
Design-for-Testability for Path Delay Faults
in Large Combinational Circuits Using Test-Points

Irith Pomeranz and Sudhakar M. Reddy +

Electrical and Computer Engineering Department
University of Iowa

Iowa City, IA 52242

Abstract
We present a method for test-point insertion in large combina-
tional circuits, to increase their path delay fault testability.
Using an appropriate test application scheme with multiple clock
periods, a test-point on a line g divides the set of paths through g
for testing purposes into a subset of paths from the primary
inputs up to g, and a subset of paths from g to the primary out-
puts. Each one of these subsets can be tested separately. The
number of paths that need to be tested directly is thus reduced.
Test-point insertion is done to reduce the number of paths, using
a time-efficient procedure. Indirectly, it also reduces the number
of tests and renders untestable paths testable. Experimental
results are presented to demonstrate the effectiveness of the
method proposed in increasing the testability of large benchmark
circuits, and to demonstrate the overheads involved.

1. Introduction
The path delay fault model was proposed to model defects that
change the timing behavior of a circuit [1,2]. It is the most gen-
eral of all delay fault models, since it models distributed as well
as localized excessive delays. However, three problems are
associated with this fault model, that prevent test generation pro-
cedures from achieving complete or close-to-complete fault cov-
erage. (1) The number of paths (and therefore the number of
path delay faults) in practical circuits may be very large [3]. (2)
The number of tests to detect all path delay faults may be very
large [4]. (3) Many path delay faults in practical circuits are not
testable [5].

The problem of handling large numbers of paths was
alleviated in part by the non-enumerative methods of [3,6], how-
ever, even using these techniques, the fault coverage for large
circuits is still very low. This is due in part to the large number
of tests to detect all faults, and in part to the fact that many of the
faults are untestable. Another method of avoiding the need to
test large numbers of path delay faults was presented in [7],
where it was shown that some path delay faults do not have to be
tested, as correct speed of operation can be guaranteed by testing
other faults. However, even when using this approach, the fault
coverage obtained is sometimes low, and lower than that
achieved by the method proposed here. In addition, the approach
of [7] is valid only to verify the speed of operation of the circuit,
and it is not capable of verifying that the manufacturing process
is free of errors, due to the fact that it omits some of the paths
from consideration. The method proposed here achieves this goal
by testing all (or almost all) path delay faults.

Previously proposed methods of synthesis-for-testability
and design-for-testability for path delay faults (e.g., [8-12]) rely
hhhhhhhhhhhhhhhhhhhhh
+ Research supported in part by NSF Grant No. MIP-9220549 and by NSF
Grant No. MIP-9357581

on a two-level description of the circuit or on the use of Binary
Decision Diagrams (BDDs), or investigate the testability of indi-
vidual paths and modify the circuit to render them testable.
Thus, they may not be applicable to large circuits. In addition,
for large circuits with compact BDD or two-level representa-
tions, these methods may create a circuit with a large number of
paths, where large numbers of tests are required, leaving the cir-
cuit practically untestable.

In this work, we present a design-for-testability method to
increase the testability of a circuit to path delay faults, that is
suitable for large circuits. The method achieves fault coverage
figures of over 90% for large circuits when pseudo-random pat-
terns are used, and 100% fault coverage by deterministic pat-
terns, with overheads as explained below. It is the first method
capable of giving such high fault coverages of path delay faults
in large circuits. In addition, it provides a new view of path delay
fault testing, which significantly simplifies the handling of this
model.

The method proposed consists of placing test-points [13]
in the circuit. The test-point locations are selected based on the
number of paths in the circuit. Alternatively, a lower bound on
the number of tests to detect all path delay faults can be used.
The goal of test-point insertion is to reduce these two parame-
ters. Indirectly, it also renders untestable faults testable. The
main advantage of these parameters when used as testability
measures is that they can be computed efficiently [3,4]. It is pos-
sible to use test generation to identify sites for test-point inser-
tion, as done for stuck-at faults in [14,15]. However, we have not
pursued this approach in this work, mainly due to the high com-
putational cost of such an approach, especially for circuits with
large numbers of path delay faults.

