
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 16, NO. 8, AUGUST 1997 793

A Region-Based Theory for State
Assignment in Speed-Independent Circuits

Jordi Cortadella,Member, IEEE, Michael Kishinevsky,Senior Member, IEEE,
Alex Kondratyev,Senior Member, IEEE, Luciano Lavagno,Member, IEEE, and Alexandre Yakovlev

Abstract—State assignment problems still need satisfactory
solutions to make asynchronous circuit synthesis more practical.
A well-known example of such a problem is that of complete state
coding (CSC), which happens when a pair of different states in
a specification has the same binary encoding. A standard way to
approach state coding conflicts is to insert new state signals into
the original specification in such a way that the original behavior
remains intact.

This paper proposes a method which improves over existing
approaches by couplinggenerality, optimality, and efficiency. The
method is based on the use of a class of “ground objects,”
called regions, that play the role of a bridge between state-
based specifications (transition systems, TS’s) and event-based
specifications (signal transition graphs, STG’s). We need to deal
with both types of specification because designers usually prefer
a timing diagram-like notation, such as STG, while optimization
and cost analysis work better at the state level.

A region in a transition system is a set of states that corresponds
to a place in an STG (or the underlying Petri net). Regions
are tightly connected with a set of properties that are to be
preserved across the state encoding process, namely, 1) trace
equivalence between the original and the encoded specification,
and 2) implementability as a speed-independent circuit. We will
build on a theoretical body of work that has shown the signif-
icance of regions for such property-preserving transformations,
and describe a set of algorithms aimed at efficiently solving the
encoding problem.

The algorithms have been implemented in a software tool called
petrify . Unlike many existing tools,petrify represents the
encoded specification as an STG. This significantly improves the
readability of the result (compared to a state-based description in
which concurrency is represented implicitly by interleaving), and
allows the designer to be more closely involved in the synthesis
process. The efficiency of the method is demonstrated on a
number of “difficult” examples.

I. INTRODUCTION

I N the last decade, signal transition graphs (STG’s) [5], [14],
[16], [22], [31], [32], [36], [42], [41] have attracted much

of the attention of the asynchronous circuit design community
due to their inherent ability to capture the main paradigms

Manuscript received August 30, 1996; revised July 29, 1997. This work
was supported in part by CICYT Grant TIC95-0419, EPSRC under Visiting
Fellowship Grants GR/J72486, GR/J78334, GR/L24038, and Research Grant
GR/J52327, and MURST Project “VLSI Architectures.” This paper was
recommended by Associate Editor A. Saldanha.

J. Cortadella is with the Universitat Politècnica de Catalunya, Barcelona
08071, Spain.

M. Kishinevsky and A. Kondratyev are with the University of Aizu,
Fukushima 965-80, Japan.

L. Lavagno is with the Dipartimento di Elettronica, Politecnico di Torino,
10129 Torino, Italy.

A. Yakovlev is with the University of Newcastle upon Tyne, Newcastle
upon Tyne, U.K.

Publisher Item Identifier S 0278-0070(97)08473-X.

of asynchronous behavior: causality, concurrency, and data-
dependent and nondeterministic choice. STG’s are Petri nets
[25] whose events are interpreted with signal transitions of a
modeled circuit. Unlike other models, e.g., based on explicit
state graph representation, STG’s can specify circuit behavior
in a compact form by defininglocal causality relations between
signal transitions. The relations are represented by theplaces
of the Petri net underlying the STG. These places also provide
the abstract means of storage of a partial state of the model.
The STG model, exactly like “classical” flow table models,
although being formally consistent and correct [5], [6], [31],
may be incomplete in that it may require some state signals
to be added to those initially specified by the designer to
ensure implementability. The complete state coding (CSC)
problem is thus a fundamental problem in the synthesis of
speed-independent control circuits from STG’s or from state
graphs (SG’s) [6]. It is informally defined as follows. An STG
satisfies the CSC property if every pair of different states which
are assigned the same binary code enables exactly the same
set of noninput signals. This condition is crucial for deriving
logical functions for noninput signals, so that for each such
signal, its implied (i.e., new) value in every reachable state
is uniquelydetermined by the binary code (in terms of STG
signal values) of the state.

The states which violate the above condition are said to
be in CSCconflict. To resolve CSC conflicts, the synthesis
procedure must insert one or more new signals into the STG
(or SG) specification. The value of these new signals have
to be different in all pairs of states involved in a CSC
conflict. State signal insertion must usually satisfy a set of
important requirements: 1) preserving behavioral equivalence
of the specifications and 2) guaranteeing that both the new and
the original noninput signals are implemented without hazards
(preserving speed independence). Requirement 1) refers to
the language generated by the STG. Requirement 2) implies
that the implementability conditions (determinism, commuta-
tivity, persistency, deadlock freedom, and consistency) must
be preserved in the transformed specification.

A. Related Work

A number of methods for solving the CSC problem are
known to date [14], [16]–[18], [21]–[23], [28], [34]–[36],
[38], [39], [41]. Reported experimental results and our own
experience with the tools available for solving CSC assured
us that none of the published methods appears to be successful
when applied to general SG’s or STG’s with more than a few
thousand states.

0278–0070/97$10.00 1997 IEEE

794 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 16, NO. 8, AUGUST 1997

Methods from [21], [23], [28], [34], [36], [39] work at
the STG level without doing state traversal. They avoid
state explosion, and therefore can process large specifications
if some additional constraints on an STG are given. Such
constraints (e.g., freedom from choice, exactly one rising
and falling transition for each signal, etc.) severely limit the
design space, and do not produce solutions for many practical
specifications. Reference [22] solves the CSC problem by
mapping an initial SG into a flow table, and then using classical
flow table minimization and state assignment methods. This
method is restricted to live and safe free-choice STG’s, and
cannot process large SG’s due to limitations of the classical
state assignment methods.

In [35] and [38] a very general framework for state as-
signment is presented. The CSC problem is formulated as a
search for a state variable assignment on the state graph. The
correctness conditions for such an assignment are formulated
as a set of Boolean constraints. The solution can be found using
a Boolean satisfiability solver. Unfortunately, this approach
allows handling only relatively small specifications (hundreds
of states) because the computational complexity of this method
is double exponential in the number of signals in the SG.
Although [14] presented a method to improve effectiveness
by means of preliminary decomposition of the satisfiability
problem, decomposition may produce suboptimal solutions
due to the loss of information incurred during the partitioning
process. Moreover, the net contraction procedure used to
decompose the problem has never been formally defined for
nonfree-choice STG’s.

In [16]–[18], another method based on state signals in-
sertion at the SG level was given. Here, first of all, the
excitation regionsare found in the SG. These are sets of
states which correspond to transitions of STG. Then the graph
of CSC conflicts between excitation regions is constructed
and colored with binary encoded colors. Each bit of this
code corresponds to a new state signal. After that, new
state signals are inserted into the SG using the excitation
regions of the original or previously inserted signals. The main
drawback of this approach was its limitation to STG’s without
choices.

The method described in detail in [40] and [41] is probably
the most efficient and general of those published so far. It is
based on partitioning the state space into blocks which contain
no internal CSC conflicts. This method is essentially based on
the concept of anexcitation regionfor a signal transition (a
set of states in which a signal is enabled to change its value)
developed in [16]. Similarly to [16], a coloring procedure is
used to find the optimal number of state signals to resolve all of
the CSC conflicts between blocks of partitioning. Each of these
state signals can be inserted using excitation regions or states
that immediately follow excitation regions (switching regions).
References [40] and [41] improve in terms of execution time
over the previous methods that claimed broader generality
(e.g., [37]) by adopting acoarser granularityin the exploration
of the solution space. This coarser granularity has a price,
though: as we will show in Section X, there are examples
of STG’s which cannot be solved by their method (nor by the
previous ones, mainly due to the large number of states), unless

changes in the specification (e.g., reductions in concurrency)
are allowed.

B. Contribution of This Paper

This paper provides a general theoretical framework for
insertion-based resolution of coding conflicts first outlined in
[8] and [9]. The transformations described here are applied to
abstract SG’s, called transition systems (TS’s), and to binary
encoded SG’s. This framework is aimed at being independent
of the sort of conflicts between states to be resolved; therefore,
its application to CSC conflicts is only a special case. Another
application of the method may be, e.g., solving monotonous
cover conflicts [2], [20], for technology mapping of speed-
independent circuits.

It is essential that the theory presented in this paper is based
on the concept ofregions in a TS. It renders an efficient
framework for such transformations due to the following two
major reasons. First, regions are subsets of states which have
a uniform “crossing” (exit–entry) relationship with events in
a TS. They can be easily manipulated in intersections and
unions, thus providing a good level of granularity in sectioning
the TS (for example, the excitation and switching regions are
obtained as intersection of pre- and postregions for the same
transition). Second, regions in a TS directly correspond to
places in an STG with a reachability graph bisimilar to the
TS. This allows us to reconstruct an STG for the TS with
all CSC conflicts resolved—an option much more suitable for
the designer than viewing the TS. The concept of regions was
presented in [26], and further applied to efficient generation of
Petri nets and signal transition graphs from state-based models
[10].

The practical implementation of our method uses symbolic
BDD representation of the main objects in the insertion
procedure, as described in [29]. It has enabled us to solve
CSC problem for state graphs with hundreds of thousands
of states, while the quality of the solutions obtained for
smaller state graphs has been quite comparable to other known
methods.

The following features differentiate our method from pre-
vious work.

