table is ac- 
complished, the gate matrix layout (the overall goal) will 
be achieved. Since a net must be connected to two or more 
gates, these subgoals interact with each other competing 
for empty tracks to route their corresponding nets. For 
example, in Fig. 3(a), net 1 and net 2 both demand the 
track segment between gate b and gate c. As a result, two 
tracks are used. 

If, on the other hand, the order of these two gates are 
interchanged, then only one track will be sufficient to route 
both nets as shown in Fig. 3(b). Hence, formulated as a 
planning problem, the objective of a gate matrix layout is 
to find a proper ordering of subplans (gate assignment and 
net routing) so as to minimize the overhead due to subgoal 
interaction (excessive usage of tracks). In this paper, two 
planning techniques, hierarchical subgoal organization 
and domain independent search control, will be applied 
to develop the algorithm-GM-Plan. 

3.1 Hierarchical Subgoal Organization 
Hierarchical subgoal organization by partitioning a 

problem into subproblems of different priority classes is a 
popular “divide-and-conquer” technique used by many 
planning-based problem solvers. The main objective of 
this partitioning step is to improve the search efficiency 
to overcome the combinatorial explosion of the solution 
space [30]. If only the highest priority subproblems on the 
top level are considered, a partial plan achieving these 
subgoals can be accomplished rather quickly because there 
are fewer subgoals to be considered at the same time. The 
underlying assumption of this technique is that subprob- 
lems can be arranged according to the degree of difficulty 
(criticality or relevance) in achieving their corresponding 
subgoals. This calls for an objective measure to evaluate 
the degree of criticality or relevance among subgoals. In 
GM-Plan, a novel distance measure and a notion of near- 
est-neighbor group are proposed to facilitate this hierar- 
chical classification of subgoals. 

3.1.1 Connectivity-Based Distance Measure: For se- 
rially connected transistors, permutation of their order 
does not affect the correctness of the specification. A sim- 
ilar argument can also be applied to parallel connection 
transistors.2 Hence, it would be meaningless to measure 

‘There are special cases where this permutation is prohibited: for ex- 
ample. interchanging two transistors may cause a charge sharing problem. 
or the driving capability of the transistor5 will be afected due to this per- 
mutation of orders. 
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the “distance” between two gates in terms of the differ- 
ence between their respective physical locations (i.e., slot 
numbers). Since the problem requirement is to connect all 
gates within a NG set, it seems more appropriate to con- 
sider two gates to be adjacent if they are linked directly 
by at least one net. Therefore, we propose a new defini- 
tion of distance between two gates as follows. 

Dejinition I .  Distance Between Two Gates: 

Let d ( g  1, 8 2 )  denote the distance between two differ- 
ent gates g l  and 82;  then 

d( g l , g 2 )  = 1 if 3 a net connecting both g 1 and 82,  
and 
d ( g l , g 2 )  = n ( n  2 2 )  if 

d(g1,  8 2 )  > n - 1 and 
3 another gate, say, g 3  such that 

d(g1,  8 3 )  = n - 1,  and d(g2,  8 3 )  = 1; or 
d(g1,  8 3 )  = 1, andd(g2 ,  8 3 )  = n - 1. 

This definition can be generalized to define the distance 
between two sets of gates. 

Dejinition 2. Distance Between Two Sets of Gates: Let 
G(  1 ) and G(  2 )  be two disjoint, nonempty sets of gates, 
and d (  G (  1 ), G (  2 ) )  denote the distance between G (  1 ) 
and G (  2) ;  then 

d ( G ( l ) , G ( 2 ) )  = n i f 3 g l ~ G ( l ) a n d g 2  

E G ( 2 ) ,  such that Min[d(g l ,  g2) ]  = n.  