A test-point placed on a line g is assumed to make g both
controllable and observable [13]. It thus divides the set of paths
through g for testing purposes into a subset of paths from the pri-
mary inputs up to g, and a subset of paths from g to the primary
outputs. Each one of these subsets can be tested separately, and
subpaths common to several paths in the original circuit are
tested only once. This observation is the main strength of the
method, and it is explained in detail in Section 3. It results in
dramatic reductions in the number of paths that need to be tar-
geted explicitly and in the number of tests required to test them.
At the same time, it also increases the testability of the original
paths, by allowing the test generation objectives for different
subpaths of the same original path to be satisfied separately, by
different tests. Without the observation that test-points divide
the circuit paths for testing purposes, even large numbers of
test-points do not achieve high fault coverage in [6].

The overheads involved in the proposed method are as
follows. There are area and speed overheads that result from the
addition of test-points. We show that the numbers of test-points
required to increase the deterministic fault coverage for ISCAS-

85 benchmark circuits to 100%, or the random pattern fault cov-
erage to above 90%, are relatively small, considering that the
fault coverage when no test-points are used is very low for most
circuits, and that it has to be significantly improved to achieve
over 90% fault coverage. This is different from the situation for
stuck-at faults, where the initial fault coverage is typically over
95% even when random patterns are used, and the number of test
points required is much smaller. There is also an overhead
related to test application, as follows. When test-points are
inserted, some paths in the circuit are divided into subpaths,
which are tested separately through the test-points. In a fault-free
circuit, the delays of these subpaths add up to a normal circuit
delay. Thus, to test the circuit, these subpaths have to be tested
with clocks having shorter periods, that add up to a normal cir-
cuit delay. As a result, a circuit with test-points has to be tested
using one or more clock periods. We point out that the same
requirement for several clock periods exists when testing for gate
delay faults, and methods to accomplish testing with multiple
clock periods were described in [16,17]. Thus, this requirement
is not unusual in the context of delay testing. However, it has not
been used before for path delay fault testing.

Only robust tests are considered in this work. However,
the test-point placements are valid for non-robust tests as well.

Several variations of the test-point placement method are
possible, according to the target testing method and fault cover-
age, and according to the overheads allowed, as follows. In our
experiments, the set of target faults includes all path delay faults
in the circuit. However, it is possible to reduce the number of
test-points required by targeting a subset of paths. The test-
points can also be selected so as to minimize the number of dif-
ferent clock periods required for test application. This number
can be further reduced if the set of target faults is smaller. In
addition, test-point placement can target deterministic test gen-
eration, or random or weighted-random patterns. Our experi-
ments are conducted using deterministic as well as pseudo-
random patterns. The latter correspond to the simplest test appli-
cation scheme, and the one that requires the highest overhead to
make a circuit fully testable. Deterministic test pattern genera-
tion reduces the number of test-points required to achieve the
same fault coverage, and thus reduces the overheads involved in
the proposed method. We present experimental results that sup-
port this observation.

The paper is organized as follows. In Section 2, we give
a more detailed description of the problems involved in path
delay fault testing. In Section 3, we describe the effects of test-
points on the testing of path delay faults. In Section 4, we
describe the two parameters we use for guiding the placement of
test-points, and we present the test-point placement procedure.
In Section 5, we present experimental results for ISCAS-85
benchmark circuits. Section 6 concludes the paper.

2. Preliminaries
To demonstrate the problems arising in path delay fault testing,
we give in Table 1 the number of path delay faults and a lower
bound on the number of deterministic tests to detect all of them
for ISCAS-85 benchmark circuits. The results are taken from
[4]. For comparison, we also give the number of tests to detect
all stuck-at faults from [21]. Table 1 shows that extremely large
numbers of path delay faults need to be targeted, and that the
number of tests to detect them, which is at least as large as the
lower bound, is sometimes extremely large too. Large numbers
of tests result in impractical test storage and test application

times for deterministic patterns, potentially preventing thorough
testing of path delay faults. In addition, test generation times can
be impractically large.

