|EEE Workshop on FPGAs for Custom Computing Machines, pp. 11-13, April, 1994.

Pin Assignment for Multi-FPGA Systems1
(Extended Abstract)

Scott Hauck, Gaetano Borriello
Department of Computer Science and Engineering
University of Washington
Sesttle, WA 98195

Abstract

Thereis currently great interest in using systems of
FPGAs for logic emulators, custom computing devices,
and software accelerators. An important step in making
these technologies more generally useful is to develop
completely automatic mapping tools from high-level
specification to FPGA programming files. In this paper
we examine one step in this automatic mapping process,
the selection of FPGA pins to use for routing inter-FPGA
signals. We present an algorithm that greatly increases
mapping speed while also improving mapping quality.

Introduction

Thereis great interest in using multiple-FPGA systems
for such tasks as logic emulation, software acceleration,
and custom-computing devices. Many such systems are
discussed elsewhere in these proceedings. An important
aspect shared by all of these systems is that they harness
multiple FPGAs, connected in afixed routing structure, to
perform their tasks. While the FPGAs themselves can be
routed and rerouted, the wires moving signals between
FPGA pins are fixed by the routing structure on the
implementation board.

While some very impressive results have been achieved
by hand-mapping of agorithms and circuits to FPGA
systems, developing a completely automatic system for
mapping to these structures is important to achieving
more widespread utility. Ingeneral, an automatic mapping
approach will go through five phases, in the following
order: Synthesis, Partitioning/Global Placement, Global
Routing, FPGA Place, FPGA Route. During the
Synthesis step, the circuit to be implemented is converted
from its source format into a netlist appropriate for
implementation in FPGAs, possibly after severd
optimization steps. Partitioning and Global Placement
breaks this mapping into subcircuits that will fit into the
individual FPGAs, and determines which FPGAs a given
subcircuit will occupy. Signals that connect logic in

different FPGASs are then routed during the Global Routing
step, which determines both which intermediate FPGAs a
signal will move through (if any), as well as what FPGA
I/0O pinsit will use. With the logic assigned and the inter-
FPGA signals routed, standard FPGA Place and Route
software can then produce programming files for the
individual FPGAs.

F‘W’ji o [ I |

ER e o

5 fEeE e (AB)
(mnnnn| [m[nm|

IHER AN 4

L L A "r-lr'lr-l‘=|!_

O [F—F] []

] [Fr— ] :||

[ E, H|

Figure 1. Two views of the inter-FPGA
routing problem: As a complex graph
including internal resources (left), and an
abstract graph with FPGAs as nodes (right).

The Global Routing phase of mapping to multi-FPGA
systems bears a lot of similarity to routing for individual
FPGAs, and hopefully similar algorithms can be applied
to both problems. Just as in single FPGAs, Global
Routing needs to route signals on a fixed topology, with
strictly limited resources, while trying both to handle
high-density mappings and minimize clock periods. The
obvious method for applying single-FPGA routing
algorithms to multi-FPGA systemsisto view the FPGAs
as complex entities, explicitly modelling both internal
routing resources and pins connected by individual external
wires (figure 1 left). A standard routing algorithm would
then be used to determine both which intermediate FPGA
to use for long distance routing (i.e., asignal from FPGA
A to D would be assigned to use either FPGA B or C), as
well as which individual FPGA pins to route through.
Unfortunately, this approach will not work. The problem
is that although the logic has been dready assigned to



FPGA s during partitioning, the placement of logic into
individual logic blocks will not be done until the next
step, FPGA placement. Thus, since there is no specific
source or sink for the individual routes, standard routing
algorithms cannot be applied.

The approach we take here is to abstract entire FPGAs
into single nodes in the routing graph, with the arcs
between the nodes representing bundles of wires. This
solves the unassigned source and sink problem mentioned
above, since while the logic hasn't been placed into
individual logic blocks, partitioning has assigned the logic
to the FPGAs. It also simplifies the routing problem,
since the graph is much simpler, and similar resources are
grouped together (i.e. al wires connecting the same
FPGAs are grouped together into a single edge in the
graph). Unfortunately, the routing agorithm can no
longer determine the individual FPGA pinsasignal should
use, since those details have been abstracted away. Itis
this problem, the assignment of interchip routing signals
to FPGA /O pins, that the rest of this paper addresses.

Pin assignment for multi-FPGA systems

One solution to the pin assignment problem is quite
simple: ignoreit. After Global Routing has routed signals
through intermediate FPGASs, those signals are then
randomly assigned to individual pins. While this simple
approach can quickly generate an assignment, it gives up
some optimization opportunities. A poor pin assignment
can not only result in greater delay and lower logic density,
but can also slow down the place and route software,
which must deal with a more complex mapping problem.

A second solution is to use atopology that simplifies
the problem. Specifically, topologies such as bipartite
graphs only connect logic-bearing FPGAs with routing-
only FPGAs. In thisway, the logic-bearing FPGASs can
be placed initialy, and it is assumed that the routing-only
FPGAs can handle any possible pin assignment. More
details on such an approach can be found in [1]. However,
it isimportant to note that these approaches only apply to
topologies such as bipartite graphs and partial crossbars,
topologies where logic-bearing FPGAs are not directly
connected.