For illustration purposes, in Fig. 4, d( g 1, g i )  = 1, and 
d(g2 ,  g i )  = 1,  but d(g1,  8 2 )  = 2. Also, the distance 
between the gate set G (  1 ) and G ( 2 )  is two. That is, 
d (  G (  l ) ,  G ( 2 ) )  = 2. Please note that this distance mea- 
sure is based on the connectivity between gates, or sets of 
gates, and hence, has nothing to do with their physical 
locations. 

3.1.2. Nearest-Neighbor Group: In GM-Plan, the set 
of gates that have been placed is called PLaced Gate Set 
(PLGS). Using the proposed distance measure, the re- 
maining unplaced gates can be classified into different 
priority classes, each of which contains gates having the 
same distance from the PLGS. On top of this hierarchy is 
the nearesr-neighbor group (NNG) that consists of the 
most relevant gates (most critical subgoals). Each mem- 
ber in the NNG has direct connection with the PLGS. That 
is, the distance from each gate in the NNG to the PLGS 
is equal to one. For example, in Fig. 5 ,  if PLGS = { sg 1, 
then NNG = ( g 2 ,  83 ,  g4). 

It should be noted that the contents in the NNG, and 
the remaining levels in the hierarchy can be incrementally 
updated during the design process. Whenever a gate is 
placed, it pulls its distance-I neighbors from a lower 
priority class into the current NNG. This change, in turn, 
ripples to the rest of levels in the hierarchy by updating 
their respective contents. In GM-Plan, however, only the 
NNG is scanned in order to find the next gate to be placed. 
Hence, only the top of this subgoal hierarchy, namely 
NNG, is maintained and incrementally updated. 

I <  

rn(sq) = (S2.G3,94) 
Fig. 5 .  The concept of the N N G  

3.2. Domain Independent Search Control Policies 
Domain independent search control is a technique con- 

cerned with the control of planning decisions-knowing 
when to and when not to make commitments of resources 
in a subplan to achieve a subgoal. To avoid premature 
commitments,3 a control policy, called “least-commit- 
ment,” was used in [20] which avoids making a decision 
(committing certain resources) until compelling evidence 
appears. However, when applied to the gate matrix layout 
problem, this policy leads to too many deferred commit- 
ments and renders the later decision-making process more 
difficult if not infeasible. In the past, we have devised two 
domain independent search control policies [22], [23] 
which may also be applicable to the current gate matrix 
layout problem. 

The first one, MC, is the policy of selecting a subgoal 
that has most constraints, i.e., one that has the smallest 
solution space, and achieving it before other subgoals. 
The idea is that since all subgoals must be accomplished 
to achieve the overall goal, the one with most constraints 
must be addressed first, even at the expense of consuming 
some resources of potential use by other subgoals. In 
GM-Plan, this MC policy will be applied to the gate se- 
lection and net selection phases. 

The second one, LI, is the policy of choosing a solution 
among many feasible ones to the subgoal so as to have 
the last impact on the remaining subgoals. The rationale 
is to preserve as much flexibility or as many resources as 
possible for achieving future subgoals. In GM-Plan, the 
LI policy is applied during the gate assignment and net 
routing phases. 

IV. GM-PLAN: THE DESIGN PROCESS MODEL 
Based on the above two planning techniques, the design 

process model of GM-Plan can now be presented. In 
GM-Plan, the two subproblems (gate placement and net 
routing), which constitute a subgoal, are solved for each 
gate and corresponding nets iteratively. At the beginning 

’Premature commitment of scarce resources to certain subgoals should 
be avoided because it may cause other subgoals to take unnecessary detours 
and render the overall solution suboptimal. 



840 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN. V O L .  Y. NO. 8. AUGUST I Y Y O  

of each iteration, a gate is selected from the set of un- 
placed gates and placed according to the MC and LI pol- 
icies. After a gate is placed, these two policies will be 
applied again to choose a subset of nets connecting the 
current gate and to route them on available tracks. This 
concludes a single iteration. The routing of the remaining 
nets, which connect to the current gate, but are not routed 
in the current iteration, will be deferred until a later de- 
ferred routing phase or the final wrap-up routing phase. 