Table 1: The numbers of faults and tests

path-delay stuck-at
circuit faults lower bound tests[21]iii
c880 17,284 252 30
c1355 8,346,432 2,610 86
c1908 1,458,114 2,886 115
c2670 1,359,768 3,480 67
c3540 57,353,342 76,541 115
c5315 2,682,610 5,269 56
c6288 197.886E18 892,987,520,786 16
c7552 1,452,986 4,339 87cc

c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c

The problem of large numbers of tests is even more acute
when random pattern testing is done. The simplicity of on-chip
generation of pseudo-random patterns makes it a very attractive
test application scheme, however, the number of patterns
required to detect all path delay faults may make it ineffective.
Thus, one of the purposes of test-point placement is to allow
high fault coverage to be achieved using reasonable numbers of
test patterns.

Another problem involved in path delay fault testing is
the large numbers of untestable faults. For example, the fault
coverage achieved in [6] for ISCAS-85 benchmark circuit c 6288
was 8.3E-19. After modifying the circuit to increase its testabil-
ity, the fault coverage was 2.9E-11, still extremely low. We
point out that these results are some of the best available.

3. The effects of test-points on path delay fault
testing
The introduction of test-points has several effects on the testing
of path delay faults. These effects are considered in this section.
Unless stated otherwise, we assume that a test-point on line g
makes g both controllable and observable. In other words, g can
be regarded as a primary output driven by the logic that drives g
in the original circuit, and as a primary input driving the logic
driven by g in the original circuit. Practical implementations of
test-points that support this view can be found in [13]. The new
primary output is given a different index in the modified circuit.
An example is shown in Figures 1 and 2 (based on ISCAS-85
benchmark c 17), where a test-point is placed on line 9. The new
primary output index in Figure 2 is 18, and the new primary
input is given the original line index 9.

To study the effect of a test-point on the number of paths
that need to be tested explicitly, consider c 17 shown in Figure 1.
There are 11 paths in this circuit. Six of these paths go through
line 9, namely, the paths

3-5-9-10-12-13-16 6-9-10-12-13-16
3-5-9-10-12-14-17 6-9-10-12-14-17
3-5-9-11-15-17 6-9-11-15-17

(paths are described by the indices of the lines they go through,
using the line indices given in Figure 1). Let us now place a
test-point on line 9. For testing purposes, the circuit changes as
shown in Figure 2. In the modified circuit, we have two paths
leading to line 18, and three paths starting at line 9. The paths are

3-5-18 9-10-12-13-16

6-18 9-10-12-14-17
9-11-15-17

In the modified circuit, we have only five paths through lines 9
and 18, instead of six paths through line 9 in the original circuit.

3

5

4

6

1

2

7

9

10

11

8

15

12

13

14

16

17

Figure 1: The circuit c 17

3

5

4

6

1

2

7

9

10

11

8

15

12

13

14

16

1718

Figure 2: c 17 with a test-point on line 9
To see the effect of placing a test-point on a line g, let us

denote the number of paths from the primary inputs to g by
Np,PI(g) and let us denote the number of paths from g to the pri-
mary outputs by Np,PO(g). In the original circuit, there are
Np,PI(g).Np,PO(g) paths through line g (e.g., for c 17, Np,PI(9) = 2,
Np,PO(9) = 3 and Np,PI(9).Np,PO(9) = 6). In the modified circuit,
there are Np,PI(g)+Np,PO(g) paths through the primary input and
primary output corresponding to line g, as follows. There are
Np,PI(g) paths from the primary inputs to the primary output
corresponding to g, and there are Np,PO(g) paths starting from the
primary input corresponding to g and going to the primary out-
puts. Since these paths are not connected any more, the total
number of paths that have to be tested is simply the sum. The
total number of paths in the circuit reduces by
Np,PI(g).Np,PO(g)−(Np,PI(g)+Np,PO(g)) when a test-point is
placed on g. Thus, the number of paths in the circuit, and hence
the number of path delay faults, can be dramatically reduced by
placing test-points, from products that can yield exponential
numbers of paths, to sums.