• Our technique for state signal insertion is more general,
and allows us to explore more solutions than that of [40]
and [41]. It uses regions, their intersections, and unions of
intersections for insertion, while the method of [40] and
[41] is based on excitation regions and switching regions,
which are only particular cases of region intersections.

• The idea of a speed-independence preserving set (SIP
set), by which state signals can be inserted without
violation of speed-independence properties, is generalized
in comparison to [38], as will be shown in detail when
discussing Theorem 4.1.

• Our method is proven to be complete for a fairly general
class of SG’s, thanks to the possibility of iterating the in-
sertion of signals while reducing a measure of “distance”
from the satisfaction of CSC. This iteration is shown to
converge in Section VII.

• An additional advantage of the theory presented in this
paper is back-annotation at the STG level. The result

CORTADELLA et al.: REGION-BASED THEORY FOR STATE ASSIGNMENT 795

Fig. 1. Use ofpetrify in solving state coding problems by means of signal insertion.

of CSC resolution is shown to the user as a modified
STG, so that the impact of state signal insertion on the
specification can be more easily analyzed.

From the practical side, we observed that, although the
tool assassin [42], which implements methods from [36],
[38] and [41], often allows better solutions than other pre-
viously known tools, it has difficulties in handling large
specifications. For example, amaster-readSTG with 8932
states ran for more than 24 h of CPU time on a SPARC-
10 machine without having solved CSC. Our toolpetrify
solved this example in 15 min of CPU time. We also solved
examples with states in a few hours of CPU time. It is
worth mentioning that the region-based approach helpspet-
rify in handling examples that were traditionally difficult
for CSC solution by any other tool (see Section X for more
details). The overall context of this approach is captured in
Fig. 1.

Although our main focus is on speed-independent circuits,
we believe that our results can be extended to other styles
of asynchronous circuit design. In particular, quasi-delay-
insensitive circuit design [4] can benefit from our techniques
since an SG-like intermediate representation also can be de-
rived in that case.

On the other hand, synthesis methods for burst mode
FSM’s [27], [43] use timing assumptions (also known as
fundamental modeoperation) to ensure absence of hazards in
the implemented circuit. In that case, an immediate extension
of our results is not possible since we rely on explicit acknowl-
edgment of transitions to ensure absence of hazards, and this
is explicitly part of our notion of valid state signal transition
insertion. However, since BMFSM’s can be translated into
STG’s and implemented as speed-independent circuits, we
can also handle those specifications and synthesize them. The
result is probably less efficient than with the methods in [27],
[43] (since we do not exploit timing assumptions), but is
somewhat safer and more technology-independent. We are
currently working toward an explicit incorporation of timing
assumptions at the SG level in order to increase the level of
optimization at the expense of robustness.

The paper is further organized as follows. Section II in-
troduces both state-based and event-based models. Section III
presents the basics of the theory of regions. Section IV is
dedicated to property-preserving event insertion, which uses
the notion of speed-independence-preserving sets (SIP sets) of
states. Section V discusses the issue of selection of SIP sets,
based on regions. The methods of state graph transformation to
ensure CSC are presented in Section VI, and the completeness
of the methods is shown in Section VII. Sections VIII and IX
describe implementation aspects. Experiments (in comparison
with other tools) are discussed in Section X. The conclusions
are drawn in Section XI.

II. STATE AND EVENT MODELS

A. Transition Systems

A transition system(TS) might be viewed as an abstract
state graph, and is formally defined as a quadruple [26]

, where is a finite nonemptyset ofstates,
is a set ofevents, is a transition relation,

and is an initial state. The elements of are called the
transitionsof TS and will be often denoted by instead of

. The initial state will often be omitted in the following
if it is not important.

The reachability relation between states is the transitive
closure of the transition relation . A feasible sequenceis
a (possibly empty) sequence of transitionsbetween states
and (denoted by or simply by .) A feasible trace
is obtained from a feasible sequence by removing states. If

is a feasible sequence, then
is the corresponding feasible trace. We also write, ,
and , if or , correspondingly. Note that
each state is reachable from itself. A state of a TS is called a
deadlockif there is no event such that .

Furthermore, a TS must satisfy the following three basic
axioms:

A1) no self-loops;
A2) every event has an occurrence;
A3) every state is reachable from the initial state.

796 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 16, NO. 8, AUGUST 1997

(a) (b) (c)

Fig. 2. Example of (a) transition system, (b) corresponding SG, and (c) STG.

A TS is calleddeterministicif, for each state and each
label there can be at most one statesuch that .
Otherwise, a TS is callednondeterministic. In the following,
we are interested only in deterministic TS’s. An example of a
deterministic TS is shown in Fig. 2(a).

B. State Graph

For the purpose of logic synthesis, TS’s must be binary
encoded. Astate graphSG is a binary encoded TS. An
SG is given by , where
is a transition system, is the set of bi-
nary signals, is the set ofinput signals, and is the
set of output signals such that . Note that
the output signals include both external output and internal
signals.

Each state in the SG is labeled with abinary
vector according to the signals

of the system. The labeling is given by a
state assignment function . For a given
state , denotes theth component of corresponding
to the value of signal .

Each event in the SG is labeled with asignal
transition. The labeling is given by anevent assignment
function . Each signal transition can
be represented as or for the rising () or falling
() transition of signal . is used to depict either a
“ ” transition or a “ ” transition. Further, if no confusion
arises, we will denote different signal names by different letters

instead of . Also, stands for
.

An SG has aconsistent state assignment(we call such an
SG consistent) if the following conditions are satisfied for the
assignment functions and every :

1) if , then and ;
2) if , then and ;
3) in all other cases,

Consistent state assignment is a necessary condition for
deriving logic functions for signals encoding a SG. Fig. 2(b)
shows a consistent SG which is obtained by binary encoding
of the TS from Fig. 2(a). After binary encoding, for example,
event is mapped into signal transition and state is
mapped into binary code .

C. Complete State Coding

In order to derive logic expressions for the output signals,
the model’s state assignment must be unambiguous with
respect to those signals. This property is calledcomplete state
coding (CSC).

An SG is said to satisfy the complete state coding require-
ment if, for any two states and which are assigned the
same binary vectors, the sets of enabled output signals are
identical.

Let and be output and and be input signals for the
SG in Fig. 2(b). States and have the same binary code
0110. Output signal is enabled in and is not enabled in ;
therefore, CSC is violated, and we say that statesand are
in CSC conflict. Although states and are also assigned
the same binary code 1111, they are not in CSC conflict since
no output signals are enabled in and .

D. Petri Nets and Signal Transition Graphs

A Petri net is often a more compact model to represent
systems with concurrency than a TS.

A Petri net [30] is a quadruple , where
is a finite set of places, is a finite set of transitions,

is the flow relation, and is the
initial marking. A transition is enabled at marking
if all of its input places are marked. An enabled transition
may fire, producing a new marking with one less token
in each input place and one more token in each output place
(). The sets of input and output places of transition

are denoted by and .

CORTADELLA et al.: REGION-BASED THEORY FOR STATE ASSIGNMENT 797

The reachability graph (RG) of a PN is a graph with
• a vertex for each reachable marking of the PN, and
• an arc if and only if in some firing

sequence of the PN.
A net is calledsafe if no more than one token can appear

in a place. Safe nets are especially widely used in many
applications since they have simple verification algorithms
[12] and simple semantics. Alabeled PN is a PN with a
labeling function which associates every transition
of the net with a symbol (called label) from the alphabet.
A signal transition graph(STG) is a PN whose transitions are
labeled with signal transitions (). Places with one
input and one output transition are called implicit places, and
are depicted as an arc connecting these two transitions. An
STG expressing the same behavior as the SG from Fig. 2(b)
is shown in Fig. 2(c).

III. B ASICS OF THETHEORY OF REGIONS

In this section, we will briefly review the theory of regions
(more detail can be found in [11]), and will show how this
theory allows us to perform transformations between TS’s and
PN’s (hence, between SG’s and STG’s).

A. Regions

Regions are sets of states which correspond to places in Petri
nets. Let be a subset of the states of a TS, . If
and , then we say that transition enters . If

and , then transition exits . Otherwise,
transition does not cross . In particular, if and

, then the transition is said to beinternal to , and if
and , then the transition isexternalto .

A subset of states is a region if, for each event one of
the following conditions holds: all transitions labeled with
(1) exit , or (2) enter , or (3) do not cross .

Let us consider the TS shown in Fig. 2(a). The set of states
is a region since all transitions labeled with

and with exit , and all transitions labeled with and
with enter . On the other hand, is not a region
since transition exits this set, while another transition
also labeled with , , does not.

Let and be regions of a TS. A region is said to be a
subregionof iff . A region is a minimal region iff

is not a subregion of any other region of the TS. A region
is a preregion of event if there is a transition labeled

with which exits . A region is a postregionof event
if there is a transition labeled with which enters . The set
of all preregions and postregions ofis denoted by and

, respectively. By definition, it follows that if , then
all transitions labeled with exit . Similarly, if , then
all transitions labeled with enter . There are two preregions
for event : and . Both of
them are minimal regions since every subset ofor is
not a region.

The following propositions state a few important properties
of regions [3], [10], [26].

Property 3.1:
1) If and are two different regions such that is a

subregion of , then is a region.

2) A set of states is a region if and only if its coset
is a region, where is a set of all states of

the TS.
3) Every region can be represented as a union of disjoint

minimal regions.