A distinctive feature of GM-Plan is to route some nets 
to tracks before all the gates are placed. A main advantage 
of this approach is that the net routing information can be 
fed back as constraints to later iterations so that more sen- 
sible decisions (gate selection and slot assignment) can be 
made. Moreover, in many occasions, there is only one 
unique solution available (e.g., only one track available 
to route a net). Hence, routing that net immediately after 
the current gate is placed does not constitute a premature 
commitment of resources (tracks), and should not affect 
the optimality of the overall solution. For example, in 
GM-Plan, the first gate to be placed, called the seed gate, 
is the gate having the maximum number of nets in  its GN 
set. After this seed gate is placed, all the nets connecting 
to it will be routed immediately to tracks as this action 
will not affect the optimality of the solution. 

Conventional gate matrix layout algorithms defer the 
routing of nets until all gates are placed. Owing to the 
lack of routing information, the gate placement decisions 
are made largely independent of the requirements of net 
routing. On the other end, if we route every net connect- 
ing to the current gate right after it is placed, we may end 
up with suboptimal solutions due to premature commit- 
ment.4 In GM-Plan, compromises are sought by i) routing 
only a portion of nets immediately after the gate is placed, 
and ii) deferring further actions on the remaining nets un- 
til two later stages (the deferred routing phase, and the 
wrap-up routing phase), where more information will be 
available to facilitate a better decision. 

In the rest of this section, the implementation details of 
the gate placement process, and the net routing process 
will be discussed. 

4.1. The Gate Placement Process 
Gate placement in GM-Plan is implemented in two 

steps: gate selection (selecting a gate), a slot assignment 
(choosing a slot). In each interation, the following steps 
will be applied. 

4.1.1 Gate Selection: The task here is to decide which, 
among all the yet-to-be placed gates, should be selected 
and placed next. The MC policy is used to choose a gate 
presently with the most constraints to be placed. In 
GM-Plan, the MC gate is interpreted as the gate that has 
the most relevance (connections) to the PLGS. The de- 
gree of relevance (criticality) is expressed with the con- 
nectivity-based distance measure defined earlier in Sec- 

‘In fact. this corresponds to the exercise of the so called greedy hrurisrit 
~ 4 1 .  

tion 111-3.1. Whenever a tie is encountered, more domain 
specific heuristic rules, based on the same MC policy, 
will be used to break the tie. These gate selection rules, 
arranged in the order of their priorities, are listed below. 

a) Select the gate g such that the intersection between 
its GN set N (  g )  and the set of nets corresponding to the 
PLGS set, N (  PLGS), has the maximum number of nets. 

b) If there is more than one such gate or no such gate, 
select the gate that is of distance one to the seed gate. 

c) If there is more than one such gate or no such gate, 
select the gate that has a maximum number of nets per 
gate. This is also the rule used for selecting the seed gate 
at beginning as the first gate to be placed. 

d) If there is more than one such gate, arbitrarily select 
one. 

4.1.2. Slot Assignment: Once a gate is selected, it will 
be placed into a slot. In GM-Plan, slots are dynamically 
defined as the interval between each pair of adjacent 
placed gates, including the two ends of the array of placed 
gates. The total number of possible slots at present itera- 
tion, is the total number of the currently placed-gates plus 
one. 

The LI domain independent search control policy, 
which governs the slot assignment process, is accom- 
plished using heuristic research. To avoid an exhaustive 
search for every slot, those slots whose neighboring gates 
having no direct connection to the current gate will be 
excluded from the candidate list. 

The heuristic search is accomplished by evaluating a 
cost function f for each of the remaining slots. This cost 
function consists of a linear combination of four terms: 

Gate selection procedure: 

f = hO (connection cost of fixed nets) 

+ h 1 (expansion cost of fixed nets) 

+ h2 (connection cost of floating nets) 

+ h3 (expansion cost o f  floating nets). 