When an additional test-point is inserted on a line f, the
number of paths reduces by
Np,PI(f).Np,PO(f)−(Np,PI(f)+Np,PO(f)). Here, the number of
paths is computed not in the original circuit, but in the circuit
after g has already been replaced by appropriate primary input
and primary output. The number of paths in a circuit in the pres-
ence of any number of test-points can be computed by first
replacing every test-point by a primary input and a primary out-
put, and then counting the number of paths using the procedure
from [3].

Let us now consider the test application requirements in a
circuit with test-points. For purposes of illustration, we associate

with every line in the circuit a unit delay and we associate with
every path a delay that equals the number of lines along the path.
We also assume that a test-point adds one unit of delay. We
chose this delay model for its simplicity, however, any other
delay model can be accommodated. Let us consider the path
3-5-9-10-12-13-16 in c 17 (cf. Figure 1). This is one of the long-
est paths in the original circuit, and therefore the original circuit
has to be operated with a clock period of at least seven units
(which is the number of lines along the longest paths). The pres-
ence of a test-point on line 9 adds one unit of delay to the path
3-5-9-10-12-13-16, and the circuit is now operated with a clock
period of eight units. Testing is done using the modified circuit
(cf. Figure 2). In Figure 2, the path we consider is divided into
two paths, 3-5-9 and 9-10-12-13-16. For the original circuit to
operate correctly, the delay of the path 3-5-9 must not exceed
three units, and the delay of the path 9-10-12-13-16 must not
exceed five units. This will ensure that in the complete circuit,
the delay along the complete path does not exceed eight units.
Thus, we need two additional clock periods during testing.

In general, the number of different clock periods required
for testing are determined using the original circuit, where the
appropriate lines are marked as test-point locations (and not in
the modified circuit, where the test-points are replaced by pri-
mary inputs and primary outputs). The various clock periods are
determined as follows.
(1) For every test-point g, we find the maximum delay from the
original primary inputs to g, denoted by δPI(g). All the paths
from the original primary inputs to the test-point g must have a
delay which is at most equal to δPI(g). The set {δPI(g): g is a
test-point} is the first component of the set of clock periods
required. Note that if there is a path from a primary input to g,
which is shorter than δPI(g), then as long as its delay does not
exceed δPI(g), it is not considered as a delay fault, and we do not
require a special clock period for testing it. This is similar to the
conventional situation where an original circuit is tested with a
single clock period, equal to the delay of the longest path,
although it may have paths of different lengths.
(2) For every two test-points g 1 and g 2, if there is a path from g 1
to g 2, we find the maximum delay of such a path, and denote it
by δ(g 1,g 2). The set {δ(g 1,g 2): g 1,g 2 are test-points} is the
second component of the set of clock periods required. Again,
as long as every path between g 1 and g 2 operates within the
delay of the longest path, the circuit is considered free of fault.
(3) For every test-point g, we find the maximum delay from g to
the original primary outputs, denoted by δPO(g). All the paths
from g to the original primary outputs must have a delay which
is at most equal to δPO(g). The set {δPO(g): g is a test-point} is
the third component of the set of clock periods required.
(4) In addition, the original circuit clock period is required to test
the paths that go from the original primary inputs to the original
primary outputs (if such paths remain).

We point out that it may sometimes be possible to allow
the delay of some subpaths to exceed the delay set by their
length, if they are not part of maximum delay paths, and thus
reduce the number of clock periods required. We do not explore
this possibility here.

The procedure for computing the required clock periods is
summarized below. The procedure has two labeling phases. In
the first one, the circuit is labeled starting from the primary
inputs, in order to find the delays from the primary inputs to
every test-point. In the second phase, the circuit is labeled start-
ing from every test-point separately, in order to find the delay to

all other test-points and to the primary outputs. In all the pro-
cedures given in this paper, we assume that the lines in the cir-
cuit are given increasing indices from inputs to outputs, and that
fanout branches are given their own indices, different from their
stem index. We also assume that the first line-index is 1 and that
the number of lines in the circuit (and the last line-index) is L.
Procedure 1: Finding the required clock periods
(1) Set C = φ (C is the set of required clock periods).
Phase 1:
(2) Assign to every primary input the label δ = 0. Assign to

every other line the label δ = −1 (−1 stands for an
undefined label). Set i = 1.