A third approach is to allow the FPGA placement tool
to determine its own assignment. This requires that the
placement tool allow the user to restrict the locations
where an /O pin can be assigned (e.g., Xilinx APR and
PPR placement and routing tools [4]). With such a
system, 1/O signals are redtricted to only those pin
locations that are wired to the proper destinations. Once
the placement tool determines the pin assignment for one
FPGA, this assignment is propagated to the attached
FPGASs. It isimportant to note that this does limit the

number of placement runs that can be performed in
paralel. Specificaly, since the assignment from one
FPGA is propagated to adjacent FPGAs only after that
entire FPGA has been placed, no two adjacent FPGASs can
be placed simultaneously. Since the placement and
routing steps can be the most time-consuming stepsin the
mapping process, achieving the greatest parallelism in this
task can be critical. Also, while the iterative placement
approach can optimize locally, creating good resultsin a
single FPGA, it ignores more global optimization
opportunities. Finally, there are some topologies for
which iterative placement may be unable to determine a
correct pin assignment, because the placement of one
FPGA may use up resources required in another FPGA.

Force-directed pin assignment for multi-
FPGA systems

As we have discussed, pin assignment via sequentia
placement of individua FPGAs can be slow, cannot
optimize globally, and may not work at al for some
topologies. What is hecessary is a more global approach
which optimizes the entire mapping, while avoiding
sequentializing the placement step. Intuitively, the best
approach to pin assignment would be to simultaneously
place al FPGAs, with the individua placement runs
communicating with each other to baance the pin
assignment demands of each FPGA. Inthisway aglobal
optimum could be reached, and the mapping of all FPGAs
would be completed as quickly as any single placement
could be accomplished. Unfortunately, tools to do this do
not exist, and the communication necessary to perform
this task could become prohibitive. Our approach is
similar to simultaneous placement, but we will perform
the assignment on a single machine within a single
process. Obviously, with the placement of a single FPGA
consuming considerable CPU time, complete placement of
al FPGAs simultaneously on a single processor is
impractical, and thus simplification of the problem will be
key to aworkable solution.

Our approach is to use force-directed placement of the
individual FPGAs [3]. In force-directed placement, the
signals that connect logic in a mapping are replaced by
springs between the signal’ s source and each sink, and the
placement process consists of seeking a minimum net
force placement of the logic. By finding this minimum
net force configuration, we expect to minimize wirelength
in the resulting mapping. To find this configuration, the
software randomly chooses alogic block and moves it to
its minimum net force location. This hill-climbing
process continues until alocal optimum isfound, at which
point the software accepts the current configuration.



Force-directed placement may seem a poor choice for
pin assignment, and is generally felt to be inferior to
simulated annealing for FPGA placement. Two reasons
for this are the difficulty force-directed placement has with
optimizing for goals other than wirelength, and the
inaccuracy of the spring approximation to routing costs.
However, force-directed placement can handle al of the
optimization tasks involved in pin assignment, and the
spring metric is the key to efficient handling of multi-
FPGA systems.

(2¥3)
(2+3+5)

(2¥5) (3*5)
(2+3+5) (2+3+5)

1.0 15 il

C
Figure 2. Example of spring simplification
rules. Source circuit at top has node U
replaced at middle, and any springs created
in parallel to others are merged at bottom.

Asimplied earlier, we will not simply place individual
FPGAs, but will in fact use force-directed placement
simultaneously on all FPGAs in the system. To make
this tractable, we can simplify the mapping process.
Specifically, since we are only performing pin assignment,
we do not care where the individual logic blocks are placed.
Thus, we can examine the system of springs built for the
circuit mapping, and use the laws of physicsto remove
nodes corresponding to FPGA logic blocks, leaving only

! This paper is an extended abstract of University of
Washington, Dept. of Computer Science & Engineering
Technical Report #94-04-01, April 1994.

/O pins. Asshown in the example of figure 5, the
springs connected between an internal logic node and its
neighbors can be replaced with a set of springs connected
between the node’ s neighbors while maintaining the exact
same forces on the other nodes. By repeatedly applying
these simplification rules to the logic nodes in the system,
we end up with a mapping consisting only of 1/0 pins,
with spring connections that act identicaly to the
complete mapping they replace. In thisway, we simplify
the problem enough to allow the pin assignment of alarge
system of FPGAs to be performed efficiently.

We have performed comparisons of our force-directed
approach with iterative placement approaches, as well as
random pin assignments, on several current multi-FPGA
systems. The results have shown that the force directed
approach is faster than al other aternatives, including
random, by up to almost a factor of ten. It also produces
higher-quality results than the other approaches, yielding
up to an 8.5% decrease in total wirelength in the system.
Our algorithm works on arbitrary topologies, including
those for which iterative placement approaches generate
incorrect results. Complete results, along with a more
thorough discussion of thistopic, can be found in [2].

References

[1] P. K. Chan, M. D. F. Schlag, "Architectural Tradeoffsin
Field-Programmable-Device-Based Computing  Systems",
|EEE Workshop on FPGAs for Custom Computing Machines,
pp. 152-161, 1993.

[2] S. Hauck, G. Borriello, "Pin Assignment for Multi-FPGA
Systems", University of Washington, Dept. of Computer
Science & Engineering Technical Report #94-04-01, April
1994.

[3] K. Shahookar, P. Mazumder, “VLSl Cell Placement
Techniques’, ACM Computing Surveys, Vol. 23, No. 2, pp.
145-220, June 1991.

[4] Xilinx Development System Reference Guide and The

Programmable Logic Data Book, Xilinx, Inc., San Jose, CA,
1993.