B. Excitation Regions

While regions in a TS are related to places in the corre-
sponding PN, an excitation region [16] for eventis the
largest set of states in which transitionis enabled. Therefore,
excitation regions are related to transitions of the PN.

A set of states is called ageneralized excitation region
(an excitation region) for event , denoted by [by

if it is the largest (largest connected) set of states
such that for every state , there is a transition .
The GER for is the union of all ER’s for . In the TS
from Fig. 2(a), there are two excitation regions for event:

and . The corresponding
GER for event is .

C. Deriving Petri Nets from Transition Systems

The procedure to synthesize a PN from a TS is as follows.

• For each event , a transition labeled with is generated
in the PN.

• For each minimal region , a place is generated.
• Place contain a token in the initial marking iff

• The flow relation is constructed as follows: iff
is a preregion of and iff is a postregion of

Fig. 2(c) shows an STG derived for the SG of Fig. 2(b)
followed this procedure. In particular, region is mapped
into place of the STG. As proved in [11], this procedure
always produces a safe PN with an RGbisimilar to the initial
TS if the following two conditions are satisfied.

• Excitation closure: For each event

• Event effectiveness:For each event
Bisimulation between two TS’s corresponds to the equiva-

lence of state transition graphs, which is traditionally used in
automata minimization, and is formally defined as follows.

Definition 3.1 (Bisimulation [1]): Let
and be two TS’s with the same

set of events. A bisimulation between and is a binary
relation between and such that

ia) for every , there exists such that ;
ib) for every , there exists such that

;
iia) for every and for every

such that , there exists such that
;

iib) for every and for every
such that , there exists such that

.

Intuitively, conditions ia) and iia) define a simulation of
by . Two TS’s are said to bebisimilar if they can

simulate each other, i.e., there exists a bisimulation between
them. The relation “is bisimilar to” is an equivalence relation

798 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 16, NO. 8, AUGUST 1997

Fig. 3. Insertion of eventx from ER(x).

and partitions all TS’s into equivalence classes. A TS is said
to beminimal if no other element in its equivalence class has
a set of states with smaller cardinality.

If the excitation closure and the event effectiveness condi-
tions are satisfied, then the TS is said to be anexcitation closed.
If a TS is not excitation closed, then it is always possible
to transform it to an excitation-closed form by label splitting
(one label which causes violations of excitation closure is
substituted in the TS by a few independent labels
or by inserting silent transitions. Therefore, for any TS, an
equivalent (in the sense of bisimulation between the TS and
the RG) safe PN can be synthesized. Moreover, if the initial
TS is excitation closed and minimal, then the synthesized PN
will have an RG isomorphic to the original TS. The details of
this technique are presented in [10] and [11].

IV. CONSTRAINED TRANFORMATIONS OF TS’S

In this section, we describe constrained transformations of
TS’s which preserve equivalence and other important prop-
erties. In particular, we formalize the notion of behavioral
equivalence for TS’s, and we define speed-independence.

A. Speed-Independent Transition Systems

A design is speed-independent if its behavior does not
depend on the speed of its components (gates). As shown
in [15], two properties ensure that a deterministic TS allows
for a speed-independent implementation:persistencyandcom-
mutativity. The persistency property states that no event can
be disabled by any other event. The commutativity property
guarantees that the same state of the TS is reached under any
order of enabled event firing.

Definition 4.1 (Event Persistency):Let be a
transition system. An event is said to bepersistentin

iff: .
An event is said to bepersistentif is persistent in .
Definition 4.2 (Commutativity):A transition system is

called commutative if, for any traces and that are feasible
from some state both traces lead to the same state,
i.e., if and , then .

B. Trace Equivalence

The set of feasible traces of a TSis called thelanguage
accepted by , and is denoted as . If is a feasible
trace for , then its projection on a subset of events ,
denoted as , is the sequence of eventsobtained from

by deleting all events from . If is the language
accepted by , then its projection is the set of
sequences .

Let and be two TS’s such
that . Then, TS’s and are trace equivalentif

. Additional to trace equivalence, the
following properties must be preserved after transforming a
TS: persistency, commutativity, determinism, and deadlock
freedom. The first three properties guarantee that the new
TS allows for a speed-independent implementation. The latter
property guarantees that liveness of the initial TS is preserved.
It is defined as follows: if state is a deadlock in and is
reachable from the initial state by a feasible trace , then
state of the original TS reachable from by a feasible
trace is a deadlock in

C. Event Insertion

The basic transformation is theinsertion of a single event
into a TS. There can be different schemes for event insertion
that preserve trace equivalence [7]. In this paper, we will rely
on a simple one which consists of two steps and is similar to
[16], [38] and [41].

• Choosing in the original TS a set of statesin which
the new event will be enabled. corresponds to a
generalized excitation region of eventin the new TS,
and therefore is denoted as in Fig. 3.

• Delaying all transitions that exit the set of statesuntil
event fires.

Definition 4.3 (Event Insertion):Let be a
transition system, and let be a new event. Assume that

is an arbitrary subset of states. Let, be a
set of new states such that, for each there is one state

and vice versa. The insertion ofin by produces
another transition system defined as follows:

The transformation of to using Definition 4.3 splits
each state in into two states and in . All other

CORTADELLA et al.: REGION-BASED THEORY FOR STATE ASSIGNMENT 799

(a) (b)

Fig. 4. Set of statesr is not persistency preserving.

states have only one state in . Fig. 3 illustrates how
event insertion is performed.

D. Speed-Independence Preserving Sets

It is easy to show that the insertion of eventby Defini-
tion 4.3always preserves trace equivalence, determinism, and
deadlock freedom[7]. Persistency and commutativity, on the
other hand, are not automatically preserved, and need a more
careful analysis.

Property 4.1: Let be a transition system, let
be a new event, and let . Let

be a transition system obtained after insertingby . Then

1) is persistent in
2) is commutative in .

Proof:

1) (By Contradiction) Assume that , , and
is not enabled in . Therefore, and
in . By the definition of event insertion, no transition

should exist in , which contradicts the initial
assumption.

2) We need to prove that if , and
then in . in since

is enabled in and . Therefore, . Since
is deterministic, then .

Definition 4.4 (SIP Set):Let be a transition
system, let be a new event, and let . Let

be a transition system obtained after inserting
by . is said to be a speed-independence preserving set (SIP
set) iff

1) is persistent in is persistent in
2) is commutative is commutative.

If satisfies only condition 1), then is a persistency
preservingset.

The following theorem determines two conditions for pre-
serving persistency and commutativity.

Theorem 4.1:Let be a TS, and let be
a subset of states. is a persistency-preserving set iff

(1)

Proof: Two different cases of violations for condi-
tion (1) are possible.

1) , but [see Fig. 4(a)].
2) , but [see Fig. 4(b)].

Let us transform to a new transition system by
inserting event by a set of states (see Definition 4.3).
In case 1), persistency is violated in the new transition system

for state because in both events and are enabled
but the firing of disables in state . In case 2), persistency
is also violated in the new transition system because the
firing of disables in . Thus, condition (1) is necessary
for preserving event persistency.

Let us call theimageof the set of states in
that correspond to, i.e., for the image of is a
set of two states while for the image
of is one state with the same name 1

Suppose condition (1) is satisfied in for the set , but
inserting event by leads to a violation of event persistency.
It means that in there are states and such that

and , but is not persistent in state
which is the image of . Note that by the rules of event
insertion, persistency cannot be violated in for the states

which belong to the image of the same
state

When the states and which cause in the persistency
violation are different, four cases are possible.

1) [Fig. 5(a)];
2) [Fig. 5(b)];
3) [Fig. 5(c)];
4) with two subcases [Fig. 5(d)] and

[Fig. 5(e)].

For all cases in the SG obtained by via the insertion
of event , persistency is preserved (see Fig. 5).

Theorem 4.2:Let be a commutative tran-
sition system, and let be a persistency preserving set.
Then is an SIP set iff

(2)

1To distinguishs in A from its images in A0, we sometimes will refer to
states inA0 by adding a subscript:sA :

800 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 16, NO. 8, AUGUST 1997

(a) (b)

(c) (d)

(e)

Fig. 5. Adding eventx to transition system; cases 1)–4).

Fig. 6. Commutativity violation after signal insertion.

Fig. 7. Transformation ofA into A0.

Proof: Suppose condition (2) is violated. Transfor-
mation from to in such case is illustrated by Fig. 6.
Clearly, commutativity is violated for state because

but , where .
Suppose conditions (1) and (2) are satisfied for a

set of states . Fig. 7 shows that commutativity cannot
be violated in for events and , where is the newly
inserted event while .

(a) (b) (c)

(d) (e) (f)

Fig. 8. SIP sets for a state diamond.

Therefore, we need to consider commutativity only between
the original events of . The two different orderings of events

and , each of which may fire in the same state in,
gives rise to the quadruple of states that we will
call a state diamond[see Fig. 8(a)]. The major cases of legal
intersection, according to conditions (1) and (2), of a diamond
in with a set of states are shown in Fig. 8.

CORTADELLA et al.: REGION-BASED THEORY FOR STATE ASSIGNMENT 801

Cases and are
covered by Fig. 8(b), while cases and

are symmetrical to Fig. 8(c) and (d),
respectively. All other cases of intersections are forbidden by
conditions (1) and (2).

It is easy to check that, by applying the transformation rules
to these five major cases (as was done in the proof of Theorem
4.1), we will never get violation of commutativity.