(3) If i is a gate with inputs i 1,i 2, . . . ,ik , labeled
δ(i 1),δ(i 2), . . . ,δ(ik), respectively, then find the max-
imum label of any input of i which is not a test-point, i.e.,
compute δ = max{δ(ij):ij is not a test-point}. If δ ≥ 0,
assign to line i the label δ+1 (excluding inputs ij which
are test-points ensures that labeling stops at the test-points
and subpaths through multiple test-points are not con-
sidered).

(4) If i is a fanout branch with a stem g labeled δ(g) ≥ 0, and
if g is not a test-point, label line i by δ(g)+1.

(5) Set i = i +1. If i ≤ L, go to Step 3.
(6) For every test-point g, if δ(g) > 0, set C = C∪{δ(g)}.
(7) Find the maximum label, δ, assigned to any primary out-

put. If δ > 0, set C = C∪{δ}.
Phase 2:
(8) For every test-point g:

(a) Assign to g the label δ = 0. Assign to every other
line the label δ = −1. Set i = g +1.

(b) Execute Steps 3 and 4.
(c) Set i = i +1. If i ≤ L, go to Step 8b.
(d) For every test-point g, if δ(g) > 0, set

C = C∪{δ(g)}.
(e) Execute Step 7.

We stress again that the use of multiple clock periods for
testing of delay faults is also used for gate delay fault testing
[16,17].

In addition to reducing the number of paths that need to
be tested and hence the number of tests to detect all path delay
faults, another advantage of test-point placement is that it allows
all parts of a path to be tested, when the complete path is unte-
stable. The circuit of Figure 3 demonstrates this point. Consider
the path delay fault with the 0→1 transition at the source of the
path 1-6-8-9-10. This fault is untestable, since it requires that
line 3 (and consequently line 2) would have a final value of 1 in
order to propagate the 0→1 transition from line 1 to line 6, and it
requires that line 4 (and consequently line 2) be set to a stable 0
to propagate the 0→1 transition from line 9 to line 10. Now con-
sider the two subpaths formed if a test-point is placed on line 8,
1-6-8 and 8-9-10. Both of these subpaths are testable. The first is
testable by the test that assigns a 0→1 transition to line 1, a
stable 1 to line 2 and a stable 0 to line 5. The second subpath is
testable by the test that assigns a 0→1 transition to line 8, a
stable 1 to line 7 and a stable 0 to line 2. Thus, the complete path
can be tested by testing each one of its subpaths using an
appropriate clock period.

Finally, we point out that it is not necessary to make the
test-points controllable. If only observation points are added, a
transition on a test-point has to be launched by the circuit driving

1
2 3

4

5

6

7

8

9

10

Figure 3: An example of the effect on testability
it. However, to take advantage of the reduction in the number of
faults that have to be targeted explicitly, it would be necessary in
such a case to measure propagation delays from the time a transi-
tion reaches a test-point until it reaches the primary outputs.
This may be difficult to accomplish in practice, and we therefore
prefer to use both controllable and observable test-points.

4. Test-point placement
Two heuristics for test-point placement are described in this sec-
tion. Based on these heuristics, a greedy test-point placement
procedure is presented. The advantage of these heuristics is that
they are easy to compute, and are effective in increasing the tes-
tability of the circuit. They avoid the need for test generation as
in test-point placement for stuck-at faults [14,15], which would
have made the test-point placement process highly computation-
intensive. Non-greedy approaches can be taken to test-point
placement, however, they would be more complex, and are not
investigated in this work.