Here the fixed nets are nets which have already been 
routed to a track; and thejoating nets are those yet to be 
routed. The connecting cost is an estimate of the increase 
in  track area usage due to the connection of nets to the 
current gate should it be placed into that slot. The expan- 
sion cost is an estimate of the increase in track area usage 
due to the expansion (stretching) of nets trespassing that 
slot. 

Four possible scenarios are illustrated in Fig. 6 where 
g is the current gate to be placed in a slot between g l  and 
gr. Nets n l  and n2 are both fixed nets connecting to the 
current gate and contribute to the cost of hO. In the case 
of n 1, as it extends to both sides of the current gate, only 
1 unit of cost is assigned. In the case of n 2 ,  as it extends 
to only one side of the current gate, the physical length 
(number of slots it covers) will be used as an estimate of 
its cost. Nets n 3  and n 4  are examples of h 1 type cost, n5 ,  
n6 are examples of h2 type cost, and n7,  n 8  are examples 
of h3 type cost. In GM-Plan, each net of h 1 type is as- 
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x -  
. =  

fixed net connection 
floating net connection 

Fig. 6 .  The Heuristic cost functions 

signed with 1 unit of cost. As for floating nets of both the 
h2 and h3 types, only 1 / 2  unit of cost will be assigned 
to each of them. For example, in Fig. 6, hO = 1 + 2 = 
3 ,  h l  = 2, h2 = 2 ( 0 . 5 )  = 1, and h3 = 2 ( 0 . 5 )  = 1.  
Hence, the total cost is 

f =  3 + 2 + 1 + 1 = 7. 

Since the value of this cost functionfis a rough esti- 
mate of the increase in track area usage when the current 
gate is placed to the particular slot. According to the LI 
policy, one should choose the slot which minimizes the 
value of f .  The detailed slot assignment procedures are 
now summarized below. 

Slot assignment procedure: 
a) Choose the slot that, when the selected gate is 

placed, no additional tracks will be added immediately. 
b) If more than one slot satisfies a ) ,  go to c); otherwise 

if no such slot exists, (i.e.,  some tracks have to be added 
no matter what slot is assigned), choose the slot that min- 
imizes the number of tracks to be added. 

c) If more than one slot satisfies a) or b), choose the 
slot that minimizes the heuristic cost function f .  

d) If more than one slot satisfies c), choose the one that 
is the closest to one of the two ends of the gate matrix 
layout. 

e) If there is still more than one such slot, arbitrarily 
choose one. 

4.2.  The Net Routing Process 
After a gate is placed, the next step is to route the nets 

connecting to that gate by assigning them to unoccupied 
tracks. As mentioned above, in GM-Plan, nets are distin- 
guished into “fixed nets” and “floating nets.” First, the 
fixed nets, having been assigned to specific tracks in ear- 
lier iterations, present constraints which must be satisfied. 
Hence, tracks on the currently selected slot must be as- 
signed to fixed nets that are either connected to the current 
gate, or simply trespassing it. Moreover, a track may be 
reserved by a neighboring hanging fixed net which still 
has more gates, not yet in the PLGS, to be connected. 
These constraints could significantly reduce the number 
of tracks needed to be examined, and therefore, enhance 
the search efficiency of the algorithm. 

As for the floating nets, they will be converted into fixed 
nets and routed to tracks immediately if the following 
unique-route criteria, mentioned earlier, is met. 

Convert a floating net to a fixed net if i) it connects to 
two or more gates in the PLGS, and ii) there is only one 
unique track (among the existing vacant tracks) which can 
route it. 

In GM-Plan, the routing of the remaining floating nets 
will be accomplished later in the deferred routing phase, 
or the final wrap-up routing phase. Deferred routing is 
performed after all the distance- 1 neighboring gates to the 
seed gates are placed. Since all the NNG gates of the seed 
gate are usually tightly coupled, postponing routing the 
remaining floating nets after all these gates are placed will 
enable us to pay more attention to the interactions among 
these subgoals. The net selection and routing procedures 
during the deferred routing phase are also implemented 
with domain specific heuristics based on the MC and LI 
policies. 