Theorems 4.1 and 4.2 refine conditions for speed-
independence from [35]. It allows us to handle correctly the
so-called asymmetric “fake” conflicts between signals [19].
Consider, for example, Fig. 4(a). There is no arc between
and . On the other hand, SIP conditions were defined in [35]
only with respect to complete diamonds of states. Hence, the
conditions stated in [35] are insufficient to detect the violation
of persistency in cases like the one shown in Fig. 4(a).

Fig. 4 shows two possible cases of violation of the per-
sistency preserving condition (1) from Theorem 4.1. In both
cases, event becomes nonpersistent. Note that eventis
persistent by construction in the TS obtained after the insertion.
Hence, if a persistency preserving set is used for signal
insertion, then no new nonpersistencies can arise.

Fig. 6 shows a violation of commutativity when a set of
states does not meet condition (2) of Theorem 4.2. Fig. 8
shows all correct intersections of an SIP set with all state
diamonds in an SG.

V. SELECTING SIP SETS

This section presents several basic properties which allow
us to formulate improved strategies for the selection of SIP
sets. In [35] and [38], SIP sets areselectedby solving a sat-
isfiability problem. Constraining the search space for SIP sets
efficiently appears to be problematic since the reduction to the
satisfiability problem considers each state in SG individually
(it is encoded by two binary signals). The latter quickly leads
to unmanageable complexity when solving the satisfiability
instance. In [16]–[18], SIP sets areconstructedfrom excitation
regions of the original signals and previously introduced state
signals. Reference [41] generalized this method in such way
that both ER’s and switching regions (SR’s) are used for SIP
sets. In this paper, we further generalize this method: SIP
sets areconstructedas regions, intersections, and unions of
intersections. We will show below that regions allow us to
find valid SIP setsautomatically, rather than checking for SIP
a posteriori, which is considerably less efficient. Note that
ER’s and SR’s are particular cases of region intersections.
Therefore, our method explores a larger search space for SIP
sets, and thus may yield more efficient solutions.

Property 5.1: If is a region in a commutative transition
system, then is an SIP set.

The proof of this property is trivial. At the PN level, this
property corresponds to the following structural transforma-
tion: place is substituted by two placesand with a new
intermediate transition labeled with. Place has only one
output transition , and all transitions which belong to in
the initial PN belong to in the new PN. Obviously, such
transformations cannot violate persistency or commutativity
for any event.

Property 5.2: If is an excitation region of event in a
commutative transition system and is persistent in , then

is an SIP set.
Proof: 1) Violation of condition (1) [Fig. 4(a), (b)]. In

both cases, and . If , then the
firing of disables , thus contradicting the assumption of
event persistency for. If , then belongs to [a
contradiction of Fig. 4(a)], and must be out of [a
contradiction with Fig. 4(b)].

2) Violation of condition (2) (Fig. 6). If , then it
follows from and that the firing of in state
disables (a contradiction of persistency of). If , then

must be out of (a contradiction of Fig. 6).
Intuitively, this property can be stated as follows: delaying

a persistent event cannot create violations of persistency or
commutativity. At the PN level, this means that substituting
a persistent transition by a sequential composition of two
transitions preserves persistency and commutativity. At the
circuit level, this property corresponds to a well-known fact:
inserting a delay at the gate output before its wire fork does
not violate the semimodularity of the circuit [24]. Most of the
previous methods for CSC used variations of Property 5.2 [6],
[16], [22], [35], [41].

Definition 5.1 (Exit and Input Border):Let
be a transition system. Given a subset of states , the
exit borderof [denoted as] and theinput borderof

[denoted as] are defined as follows:

Exit borders of regions and the intersection of preregions
of the same event can also be safely used as SIP sets under
the following conditions.

Property 5.3: Let be a commutative excita-
tion closed transition system, and letbe a region in . If all
of the exit events of are persistent, then is an SIP set.

Proof: 1) Violations of condition (1) (Fig. 4).
If condition (1) for an SIP set is violated, then

and . Hence, there exists event such that
. Clearly, is an exit event for and from the

properties of a region, any state in whichis enabled belongs
to . If , then it follows from that event ,
which is enabled in , becomes disabled in . This contra-
dicts the assumption that all exit events ofare persistent.

If , then belongs to [contradiction of
Fig. 4(a)], and must be out of [contradiction of Fig. 4(b)].

2) Violations of condition (2) (Fig. 6). By the same
consideration, if then becomes disabled in . If

, then cannot be in
A set of states is calledforward connectedif, for any pair

of states there is a state (may coincide
with or with) such that , and all states of

and belong to .
Property 5.4: Let be a commutative excita-

tion closed transition system, and let, be preregions of
the same event. If is forward connected and all exit
events of are persistent, then is an SIP set.

802 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 16, NO. 8, AUGUST 1997

Proof: Assume that is a commutative
excitation closed transition system. Assume also that,
are preregions of the same event , is forward
connected, and all exit events of are persistent. Let us
prove that is an SIP set, i.e., is persistency
preserving and commutativity preserving.

Assume that is the TS obtained after inserting a new
event by . We need to prove that persistency and
commutativity are preserved in .

Persistency preservation:

1) A new event and all events from which do not exit
are persistent in by construction.

2) Consider event . Let us refer to condition (1) from
Theorem 4.1 and Fig. 4. Since , all transitions

labeled with must exit both and . Hence,
exits both and and therefore, exits .
Condition is satisfied, and
persistency holds by Theorem 4.1.

3) Consider event other than such that exits

but or are not preregions for . Transition
from condition (1) of Theorem 4.1 exits . Hence,

exits either or . Let us assume, for example,

that exits . Then transition also exits
.

Let . Since is persistent and , state

and is internal to . In an
excitation closed TS, the intersection of preregions for the

same event gives the excitation region for. Hence,
is internal to and we have reached a contradiction.

Let . Since is forward
connected, three cases are possible:

1) ,
2) , and
3)

.

Consider the first case. Event is persistent, and since
exits , the following condition holds: . Therefore, there

is a state such that . Since and is

persistent, the following holds: . Therefore,

and is internal for . Hence, is internal to
and we have reached a contradiction with the assumption

that exits .
Consider the second case. Sinceis persistent, is

forward connected, and both and are preregions for,
then event . Therefore, state and both
and are enabled in . Since is persistent, we may conclude

that transition is internal for and hence is also
internal for . We again have reached a contradiction.

Consider the third case. Sinceis persistent, is
forward connected, and both and are preregions for,
event is enabled in which implies that .
Therefore, we have reduced the third case to the first case,
which already has been considered.

Commutativity preservation:Let us refer to condition
(2) from Theorem 4.2 and Fig. 6. Given a diamond

, the commutativity property
may be violated only in one case: if state and

states . In such a case, transition
exits and therefore must exit or . Assume, for
example, that exits . On the other hand, transition

is internal for and hence does not exit. We
have reached a contradiction with the definition of a region.

An important consequence of these properties is that the
good candidates for insertion can be built on the basis of
regions and their intersections since they guarantee to preserve
equivalence and speed independence. One may also conclude
that SIP sets for event insertion can be built very efficiently
from regions rather than states.

VI. TRANSFORMATIONS OFSTATE GRAPHS

The binary encoding of a TS to obtain an SG implies
additional constraints for inserting new events: each inserted
event has to be interpreted as a signal transition, and therefore
consistency of state assignment must be preserved. Any event
insertion scheme which preserves trace equivalence (like those
in Definition 4.3) also preserves consistency for the original
signals. Special care must be taken to ensure consistency of
the new signals (that are usually calledstatesignals).

A specific class of SG transformations can be defined as
follows.

1) Insertion is made by signals, not by events. Therefore,
instead of inserting a single event, two signal transi-
tions of a new signal are inserted at each step:
and . Two sets of states for insertion
and are defined simultaneously such that

.
2) Similar to TS transformations, both sets for insertion

and must be SIP sets. In addition,
consistency of state assignment for signalis required.

Given an SG with a set of binary states, a partition for
the insertion of signal , called an partition, is a partition of

into four blocks [37]: , , , and . () defines
the states in which will have the stable value 0 (1). ()
defines .

Property 6.1: Let be a consistent SG, and let
be an partition of . SG obtained

by inserting signal by partition is consistent iff the only
allowed arcs crossing boundaries of the partition blocks are
the following: ,
and .

Arcs like those shown in Fig. 9 are forbidden by Property
6.1. The proof of this property directly follows from the rules
of insertion for events and (see Definition 4.3).

An partition can be found in two steps.

• Find a bipartition , () of a set of states .
The value of signal is constant inside blocks and .

• Choose and at the boundaries of
blocks and respectively.

CORTADELLA et al.: REGION-BASED THEORY FOR STATE ASSIGNMENT 803

Fig. 9. Illegal transitions in anI partition.

(a)

(b)

Fig. 10. Signal insertion by (a) exit and (b) input borders.

The boundaries may be defined in two ways: as exit
borders or as input borders. Fig. 10(a) shows insertion by
exit borders: given a bipartition ,
and (or vice versa). Fig. 10(b) illustrates
insertion by input borders. In this case,
and (or vice versa).

In general, using exit and input borders as insertion sets for
new signal transitions does not guarantee the consistency for
the new signal. It may be necessary to enlarge the exit border

with those states of the block which are directly
reachable from . Similarly, for input border an
enlargement is required with those states offrom which

can be entered. Such enlargement is not necessary if
a border iswell formed.

Definition 6.1: Let be a bipartition of an SG state.