The first heuristic for test-point placement is based on the
number of paths in the circuit, and is aimed at reducing this
number. The motivation for the use of this heuristic is that the
number of paths in the modified circuit is also the number of
paths that have to be explicitly targeted during test generation, in
order to test all the paths in the original circuit. The smaller the
number of such paths, the easier it is to test the circuit.
Indirectly, paths which are untestable in the original circuit may
have testable subpaths in the modified circuit (cf. Figure 3).
Thus, cutting the paths by test-points may increase their testabil-
ity. We showed in Section 2 that when a test-point is placed on
line g, the number of paths through g is reduced from
Np,PI(g).Np,PO(g) to Np,PI(g)+Np,PO(g), and the total number of
paths is reduced accordingly. To compute Np,PO(g), we use the
procedure from [3], that labels each line i with the number of
paths from i to the primary outputs. The procedure starts by
assigning to every primary output the label 1 (there is one path
from a primary output to the primary outputs, that includes only
the primary output itself). It then proceeds from outputs to
inputs, assigning appropriate labels to all the lines. The pro-
cedure is repeated below for completeness.
Procedure 2 [3]: Computing the number of paths to the primary
outputs
(1) Assign all the primary outputs the label Np,PO = 1. Set

i = L.
(2) If line i is the input of a gate with output g, and the label

of line g is Np,PO(g), label line i by Np,PO(g).
(3) If line i is a fanout stem with branches i 1,i 2, . . . ,ik ,

labeled Np,PO(i 1), Np,PO(i 2), . . . , Np,PO(ik), respectively,

label line i by
j =1
Σ
k

Np,PO(ij).

(4) Set i = i −1. If i > 0, go to Step 2.
To compute Np,PI(g) for every line g, we use a similar

procedure, except that now, labeling is done from inputs to out-
puts. As a result, we obtain for every line i the number of paths
from the primary inputs to i. The procedure is given next.
Procedure 3: Computing the number of paths from the primary
inputs
(1) Assign all the primary inputs the label Np,PI = 1. Set i = 1
(2) If line i is the output of a gate with inputs i 1,i 2, . . . ,ik ,

labeled Np,PI(i 1), Np,PI(i 2), . . . , Np,PI(ik), respectively,

then label line i by
j =1
Σ
k

Np,PI(ij).

(3) If line i is a fanout branch of a stem g, labeled Np,PI(g),
label line i by Np,PI(g).

(4) Set i = i +1. If i ≤ L, go to Step 2.
The test-point placement procedure we implemented is

based on the number of path criterion. It is a greedy procedure,
i.e., it selects one test-point at a time. The line that maximally
reduces the number of paths is selected at every iteration. The
procedure is given next.
Procedure 4: Test-point placement
(1) Set Ntp = 0 (Ntp is the number of test-points).
(2) For every line g in the circuit, compute Np,PO(g) and

Np,PI(g), using Procedures 2 and 3.
(3) Select the line g for which

Np,PI(g).Np,PO(g)−(Np,PI(g)+Np,PO(g)) is maximum, and
place a test-point on g.

(4) Set Ntp = Ntp+1. If the number of test-points does not
exceed a predetermined limit, go to Step 2.
The number of test-points to be actually placed in a cir-

cuit is determined according to the fault coverage and test set
size goals, as illustrated in the following section.

Another criterion for selecting the test-point locations is
the number of tests to detect all path delay faults. It is based on a
labeling procedure, similar to Procedure 3, that computes a lower
bound on the number of tests. The procedure is given in [4], and
it is omitted here for space considerations. We refer to it as Pro-
cedure 5. The basic idea behind Procedure 5 is the following.
Consider an AND gate. In the best case, that results in a
minimum number of tests, all the path delay faults that require
0→1 transitions on the inputs of the gate can be tested simul-
taneously, by the same test. Path delay faults that require 1→0
transitions on different inputs must always be tested by separate
tests, since robust propagation of transitions does not allow two
1→0 transitions to be propagated simultaneously from the inputs
of an AND gate to its output. Similar arguments exist for all
other gate types. We use the following notation. The label
N 1x 0(i) is a lower bound on the number of tests for the cone of
line i, that bring the 1→0 transition to line i, and N 0x 1(i) is a
lower bound on the number of tests that bring the 0→1 transition
to line i. If line i is the output of a k-input AND gate with inputs
i 1,i 2, . . . ,ik , labeled (N 1x 0(i 1),N 0x 1(i 1)), (N 1x 0(i 2),N 0x 1(i 2)),
. . . , (N 1x 0(ik),N 0x 1(ik)), then the output i of the gate is labeled

by
(

j
ΣN 1x 0(ij),

j
max{N 0x 1(ij)})