4.2.  I .  Net Selection: Since not every net will be routed 
during the deferred routing phase, the MC policy is ap- 
plied to first identify the subset of the floating nets to be 
converted into fixed nets, and next help ordering the nets 
in this subset. In order to identify this subset of nets, we 
have the following two heuristic rules. 

1)  Net selection procedure 
a) Select a floating net into the to-be-converted subset 

of nets if it only connects to two gates. 
b) Select a floating net into the to-be-converted subset 

of nets if it connects to two or more gates in the placed 
gate set PLGS, and it can be routed to an unreserved tracks 
without adding new tracks. 

After these subsets of nets are identified, its individual 
members will be routed to tracks one by one according to 
a prioritized order determined by the heuristics below. 

2)  Net selection procedure 
a) Select the net that has the largest number of gates in 

its NG set. 
b) If more than one net satisfies a), select the net that 

has the largest number of gates in the intersection between 
its NG set and the PLGS. 

c) If there is more than one such net, arbitrarily select 
one. 

4.2.2.  Track Assignment: To route the selected subset 
of nets to tracks, first, constraints are used to eliminate 
tracks which have already taken by fixed nets from the 
candidate list. Tracks which are “reserved” by a hanging 
fixed net shall also be avoided when possible. New tracks 
will be added only if the number of available tracks is less 
than that of the unrouted nets. The heuristic rules for this 
purpose are the following. 

Track assignment procedure : 
a) Choose the track whose vacant track area best fits 

b) If more than one such track exists, choose the track 
the net to be routed. 

on which fewer nets may be routed. 
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c) If more than one such track exits, arbitrarily choose 
one. 

4.3. The Deferred Routing and the Wrap-up Routing 
Phases 

As explained earlier, the purpose of deferred routing 
and wrap-up routing is to route those floating nets which 
have not been converted into fixed nets during previous 
iterations. The difference between these two phases is that 
in the deferred routing phase, only high priority subgoals, 
selected using the net selection procedure (1) will be 
routed. While in the wrap-up routing phase, which is car- 
ried out after all the gates are placed, every unrouted net 
has to be routed, with the procedure outlined in net selec- 
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Algorithm GM-Plan ( ): 

0. Prepare-Table (NG, GN); 

1 .  Unique-pl&route ( )  
2. { select-seed (sg); 
3. unique-place (sg); 
4. unique-route ( N ( s g ) ) ;  
5.  PLGS = { s g } ;  

7. Form-NNG ( )  

6. 1 

8.  { NNG = G(N(sg))\{ -sg} ; }  

9. CRGS = N N G ;  

10. Layout ( )  
11. 
12. 
13. 
14. 

15. 
16. 
17. 
18. 

19. 
20. 
21. 
22. 
23. 
24. 

{ While (CRGS! =NULL) repeat 
{ Place-gate ( )  

{select( g, CRGS) with MC policies; 
place ( g ,  slot) with LI policies; 

1 
Route-net ( N (  8)) 

{select ( n ,  N (  g)) with MC policies; 
if (routable) route ( n ,  track) with LI 
policies; 
1 

if (end of NNG) deferred-routing ( N (  sg)); 
PLGS = PLGS U { g};  
CRGS = {CRGS U G(N(g)} \PLGS;  

1 

25. Wrap-up-Route (all-nets) 

decisions until the wrap-up routing phase since the gate 
assignment process will not be benefit from the availabil- 
ity of the net routing information. On the other hand, we 
want to withhold making premature decisions. The com- 
promise made in GM-Plan-to perform deferred routing 
once after all NNG gates of the seed gate are placed- 
seems to be working satisfactorily for the set of test cir- 
cuits. Clearly, for problems with many tightly couple gate 
clusters, more than one deferred routing may be needed. 
The criteria for determining the frequency and timing to 
perform deferred routing is still an open research ques- 
tion. 