1) The exit border is called well formed iff
[similarly for)].

2) The input border is called well formed iff
[similarly for)].

Let us refer to Fig. 9. If well-formed exit borders are chosen
for inserting new signal transitions, then thepartition is
defined as follows:

. Since a transition can exit only
through the , no arcs and in
Fig. 9 are possible. Due to the well formedness of ,
it is not possible to return from to ; hence,
arcs are not possible either. A similar reasoning
holds for ; hence, none of the illegal transitions from
Fig. 9 can occur.

Property 6.2: Let be a consistent SG with a set of states
partitioned into . The SG obtained by inserting

signal by exit (input) borders of is consistent iff these
borders are well formed.

If the borders of a given partition of are not well
formed, we can still use it by consideringlarger sets of states
that guarantee consistency. A constructive way to do this is
to start, e.g., from the exit border of set, and to include all
of the successors of every state violating the well formedness
from into the exit border of . By doing this, the exit border
of monotonously increases until a unique well-formed set is
found. Convergence is guaranteed becauseis a well-formed
exit border of itself. Uniqueness is guaranteed because the
expansion process does not allow any choice.

Given , we can define minimal well-formedextended
EB and IB [denoted MWFEB and MWFIB] as minimal
well-formed enlargements of exit and input borders, respec-
tively. MWFEB can be calculated as the least fixed point
of the following recursion.

1) MWFEB
2) MWFEB MWFEB

A similar recursion can be applied for calculating
MWFEB , MWFIB , and MWFIB . Minimal well-
formed extended borders hence are minimal sets of states for
signal transition insertion which guarantee consistency.

VII. COMPLETENESS OF THEMETHOD

In this section, we will show that the method for CSC
solution using region-based signal insertion is complete, i.e., it
allows us to solve all CSC conflicts for a fairly general class
of SG’s.

Formally, completeness of the method for the class of
excitation-closed TS is given by Theorem 7.2, which we will
discuss shortly.

Intuitively, it can be explained as follows. A direct synthe-
sis method for speed-independent implementation of STG’s
without choice has been proposed in [16]. It solves all CSC
conflicts by construction. This method can be generalized
to any safe STG [7] which is persistent with respect to
the transitions of output signals (so-calledoutput-persistent
STG’s). Hence, this direct method can be applied to any SG
for which a safe and output-persistent STG can be generated
using regions as described in Section II.

Generating such an STG is possible if an SG satisfies
the following conditions: 1) it is deterministic, consistent,
commutative, and persistent by output signals, and 2) it is
excitation closedafter splitting all GER’s into ER’s. This result
implies that, for each SG which meets these conditions, the
procedure of signal insertions based on intersection of regions
will eventually converge.

Theorem 7.1:Let SG be: 1) deterministic, consistent,
commutative, and persistent by noninput signals, and 2) exci-
tation closed after splitting all GER’s into ER’s.

Then there is an SG , trace equivalent to which has
no CSC conflicts and is deterministic, consistent, commutative,
and persistent by noninput signals.

804 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 16, NO. 8, AUGUST 1997

Fig. 11. Transformation for the transitiont.

Proof: For any excitation-closed SG, there exists a cor-
responding safe Petri net without self-loops and with a reach-
ability graph bisimilar to the SG [11]. In fact, this PN is an
STG because its transitions are interpreted as the changes of
binary signals. Let us denote an STG corresponding to SG
by . We will eliminate all of the CSC conflicts by adding to
the STG two sets of binary signals.

1) , where is the number of places in .
The signals encode every reachable marking

of . If in a marking place has a token, it is encoded
by signal ; otherwise, . Modeling the change of
marking under a transition firing, first the signalsfor which

are set, and then the signals for which
are reset.

2) , where is the number of transitions in .
The signals model the enabling of transitions

under the given marking , i.e., if is enabled under ,
the corresponding signal is set to 1. After the firing of
transition , signal is reset to 0.

The transformation we will apply for the STG is illus-
trated by Fig. 11. In Fig. 11, and
denote the sets of input and output places of transition.

Let us show that the STG obtained after the transforma-
tion is: 1) trace equivalent to , 2) deterministic, commutative,
consistent, and persistent to noninput signals, and 3) without
CSC conflicts.

1) Trace Equivalence:Trace equivalence is satisfied be-
cause, after projecting on the set of original signals, we
will get exactly STG .

2) Consistency of State Assignment in D1:From trace equiv-
alence, it follows that the consistency of state assignment with
respect to the original signals is preserved in. For signals

, the consistency of state assignment directly follows
by construction.

Let us consider the consistency of signals . Signal
fires from 1 to 0 while modeling the firing of the transition

for which is an input place. According to the rules of
transformation, at that moment, signal is always at 1, and
consistency cannot be violated for the falling transitions of

. It also cannot be violated for the rising transitions of
because is set to 1 only in the markings where place
receives the token, and as STG is safe, no new rising

transition of can happen before the falling transition will
fire.

3) Determinism, Signal Persistency, and Commutativ-
ity: Determinism, commutativity, and signal persistency of
the original signals of is guaranteed in by the trace
equivalence between and . Signal persistency of the
added signals and follows from the
fact that no input place of any transition of the added
signals is shared by some other transition. Commutativity
and determinism of the added signals are also satisfied.

4) Complete State Coding:Let us separate all of the mark-
ings of STG into two sets:

a) settledmarkings, in which all signals are
equal to 0;

b) transient markings in which some of signals
are equal to 1.

Suppose the binary states and correspond to the
reachable markings and of and have the same
code. We have the following cases.

1) and are settled markings, . Let
and be the transition sequences obtained by projecting

and on the signals of (i.e., in
). If , then the settled markings and in

are modeling the firing of the same transition. Three
possible cases of such markings are shown by the dashed lines
in Fig. 11. All of them correspond to different binary states,
and cannot be the sources of CSC conflicts.

2) is a settled marking, and is a transient marking.
Then and are distinguished by signals .

3) and are both transient markings. For every
transition of , let us consider the set of events in
that models the change of marking due to the firing of,
i.e., those events and “in between” and for
which and . Let us call this set thetransient
setof , and denote it by . If the codes of and
coincide, then the same signals are equal
to 1 in and .

Transient sets of different transitionsand ()
cannot contain the same signals. Indeed, if

, then two concurrent transitions and
in have the same output or input place, and thus is
unsafe. From the nonintersection of different transient sets of
concurrent transitions, it follows that and cannot have
the same binary code.

Consideration of cases 1)–3) proves that all binary states of
have different codes that, in turn, ensure the satisfaction

of the complete state coding property.
Theorem 7.1 states that, for each SG which meets the above-

listed conditions, the procedure of signal insertion based on
the intersection of regions will eventually converge. Hence,
one can always derive a speed-independent circuit that will
implement this SG. However, it does not provide any realistic
upper bound for the number of additional signals which are
required to be inserted.

Let us take a closer look at anpartition in order to estimate
an upper bound on the number of state signals needed to solve
all CSC conflicts. Assume that is a bipartition of a set

CORTADELLA et al.: REGION-BASED THEORY FOR STATE ASSIGNMENT 805

Fig. 12. Signal insertion using both exit and input borders.

of states. Assume that anpartition is constructed from
by exit borders, i.e., MWFEB , MWFEB
and , [see Fig. 10(a)].

Clearly, all of the states from and will differ in the
new SG obtained after the transformation by the value of
signal . However, this is not the case for the states from
MWFEB and MWFEB . Each state MWFEB
[MWFEB] is mapped into two states and in the
new SG such that . Signal has different values in
and . Thus, no CSC conflict in MWFEB and MWFEB
is solved by . Then we can use one more state signal
and another insertion scheme (by input borders) to distinguish
these conflicts.

This method is illustrated in Fig. 12. At first, one additional
state signal is inserted by minimal well-formed exit borders
of and , and then another state signal is inserted by
minimal well-formed input borders of the partition
inherited from by a new SG. The only CSC conflicts
which are not solved by such insertion of two signals are those
which exist between MWFEB and MWFIB , MWFEB
and MWFIB .

Definition 7.1: Let be a bipartition of an SG state.
Let and have the same binary code, and .
States are said to bedistinguishableby partition
if the following condition does not hold:

MWFEB MWFIB

MWFIB MWFEB

The following theorem gives an upper bound on the number
of state signals.

Theorem 7.2:Let be a bipartition of an SG state. All
distinguishable pairs of states () will
obtain different binary codes after inserting two state signals
by MWFEB and MWFIB (the method from Fig. 12).

Proof: Let us insert state signal by EB’s of and .
Let denote the resulting SG, and let and denote the
sets of states in which is equal to 1 and 0, respectively.

Any state MWFEB has its image in such
that . Any state MWFEB has its image

in such that .
Any state MWFEB has its images and

() in and . Similarly, state
MWFEB has its images such that .

Let us consider images and of and in .
Insertion of signal simply delays firing of exit signals
from and , and thus exit signals of by which we
enter are the same as for. Then the image of
state MWFIB MWFEB will also belong to
MWFIB . For state MWFIB MWFEB , only

one of its images, , belongs to MWFIB , while the
other, , does not. Indeed, since no new arcs betweenand

are created, no new states can be involved in their input
borders. This means that, apart from preserving SIP conditions
and well formedness, each state from MWFIBwill have
exactly one corresponding state in MWFIB .

Consider insertion of state signal by the MWFIB
and MWFIB . According to the values of state signals

and , we can separate all states from in four sets
.