To select test-points, we use the following heuristic to
evaluate the effect on the number of tests of placing a test-point
on line g. A test-point on line g changes its label from
(N 0x 1(g),N 1x 0(g)) to (1,1). For this change to have an effect on
the lower bound, g has to be in the cone of the output on which

the highest lower bound is obtained. We select test-points
according to the maximum value of N 0x 1(g)+N 1x 0(g). However,
in contrast to the number of paths criterion, in this case, it is not
guaranteed that the number of tests will reduce by
N 0x 1(g)+N 1x 0(g)−2. Therefore, after placing the test-point, we
check whether the lower bound on the number of tests was
indeed reduced. If it did not reduce, we reverse the decision and
remove the test-point from g.

5. Experimental results
The circuits considered are ISCAS-85 benchmark circuits. We
first eliminated untestable single stuck-at faults using the redun-
dancy removal procedure from [19]. Then, we applied to the
irredundant circuits a set of circuit modifications proposed in [4],
that transform the circuit into an equivalent circuit with a
reduced number of paths and a reduced lower bound on the
number of tests. These modifications were applied to the circuits
before test-point placement was attempted. The reason to elim-
inate redundant single stuck-at faults is that if a line in the circuit
is redundant (has a redundant single stuck-at fault on it), path
delay faults passing through it are also untestable. Thus, at least
one test-point would be required to make the stuck-at fault
testable, before the path delay faults become testable. To deter-
mine in a controlled way the cost of making a circuit fully
testable to path delay faults, no untestable stuck-at faults should
exist. The modifications of [4] to reduce the number of paths and
the lower bound on the number of tests were introduced since
they have no overheads, and should therefore be attempted
before the overheads of test-points are incurred. They were
effective for c 1355, c 2670, c 5315 c 6288 and c 7552. They did
not affect c 880 and c 1908. Circuits c 432 and c 499 were omit-
ted from the experiment since they include XOR gates, making
the results implementation-dependent, and c 17 was omitted
because of its small size.

We applied Procedure 4 to the modified circuits, to select
test-point locations. The list of test-points produced by Pro-
cedure 4 was then used as an ordered list from which test-point
locations were actually selected, for different fault-coverage lev-
els. Test-point placement times for 1,000 test-points are given in
Table 2. Time is measured in seconds on a SUN SPARC2
workstation.

Table 2: Test-point placement time [sec]

circuit time circuit time
iiiiiiiiiiiiii iiiiiiiiiiiiii

c880 26 c3540 123
c1355 53 c5315 200
c1908 66 c6288 259
c2670 75 c7552 265c

c
c
c
c
c
c

c
c
c
c
c
c
c

The purpose of the first experiment we conducted was to
exhibit the effect of test-points on the fault coverage by random
patterns and by deterministic patterns. To check the effect on
random pattern testability, we simulated fixed numbers of ran-
dom tests applied to a given circuit with different numbers of
test-points inserted. The number of random tests applied was
either 100,000 or 200,000, according to the number of tests
required before the fault coverage saturated for the circuit with
no test-points. To produce K random two-pattern tests, we pro-
duced K +1 input patterns, and applied every consecutive pair.
For example, for a three-input circuit and K = 4, we may pro-
duce the patterns {001, 111, 010, 011, 001}, and apply the two-
pattern tests <001,111>, <111,010>, <010,011> and <011,001>.