We are now ready to present the complete GM-Plan 
algorithm. 

The GM-Plan Algorithm 

/*  Prepare NG, GN tables.*/ 

/*Select a seed gate from the given GN table; and assign 
it to a slot. Route each net of the seed gate to a 
track.*/ 

/*Identify placed Gate-Set * I  

/*Select the nearest-neighbor group gates of the seed 

/*Nearest-Neighbor-Group. The notation ‘‘ \” is the set 

/*Current Gate-Set * / 

gate from the set of unplaced gates */ 

difference operator */ 

/*The gate selection procedure will be applied to select 
a gate to be placed next. Then, the slot assignment 
procedure will be applied to place this selected gate 
into an available slot. */ 

/*The fixed nets will be routed first. The net selection 
procedures and the net routing procedures will be 
applied also to route part of the floating nets */ 

/*  Adding g to the placed gate set */ 
/*  Update current gate set CRGS *I  
/* End of While loop */ 

tion (2) and track assignment above, in order to complete 
the gate matrix layout. 

The timing for deferred routing is a delicate issue. On 
one hand. we do not want to D u t  off making any routine 

4.4.  An Example 

Now, an example ( w 1 ) from [9] will be given to dem- 
onstrate the gate matrix layout procedures of GM-Plan. 

V I  d 
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The original input NG table contains 21 gates, and 18 
nets: 

Net 1 Gates 

n l I I  2 3  n 1 0  1 3  I I  12 
112134 nll 1 I I  14 
n 3 / 5  6 1112 1 I I  16 
n415 6 7 n13 I 14 15 
11517 8 1114 I 16 17 
n6189 1115 I 13 19 
n 7 1 7 8 9  . n16 1 13 18 
n8 14 8 I O  12 n17 1 19 20 
n9 13 I I  13 n18 I 18 21 

Net I Gates 

It can be found that the seed gate is gate #3 (sg = 3 ). 
The associated gate set is N (  3 )  = { n 1, n2, n9, n 10 }. 
Hence, the NNG gates are derived as: 

NNG = G ( N ( 3 ) ) \ ( 3 )  = { G ( n l )  U G(n2) 

U G(n9)  U G(nlO)]  \ ( 3 )  

= { (  1, 2, 3 , )  U ( 3 ,  43 U ( 3 ,  11, 1 3 )  

U ( 3 ,  11, 12}} \ ( 3 )  

= { 1, 2, 4, 11, 12, 1 3 ) .  

Some snapshots taken during the gate matrix layout 
process are presented in Fig. 7. In Fig. 7(a), the place- 
ment and routing of the first seed gate is shown. In Fig. 
7(b), a second gate #11 is brought into the picture, and 
nets n 9  and n10 are assigned to tracks and connected. 
However, nets n 11 and n 12 are not placed now due to 
lack of sufficient information. In Fig. 7(c), all the NNG 
gates of the seed gate are placed and the deferred routing 
performed. Note that as a result of deferred routing, nets 
n l l ,  n12, of gate 11, and n15 of gate 13 are now routed 
to tracks becoming fixed nets. They are assigned to dif- 
ferent tracks to avoid potential conflict. In Fig. 7(d) and 
(e), the snapshots before and after the final wrap-up rout- 
ing are depicted. Since the final number of track used 
( = 4 )  is equal to the lower bound (maximum number of 
nets connecting to the seed gate #3),  it is an optimal so- 
lution. 

The snapshots before wrap-up routing and afrer wrap- 
up routing illustrate the distinctive feature of GM-Plan: 
higher priorities are set for more critical tasks, such as 
gates with more net connections, and nets with more gate 
connections. Less demanding tasks then can be completed 
later without affecting the overall quality of the gate ma- 
trix layout. 