Let us examine all of the cases of state positions in TS
with respect to the borders ofand (see Fig. 13).

1) MWFIB MWFEB . It has only one
image: (see state in Fig. 13).

2) MWFIB MWFEB . It has only one
image: (see state in Fig. 13, for
example).

3) MWFEB MWFIB . It has images
and (see state in Fig. 13).

4) MWFEB MWFIB . It has images
and (see state in Fig. 13).

5) MWFIB MWFEB . It has images
and (see state in Fig. 13).

6) MWFIB MWFEB . It has images
and (see state in Fig. 13).

7) MWFEB MWFIB . It has images ,
and (see state in Fig. 13).

8) MWFEB MWFIB . It has images ,
and (see state in Fig. 13).

From the conditions of the theorem, it follows that
and (and) cannot contain states with the
same binary codes. Hence, sets and (
and) have no mutual CSC conflicts.

Clearly, all states from and are also
distinguished by the value of signals . Thus, all CSC
conflicts between blocks and are resolved.

It follows from the proof that if and are distinguishable
by partition in SG , then the corresponding states in

are distinguishable by partition , where and are
“images” of and in the new SG, . Hence, if all CSC
conflicts can be distinguished bybipartitions, then no more
than state signals are needed for solving all CSC conflicts
in a SG.

This shows that our procedure for solving CSC conflicts is
monotonous, and every next SG is better than the previous one
in terms of CSC conflicts. Given an SG, a minimal number of
partitions which solve all CSC conflicts can be calculated. It
gives an upper bound on the number of state signals which are
necessary for CSC. Moreover, it is easy to show, by using the
same direct synthesis method of [16], that the number of places
of an STG or, equivalently, the cardinality of an irredundant
cover of minimal regions of an SG gives a very looseworst
caseupper bound for the minimal number of partitions solving
all CSC conflicts.

The following corollary from Theorem 7.2 states the con-
ditions for implementability of an SG as a speed-independent
circuit.

806 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 16, NO. 8, AUGUST 1997

Fig. 13. Insertion of state signals by EB’s and IB’s.

Corollary 7.1: Let be a deterministic, consistent, com-
mutative, and output-persistent SG. Assume that for every
pair of states with the same binary code, there exists
a partition distinguishing and such that minimal
well-formed extended exit and input borders ofand are
SIP sets. Then there exists a finite sequence of SIP insertions
that yields an SG such that: 1) is trace equivalent to

2) is deterministic, consistent, commutative, and output
persistent, and 3) satisfies CSC.

Indeed, if every pair of states with the same binary code is
distinguishable by some partition, then according to Theorem
7.2, all CSC conflicts in this SG can be solved by inserting
state signals. The consistency is preserved since signals are
inserted by well-formed borders. Since these borders are SIP
sets (by the condition of Corollary 7.1), then commutativity
and persistency are also preserved.

It follows from the direct synthesis method of [16] that, if
an SG is excitation closed after splitting the GER into ER’s,
then all CSC conflicts are distinguished by some bipartition,
and therefore the method based on EB and IB insertion can
be successfully applied. For nonexcitation-closed SG’s, the
completeness of our approach is an open problem. However,
the authors are not aware of any example which will be
irreducible within the proposed approach.

VIII. A H EURISTIC-SEARCH STRATEGY TO SOLVE CSC

This section describes a strategy to solve CSC based on
the theory of regions and insertion of events presented in the
previous sections.

The main algorithm for the insertion of one state signal is
as follows.

1) Generate a set of partitions that preserve speed inde-
pendence.

2) Estimate the cost of the generatedpartitions.
3) Select the best partition.
4) Increase the concurrency of the inserted signal

The following sections will describe how the set of configu-
rations is explored, how the cost of anpartition is estimated,
and how the concurrency of the inserted signal is increased.

A. Generation of Partitions

As described in Section IV, the type of event insertions
sought aims at preconditioning or postconditioning some of the
existing events in the TS. Fig. 14 illustrates different types of
insertions of the event with regard to event . Let us assume
that , , and are concurrent (similarly for , , and).
The insertions of the figure can be obtained as follows:

case (b)ER MWFEB MWFEB

MWFEB

case (c)ER

case (d)ER MWFEB

case (e)ER MWFEB

Cases (b), (d), and (e) can be obtained by defining ERas
the MWFEB of the intersection of a subset of the preregions or
postregions of event. Case (c) is the only one that cannot be
obtained by using only MWFEB’s (although it can be obtained
using input borders; this option is not considered in the current
implementation). However, the last step of the algorithm will
allow us to cover this type of case by allowing us to enlarge
the concurrency of the inserted event. It should be obvious
that case (c) can be obtained from case (b) by allowingto
be concurrent with .

1) Exploring the Space of Partitions: Each block of states
defines an partition. According to the type of insertions

CORTADELLA et al.: REGION-BASED THEORY FOR STATE ASSIGNMENT 807

(a) (b) (c) (d) (e)

Fig. 14. Different types of event insertions.

Fig. 15. Heuristic search to find a block for event insertion.

Fig. 16. (a) Brick, (b) block as the union of adjacent bricks, (c) connected
blocks, and (d) final block after the union of disconnected blocks.

described in Fig. 14, the EB of a block must be either a region
or the intersection of some pre-/postregions of the same event.
We consider these objects to be the “bricks” of the blocks, and
we explore the space of blocks by calculating unions of bricks.

Fig. 15 presents an algorithm similar to the pruning
strategy commonly used in game-playing applications [20].
Initially, all bricks of the TS are calculated by: 1) obtaining all
minimal regions of the TS minimal regions, and 2) calculating
all possible intersections of pre-/postregions of the same event.
Since the number of pre- and postregions of an event is usually
small, an exhaustive generation is feasible.

The best block for event insertion is obtained as the union
of adjacent bricks. At each iteration of the search, a frontier
of FW (frontier width) “good” blocks is kept. Each block is

(a) (b) (c) (d)

Fig. 17. (a) Petri net, (b) transition system, (c) insertion with
ER(x) = p1 \ p2, and (d) insertion with ER(x) = p2.

(a)

(b)

Fig. 18. Difficult examples to solve CSC.

enlarged by adjacent bricks, and the newly obtained blocks are
considered candidates for the next iteration only if they are
“better,” according to the cost function, than their ancestors.
FW is a parameter that can be tuned by the designer to define
the degree of exploration of the configuration space, similar
to defining the level of expertise of a chess-playing program,
trading off the quality of the solution and the computational
cost to find it. Finally, the best block generated during the
search is chosen.

The execution of the previous algorithm would give a
connected block of states as depicted in Fig. 16(b) (block).
In the most general case, a disconnected set of states may
be appropriate to solve CSC. For this reason, the algorithm
is iteratively executed with the rest of bricks of the TS (not
intersecting with previously calculated blocks) until all states

808 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 16, NO. 8, AUGUST 1997

Fig. 19. AMULET2 pipeline.

with CSC conflicts have been covered by some block [e.g.,
blocks – in Fig. 16(c)].

The final block for insertion is calculated as the union of
disconnected blocks. A greedy block-merging approach guided
by the cost function is used. In Fig. 16(d), a block
has been obtained.

2) Increasing Concurrency:Given a block , , and
are initially calculated as the MWFEB ofand , respectively.
This leads to a solution with minimum concurrency of the
inserted event. Concurrency can be increased by enlarging
and/or . This is illustrated in the example of Fig. 17. Let us
assume that . In this case, MWFEB ,
which produces the event insertion of Fig. 17(c). By enlarging
ER , e.g., ER , the event is made concurrent with
event [Fig. 17(d)].

In our approach, when the best configuration for event
insertion has been calculated, and are greedily enlarged
by adding bricks that are adjacent to them. The enlargement
is only accepted if the new configuration improves the cost
of the solution.

IX. COST FUNCTION

During the exploration of the space of configurations to
solve CSC, a cost function is used to determine the candidates
that must survive. This cost function is used in the construction
of connected blocks, merging of disconnected blocks, and
increase of concurrency.

The main objective of the cost function is to guide the search
toward a correct and inexpensive solution of the CSC problem.
Given that a great amount of configurations are explored, the
cost function must not be computationally expensive.

Rather than deriving a function that yields a real number, the
cost function is an algorithm that considers several implemen-
tation factors when comparing two different configurations.
The following factors are considered for the insertion of signal

(in order of priority).

• ER and ER must be SIP blocks.
• The insertion of must not modify the specification of

the environment (e.g., cannot be inserted before input
events).

• The number of solved CSC conflicts must be maximized.
• The estimated complexity of the logic of the circuit must

be minimized.

TABLE I
RESULTS FORSTG’S WITH A LARGE NUMBER OF STATES

In the evaluation of the last two factors, some degree of
freedom is allowed. For example, if the relative difference of
CSC conflicts disambiguated by two configurations is similar,
the one with the cheapest circuit complexity is considered to
be better.

With this approach, the most computationally expensive
criterion (estimation of logic) is only evaluated when con-
figurations are guaranteed to be correct and make tangible
progress toward solving CSC.

A. Estimation of Logic

For each TS generated after the insertion of a new state
signal, an approximate estimation of the complexity of the
circuit is calculated.

The estimation is oriented toward a speed-independent
realization based on monotonous covers [20], and is done as
follows. For each ER of a noninput signal, a sum-of-products
expression is calculated, and minimized with the don’t-care
set of the SG and the quiescent region that follows the ER
(i.e., the set of states in which the signal remains stable after
having been fired [20]). Even though the calculated cover must
not necessarily be monotonous, our experiments have shown
that it is monotonous in more than 80% of cases, and can be
considered as a very approximate estimation of the complexity
of a monotonous cover in the rest of the cases.