V. COMPLEXITY ANALYSIS, SIMULATION RESULTS, 
A N D  IMPLEMENTATION ISSUES 

Two criteria are used in this paper to compare GM-Plan 
with other gate matrix layout algorithms. First, a theoret- 
ical complexity analysis is conducted to show that 
GM-Plan is a polynomial time algorithm. Next, the per- 
formance of GM-Plan is compared with the best known 
results by using a set of benchmark problems. 

3 3 11 4 12 2 1 3 11 13 

1 1 8-8 1-1-1 11 
2 2 2 2 12 
9 9-9 9-9-9 

10 10-10 10- 10-10 15 

-_ - 

- - 

9 5 6 7 8 10 4 12 2 1 3 11 16 17 14 15 13 19 20 21 18 

8-8-8-8 1-1-1 11- 11 
2- 2 12-12 

9-9 9 17-17 18-18 
10- 10-1 0 15-1 5 

(d) 

9 5 6 7 8 10 4 12 2 1 3 11 16  17 14 15 13 19 20 21 18 

4-4-4 8-8-8-8 1-1-1 11- 11 16- 1 6  
1- 7-7 2- 2 12-12 13-13 
6---6 9-9 9 17-17 18-18 

3-3 5-5 10- 10-10 14-14 15-1 5 

(e) 

Fig. 7. Snapshots of the GM-Plan design example 

5.1. Complexity Analysis 
Let us adopt the following set of notations: n = the 

number of gates, m = the number of nets, a = the max 
number of gates per net, /3 = the max number of nets per 
gate, and t,, = the number of tracks used for the gate ma- 
trix layout. Clearly, it must be n L a and rn L t ,  1 p.  
Now, by referring to the GM-Plan algorithm, one has the 
following operation counts. 

The procedure “select-seed,” (line 2), which selects a 
seed-gate from the GN table, takes O ( n )  time. The pro- 
cedures, “unique-place” (line 3) and “unique-route” 
(line 4) both take only constant time. The NNG (line 8) 
can be formed in O(a* /3 )  time. The “Gate Selection” 
procedure (line 13) requires O ( n * m )  time units. This is 
because the intersection of N (  g )  and N (  PLGS) will need 
O ( m )  time units, while there are at most n gates to be 
evaluated. The “Slot Assignment” procedure (line 14) 
also needs O ( n * t )  time, where each gate may connect to 
O(t , , )  nets, and at most O ( n )  slots to be evaluated. The 
“Net Selection” procedure (line 17) needs at most O (  0) 
time. Also, the “Track Assignment” procedure (line 18) 
searches t,, tracks, and hence, needs O(t , , )  time to route 
a current net. There is also a hidden cost of O(n*t,,) in 
order to check the range of a routed net. The time spent 
on updating existing floating nets and perhaps converting 
some of them into fixed net is also O ( p ) .  The “wrap- 
up-route” procedure (line 25) needs O (  n*t,,) time. The 
same is also needed for the procedure “deferred-routing” 
in line 20. 

To summarize, the maximum time required is O ( n * m )  
and the iteration count is O (  n ) .  Thus the overall time 
complexity of GM-Plan is O (  n 2 m ) .  As to the space com- 
plexity, we use two double-linked lists (taking O ( n )  
memory space) to store the placed gates and available 
slots, respectively, and a single-linked list (taking O (  t,,) 
space) to store the routing track information. In total, the 
memory space taken is of O(n*t , , ) .  
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The above numbers may be compared with the com- 
putation complexities of several existing gate matrix lay- 
out algorithms. The results are conveniently summarized 
in Table 1. For the purpose of comparison, various nota- 
tions are converted (with our best efforts) to equivalent 
notations used in this paper. However, a conclusion in 
terms of efficiencies of various algorithms cannot be 
drawn from this table due to different problem formula- 
tions and the lack of implementation details. 