The complexity of the circuit is estimated as the sum of the
number of literals of each cover.

X. EXPERIMENTAL RESULTS

The region-based approach presented in this paper has been
integrated inpetrify , a tool for the synthesis of Petri
nets. This section presents different experimental results that
illustrate the main features of the approach. One of the main
advantages of the tool is the possibility of retrieving an STG
after having solved CSC. This allows the designer to analyze

CORTADELLA et al.: REGION-BASED THEORY FOR STATE ASSIGNMENT 809

TABLE II
EXPERIMENTAL RESULTS (CPU IN SECONDS)

the obtained solutions, and choose the most convenient one
by trading off several tuning parameters (e.g., increase the
concurrency of the inserted signals with respect to other
transitions, or reduce the estimated logic at the expense of
increasing the number of state signals).

A. Difficult CSC Examples

We have used several benchmarks that no other automatic
tool, such assis [32] or assassin [42], has been able
to solve. Some of them are even difficult to solve manually
by expert designers. Our approach has succeeded in solving
all of them. One of the major reasons for this qualitative
improvement is that our approach can deal successfully with
secondary conflicts, i.e., with cases in which any set of states
required to separate conflicting states also contains some
conflicting states. It is known that neither the approach of [22]
nor the approach of [38] can solve those cases without major
modifications or manual intervention. On the other hand, the
approach of [41], whose completeness has never been shown,
has not been able to solve themin practice.

Fig. 18 depicts two examples whose reachability graph has
eight states each. Our region-based approach obtained the best
solution of those that we could obtain manually (none of them
with fewer than three state signals), while neithersis nor
assassin was able to solve them.

Interestingly, the example in Fig. 18(b) is unsafe (the arcs
and are 2-safe), but the resulting STG is

safe. Nevertheless, the concurrency among the original signals
of the specification is never reduced, i.e., the projection of the
final reachability graph onto the signals of the environment is
always equivalent to the original reachability graph.

B. Highly Concurrent Systems

One of the most important features of the CSC algorithm
implemented inpetrify is the capability of managing
extremely large state graphs generated from STG’s with high
concurrency. Two factors are essential for this capability:

• the symbolic representation and manipulation of the state
graph by means ofordered binary decision diagrams[29],
and

• the exploration of blocks of states at the level of regions
rather than states.

Fig. 19 shows the circuit of a pipeline cell proposed for
the AMULET2 processor [13] and its STG specification. We
obtained a specification of a five-cell pipeline by a parallel
composition of five initial STG’s. Then all internal signals
were excluded. This implied violations of the CSC property,
and petrify produced a CSC solution. Neithersis nor
assassin was able to complete the CSC solution for this
specification.

Table I presents the results obtained for the AMULET2
pipeline and some examples with a vast state space. The
master-read2 example has been artificially built from the
parallel composition of two identical state graphs (by com-

810 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 16, NO. 8, AUGUST 1997

(a)

(b)

Fig. 20. The sbuf-ram-write example. (a) Solution with increased concurrency. (b) Solution with reduced concurrency.

posing two disconnected STG’s). par8 and par16 are obtained
by composing several parallelizer components used for the
translation of the Tangram asynchronous circuit specification
language [33].

Our approach is particularly effective in these cases because
we use implicit methods for SG traversal [29]. It is well known
that the memory and CPU requirements of such methods
depend more on the problem structure than on the abso-
lute number of states. Fortunately, most practical problems
(e.g., most problems derived from the composition of small
functional modules) behave well with implicit methods.

Table I describes the characteristics of each STG, as well as
the number of signals and states before and after solving the
CSC problem. Current tools exploring solutions at state level
are not able to manage examples with more thanstates.

C. Comparison with Other Approaches

Table II reports the results obtained withpetrify in com-
parison with the ones presented in [42]. For each benchmark,
the area estimated byassassin (using a library in which
the minimum size inverter has an area of 16 units) and the
number of inserted stated signals are reported.

CORTADELLA et al.: REGION-BASED THEORY FOR STATE ASSIGNMENT 811

The software toolpetrify allows the designer to play
with different options to seek solutions efficient in area, delay,
or number of inserted signals. One of the options disables the
capability of increasing the concurrency of the newly inserted
signals (as illustrated in Fig. 17). In some cases, this results in
slight area improvements at the expense of reducing the speed
of the circuit.

Another interesting option consists of enabling/disabling the
union of disconnected blocks to find a block for insertion [see
Fig. 16(d)]. This may result in a reduction of the number
of state signals, although not necessarily a reduction in the
complexity of the circuit. Enabling the union of blocks is
especially interesting in examples such as counters, where
a logarithmic encoding of states can provide tangible area
savings.

The default options used bypetrify are: allow increase of
concurrency and disable union of blocks. The columnoption
in Table II indicates whether some different option has been
used to reduce the area of the circuit (n when not allowing
concurrency, andu when enabling union of blocks).

The columns with the headingpetrify (slow) re-
port the results obtained when increasing the frontier width
(parameter FW in Fig. 15) of the heuristic search from one
block (default) to five blocks. Those examples in which area
improvements have been obtained are highlighted.

The quality of the results is comparable to those obtained
by assassin , with an overall improvement of 7% in area.
assassin may obtain a better result than our method in some
cases because bothheuristicallyestimate the complexity of the
logic when deciding where and how to insert state signals. This
means that the actual cost may be different from the estimate,
or that (as in examplenowick) more state signals may yield
smaller logic. However, we claim that the contribution of our
work mainly lies in the ability to substantially extend the class
of specifications that can be successfully handled (in terms of
both difficulty and size), rather than in the area decrease for
very small examples.

The CPU time for a BDD-based approach is generally
longer when the state space is small since a threshold over-
head is always involved with the management of BDD data
structures. However, when the state space is large (say, larger
than 500 states), the CPU time ofpetrify is always shorter.
It can be observed that the CPU time used bypetrify does
not depend on the number of states, but on the complexity of
the underlying Petri net which directly determines the number
of variables used to encode the states [29].

Fig. 20 depicts the graphical output generated bypetrify
after solving CSC for the sbuf-ram-write example. Two state
signals have been inserted:csc0andcsc1. Solution (a) presents
more concurrency for the transitioncsc1+ at the expense of
some area increase. This example illustrates the possibilities
offered to the designer to choose the most convenient solution
for each application.

XI. CONCLUSIONS

We have presented a theoretical framework for insertion of
new events into an asynchronous behavioral specification with

the purpose of resolving state encoding conflicts. Our theory
is based on the combination of two fundamental concepts.
One is the notion of regions of states in a transition system
(an abstract labeled SG). The second concept is a speed-
independence preserving set (SIP set), which is strongly related
to the implementability of the model in logic. Regions and their
intersections can serve as bricks for the efficient generation of
SIP sets.

The theory presented in this paper has been used in de-
veloping algorithms for the software toolpetrify , which
was originally created as a program for synthesizing Petri-
net-based specifications from state-based models [10]. The
combination of the latter functionality with the algorithms
for state-encoding event insertion allows one to solve CSC
for large-scale asynchronous specifications which were not
solvable by any previously known approach. It also allows
the user to view the result of the transformation applied to the
transition system in the form of an STG.

We are currently working on the application of the theory
of event insertion to solving other state encoding problems
involved in asynchronous synthesis.

REFERENCES

[1] A. Arnold, Finite Transition Systems.Englewood Cliffs, NJ: Prentice-
Hall, 1994.

[2] P. A. Beerel and T. H.-Y. Meng, “Automatic gate-level synthesis of
speed-independent circuits,” inProc. Int. Conf. Computer-Aided Design,
Nov. 1992.

[3] L. Bernardinello, G. De Michelis, K. Petruni, and S. Vigna, “On
synchronic structure of transition systems,” Tech. Rep., Univ. Milano,
Milano, Italy, 1994.

[4] S. Burns and A. Martin, “A synthesis method for self-timed VLSI
circuits,” in Proc. Int. Conf. Computer Design, 1987.

[5] T.-A. Chu, “On the models for designing VLSI asynchronous digital
systems,”Integration: VLSI J., vol. 4, pp. 99–113, 1986.

[6] , “Synthesis of self-timed VLSI circuits from graph-theoretic
specifications,” Ph.D. dissertation, Mass. Inst. Technol., Cambridge,
June 1987.

[7] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A.
Yakovlev, “A region-based theory for state assignment in asynchronous
circuits,” Tech. Rep. 95-2-006, Univ. Aizu, Japan, Oct. 1995.

[8] , “Complete state encoding based on the theory of regions,” in
Int. Symp. Adv. Res. Asynchronous Circuits Syst., Mar. 1996, pp. 36–47.

[9] , “Methodology and tools for state encoding in asynchronous
circuit synthesis,” inProc. Design Automation Conf., June 1996, pp.
63–66.

[10] J. Cortadella, M. Kishinevsky, L. Lavagno, and A. Yakovlev, “Synthe-
sizing Petri nets from state-based models,” inProc. ICCAD’95, Nov.
1995, pp. 164–171.

[11] , “Deriving Petri nets from finite transition systems,” Tech.
Rep. UPC-DAC-1996-19, Dept. Comput. Architecture, Univ. Politècnica
Catalunya, Spain, June 1996.