5.2. Benchmark Examples 
The GM-Plan algorithm has been implemented in C 

programming language on a VAX 11/750 computer run- 
ning UNIX (version 4.3 BSD). It accepts an NG table as 
input and generates a character-based symbolic gate ma- 
trix layout. Sixteen benchmark circuits were tested, the 
results are listed in Table 11. The first four examples are 
from Heinbuch’s book [25]: “ ~ 4 0 0 0 ”  is a 4 x 1 mux, 
“ ~ 4 0 5 0 ”  a 2 x 4 decoder, “ ~ 4 0 9 0 ”  a 3 x 8 decoder, 
and “ ~ 4 4 7 0 ”  a 4-b comparator. There are another four 
examples from Wing and Huang [27]: “w2” is ITT1, 
“w3” is a 4-b ALU, “w4” is ITT2, and “wan” a full- 
adder. The remaining examples are collected from the 
published literatures and their sources are given in column 
2. The third, fourth, and the fifth column give the sizes 
of the problem. The column titled “known solutions” 
contains the track numbers of each example reported in 
the corresponding references. The solutions obtained 
using GM-Plan are listed in the column under the title 
“GM-Plan Solution.” Those entries in this column fol- 
lowed by a “*” indicate that they are the minimum track 
numbers (optimal solutions). The CPU time in the last 
column is the time GM-Plan takes to run in the VAX 750 
for corresponding examples. 

Note that both the optimal track numbers of “vw2” 
and “wsn” in Table I1 use more tracks than their corre- 
sponding lower bounds. This is due to the existence of 
direct or indirect cycles in these circuits. The optimality 
of the 5-track solution of “vw2” is verified by hand, and 
the 8-track solution of “wsn” is proved to be optimal by 
Yu [21, p. 571 as it is the size of the “bottleneck hyper- 
cycle” in that circuit. 

Of the last 12 examples in Table 11, optimal solutions 
are reached in seven of them. The GM-Plan solution of 
“w3” is 21-tracks, better than the known 23-track solu- 
tion obtained from Wing [27]. The solutions of the other 
six examples ( “ v l , ”  “vwl ,”  “vw2,” “wl ,”  “wan,” 
and ‘‘wsn”) are equal to the known ones. Three examples 
(“w4,”  ‘‘wli,” and “ v c l ” )  produce slightly inferior so- 
lutions (larger-track numbers). 

5.3. Implementation Issues 
The planning methods employed in GM-Plan is very 

general in that various design constraints may be added 
without the need to reformulate the entire algorithm. For 
example, in certain gate matrix layout problems, some 
gates must be located at fixed locations (boundary con- 
straint). In GM-Plan, this constraint can easily be incor- 

TABLE 1 

ALGORITHMS 
COMPARISON OF COMPUTATION COMPLEXITIES OF GATE M A T R I X  LAYOUT 

Authors Ref. T i m  compluiry Ow Nornrion Nore 

* There i s  noqwalent notanon fa R in our lxwnons H m  C is some number having 
the same orda d magnindc as h a t  of n 

TABLE I1  
GATE MATRIX LAYOUT WITH GM-PLAN 

#of Lower Known G M - P h  CPUtime 
N m  Ref. :+% Gores Bound Solution Solution Vox750 

porated in the slot assignment procedure by fixing those 
gates at the beginning. As another example, if transistor 
sizing is considered, a large transistor may be regarded as 
a parallel connection of several standard transistors which 
have to be laid out on adjacent tracks. These implemen- 
tation details can be incorporated in the GM-Plan without 
difficulty. 

VI. CONCLUSION 
In this paper, we have presented a polynomial time al- 

gorithm GM-Plan for the gate matrix layout of CMOS 
digital circuits. Using both hierarchical subgoal organi- 
zation and two domain independent search control poli- 
cies, this new method is designed to be more sensitive to 
the interaction among subgoals. Testing results from 
benchmark examples have been very encouraging. Fur- 
ther research is underway aiming at the following direc- 
tions. 1) The implementation of an efficient backtracking 
facility to further reduce the chances of making premature 
commitment during the problem solving process. 2) The 
use of iterative learning techniques to further improve the 
quality of the output. 
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