[12] J. Esparza and M. Nielsen, “Decidability issues for Petri nets,”Petri
Nets Newsletter, vol. 94, pp. 5–23, 1994.

[13] S. B. Furber and P. Da, “Four-phase micropipeline latch control cir-
cuits,” IEEE Trans. VLSI Syst., vol. 4, pp. 247–253, June 1996.

[14] J. Gu and R. Puri, “Asynchronous circuit synthesis with Boolean
satisfiability,” IEEE Trans. Computer-Aided Design, vol. 14, Aug. 1995.

[15] R. M. Keller, “A fundamental theorem of asynchronous parallel com-
putation,” Lecture Notes in Comput. Sci., vol. 24, pp. 103–112, 1975.

[16] M. Kishinevsky, A. Kondratyev, A. Taubin, and V. Varshavsky,Con-
current Hardware: The Theory and Practice of Self-Timed Design.
London: Wiley, 1993.

[17] M. A. Kishinevsky, A. Y. Kondratyev, and A. R. Taubin, “Formal
method for self-timed design,” inProc. European Design Automation
Conf. (EDAC), 1991.

[18] A. Kondratyev, “Design of self-timed circuits from change diagrams,”
(in Russian), Ph.D. dissertation, LETI Leningrad, 1987.

[19] A. Kondratyev, J. Cortadella, M. Kishinevsky, E. Pastor, O. Roig, and

812 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 16, NO. 8, AUGUST 1997

A. Yakovlev, “Checking signal transition graph implementability by
symbolic BDD traversal,” inProc. European Design and Test Conf.
(ED&TC), Paris, France, Mar. 1995, pp. 325–332.

[20] A. Kondratyev, M. Kishinevsky, B. Lin, P. Vanbekbergen, and A.
Yakovlev, “Basic gate implementation of speed-independent circuits,”
in Proc. Design Automation Conf., June 1994, pp. 56–62.

[21] A. Y. Kondratyev, L. Y. Rosenblum, and A. V. Yakovlev, “Signal
graphs: A model for designing concurrent logic,” inProc. 1988 Int.
Conf. Parallel Processing, Pennsylvania State Univ. Press, 1988.

[22] L. Lavagno and A. Sangiovanni-Vincentelli,Algorithms for Synthesis
and Testing of Asynchronous Circuits.Norwell, MA: Kluwer
1993.

[23] K.-J. Lin and C.-S. Lin, “On the verification of state-coding in STG’s,”
in Proc. ICCAD’92, Santa Clara, CA, Nov. 1992.

[24] D. E. Muller and W. C. Bartky, “A theory of asynchronous circuits,” in
Ann. Computing Lab. Harvard Univ., 1959, pp. 204–243.

[25] T. Murata, “Petri nets: Properties, analysis and applications,”Proc.
IEEE, vol. 77, pp. 541–580, Apr. 1989.

[26] M. Nielsen, G. Rozenberg, and P. S. Thiagarajan, “Elementary transition
systems,”Theor. Comput. Sci., vol. 96, pp. 3–33, 1992.

[27] S. M. Nowick and D. L. Dill, “Automatic synthesis of locally-clocked
asynchronous state machines,” inProc. Int. Conf. Computer-Aided
Design, Nov. 1991.

[28] E. Pastor and J. Cortadella, “An efficient unique state coding algorithm
for signal transition graphs,” inProc. Int. Conf. Computer Design, Oct.
1993.

[29] E. Pastor, O. Roig, J. Cortadella, and R. Badia, “Petri net analysis using
Boolean manipulation,” in15th Int. Conf. Appli. Theory of Petri Nets,
Zaragoza, Spain, June 1994.

[30] C. A. Petri, “Kommunikation mit Automaten,” Ph.D. dissertation, In-
stitut für Instrumentelle Mathematik, Bonn, 1962 (Tech. Rep. Schriften
des IIM 3).

[31] L. Y. Rosenblum and A. V. Yakovlev, “Signal graphs: From self-
timed to timed ones,” inInt. Workshop Timed Petri Nets, Torino, Italy,
1985.

[32] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Murgai, A.
Saldanha, H. Savoj, P. R. Stephan, R. K. Brayton, and A. Sangiovanni-
Vincentelli, “SIS: A system for sequential circuit synthesis,” Tech. Rep.
UCB/ERL M92/41, Univ. California, Berkeley, May 1992.

[33] K. van Berkel, Handshake Circuits: An Asynchronous Architecture
for VLSI Programming. Cambridge: Int. Ser. Parallel Computing,
Cambridge Univ. Press, 1993.

[34] P. Vanbekbergen, “Optimized synthesis of asynchronous control circuits
from graph-theoretic specifications,” inProc. Int. Conf. Computer-Aided
Design, Nov. 1990, pp. 184–187.

[35] , “Synthesis of asynchronous controllers from graph-theoretic
specifications,” Ph.D. dissertation, Katholieke Univ. Leuven, IMEC,
Belgium, Sept. 1993.

[36] P. Vanbekbergen, F. Catthoor, G. Goossens, and H. De Man, “Optimized
synthesis of asynchronous control circuits from graph-theoretic specifi-
cations,”IEEE Trans. Computer-Aided Design, vol. 11, pp. 1426–1438,
Nov. 1992.

[37] P. Vanbekbergen, B. Lin, G. Goossens, and H. De Man, “A generalized
state assignment theory for transformations on signal transition graphs,”
in Proc. Int. Conf. Computer-Aided Design, Nov. 1992, pp. 112–
117.

[38] , “A generalized state assigment theory for transformation on
signal transition graphs,”J. VLSI Signal Processing, vol. 7, no. 1–2, pp.
101–116, 1994.

[39] A. V. Yakovlev and A. Petrov, “Petri nets and parallel bus controller
design,” in Int. Conf. Appl. Theory of Petri Nets, Paris, France, IEEE
Computer Society, June 1990.

[40] C. Ykman-Couvreur and B. Lin, “Efficient state assignment framework
for asynchronous circuit synthesis,” inProc. Int. Conf. Computer Design,
Oct. 1995.

[41] , “Optimized state assignment for asynchronous circuit synthesis,”
in 2nd Working Conf. Asynchronous Design Methodologies, May 1995,
pp. 118–127.

[42] C. Ykman-Couvreur, B. Lin, and H. De Man, “ASSASSIN: A synthesis
system for asynchronous control circuits,” Tech. Rep., IMEC, User and
Tutorial Manual, Sept. 1994.

[43] K. Y. Yun and D. L. Dill, “Automatic synthesis of 3D asynchronous state
machines,” inProc. Int. Conf. Computer-Aided Design, Nov. 1992.

Jordi Cortadella (S’87–M’88) received the M.S.
and Ph.D. degrees in computer science from the
Polytechnic University of Catalonia, Barcelona,
Spain, in 1985 and 1987.

He is an Associate Professor at the Department
of Computer Architecture, Polytechnic University
of Catalonia. In 1988, he was a Visiting Scholar at
the University of California, Berkeley. His research
interests include computer-aided design of VLSI
systems with special emphasis on synthesis and
verification of asynchronous circuits, computer

arithmetic, and parallel architectures. He has coauthored more than 50 research
papers in technical journals and conferences.

Michael Kishinevsky (M’95–SM’96), photograph and biography not avail-
able at the time of publication.

Alex Kondratyev (M’94–SM’97), photograph and biography not available at
the time of publication.

Luciano Lavagno (S’88–M’93) graduated magna
cum laude in electrical engineering from Politecnico
di Torino, Italy, in 1983. In 1992 he received the
Ph.D. degree in electrical engineering and computer
science from the University of California at Berke-
ley.

From 1984 to 1988 he was with CSELT Laborato-
ries, Torino, Italy, where he was involved in an ES-
PRIT project that developed a complete high-level
synthesis system. In 1988 he joined the Department
of Electrical Engineering and Computer Science of

the University of California at Berkeley, where he worked on logic synthesis
and testing of synchronous and asynchronous circuits. He is currently an
Assistant Professor at the Politecnico di Torino, Italy, and a research scientist
at Cadence Berkeley Laboratories. He has also been a consultant for various
EDA companies, such as Synopsys and Cadence. His research interests include
the synthesis of asynchronous and low-power circuits, the concurrent design
of mixed hardware and software systems, and the formal verification of digital
systems. He is the author of a book on asynchronous circuit design and has
published over 60 journal and conference papers.

In 1991 Dr. Lavagno received the Best Paper award at the 28th Design
Automation Conference in San Francisco, CA. He has served on the technical
committees of several international conferences in his field (namely the Design
Automation Conference, the International Conference on Computer Aided
Design, and the European Design Automation Conference).

Alexandre Yakovlev received the M.Sc. and Ph.D.
degrees in computing science from Electrotechnical
University of St. Petersburg, Russia.

At the Electrotechnical University, he worked in
the area of asynchronous and concurrent systems
since 1980, and in the period between 1982 and
1990 held positions of Assistant and Associate Pro-
fessor at the Computing Science Department. He
first visited Newcastle in 1984–1985 for research
in VLSI and design automation. After coming back
to Britain in 1990 he worked for one year at the

Politechnic of Wales (now University of Glamorgan). Since 1991 he has been
a Lecturer, and quite recently a Reader in computing systems design, at the
Newcastle University Department of Computing Science, where he is heading
the VLSI Design research group. His current interests and publications are in
the field of modelling and design of asynchronous, concurrent, real-time and
dependable systems.