Deterministic test generation was performed using the procedure
from [18]. For a given circuit C, we used 0, 10, 20, 30, . . .

test-points. Here, we report only the results (1) when no test-
points are inserted; (2) for the smallest number of test-points for
which the test generation procedure from [18] is applicable (the
procedure from [18] is not applicable if the number of paths is
large); (3) when 100% deterministic fault coverage is achieved;
and (4) when 100% fault coverage by random coverage is
achieved, but only if the number of test-points for this purpose
does not exceed 10% of the number of lines in the original cir-
cuit. The results are reported in Table 3, as follows. There is a
row for every number of test-points inserted. Each row is organ-
ized as follows. After the number of test-points, we give the
number of clock periods required to test all path delay faults,
computed by Procedure 1. The number of faults is given next.
The following two columns give the number of detected faults
and the fault coverage by random patterns. The last two columns
give the number of detected faults and the fault coverage by
deterministic patterns. For example, for c 1355, the test genera-
tion procedure from [18] was first applicable after 4 test-points
were inserted, and the fault coverage was 57.3%; c 1908 (before
redundancy removal and the modifications of [4]) has 1908 lines,
and we inserted up to 190 test-points. The deterministic fault
coverage for 70 test-points was complete. It can be seen that
even small numbers of test-points give a significant increase in
fault coverage. In addition, 100% fault coverage can be achieved
with reasonable numbers of test-points in most cases. For c 880
and c 1355, we also looked for the exact number of test-points
that resulted in complete fault coverage by deterministic pat-
terns. For c 880, this happened with 7 test-points, and for c 1355,
10 test-points were needed.

Comparing the numbers of test-points in Table 3 to the
numbers of test-points required to detect all stuck-at faults, the
numbers may seem high. However, it has to be noted that the ini-
tial coverage of path delay faults is very low, compared to the
initial coverage of stuck-at faults, which is typically over 95%
even when random patterns are used.

In the experiment above, we ignored the need to apply
each test pattern with different clock periods, and concentrated
on the fault coverage achievable. In practice, when a test pattern
is applied, different outputs (primary outputs or test-points) may
have to be observed at different times, using different clock
periods. Since the use of multiple clock periods in parallel may
be too expensive, we also performed the following experiment.
We applied the same number of patterns applied before, how-
ever, this time, we computed the fault coverage separately for
every clock period. This experiment allows clock periods that
cover a small number of faults to be discarded, if the overhead of
having another clock period does not justify the additional fault
coverage. We performed this experiment for several of the
modified circuits above. The results are reported in Table 4, in
the following way. For every clock period that is useful in
detecting any faults, we report the number of faults detected and
the contribution to the fault coverage. orig stands for the normal
clock period (to test paths from the original primary inputs to the
original primary outputs). It can be seen that, in most cases, there
are many clock periods that detect very few faults. For example,
for c 1355, clock periods 2 and 3 cover only 0.6% and 0.4% of
the faults, respectively. At the cost of reducing the fault coverage
by 1%, these clock periods can be omitted.

6. Concluding remarks
We described a method of test-point insertion for large combina-
tional circuits, to increase their path delay fault testability. The
method was based on a test application scheme that uses multi-
ple clock periods, to allow paths in the circuit to be tested in two
or more parts, thus reducing the number of paths. Test-point
insertion was directly aimed at reducing the number of paths in
the circuit. As a by-product, the number of tests was reduced
and the testability of the circuit increased. We showed that com-
plete fault coverage by deterministic test generation, and above
90% fault coverage using pseudo-random patterns, are achiev-
able by this method.

In our experiments, the set of target faults included all
path delay faults in the circuit. The number of test-points
required to achieve a given testability level can potentially be
reduced by targeting smaller subsets of paths. Such reductions
are currently under investigation.

References
[1] J. D. Lesser and J. J. Schedletsky, "An experimental delay

test generator for LSI logic," IEEE Trans. Comput., vol.
C-29, pp. 235-248, Mar. 1980.

[2] Y. K. Malaiya and R. Narayanaswamy, "Testing for tim-
ing faults in synchronous sequential integrated circuits,"
in Proc. Int. Test Conf., pp. 560-571, Oct. 1983.

[3] I. Pomeranz and S. M. Reddy, "An Efficient Non-
Enumerative Method to Estimate Path Delay Fault Cover-
age", Proc. Intl. Conf. on Computer-Aided Design, 1992,
pp. 560-567.

[4] I. Pomeranz and S. M. Reddy, "On the Number of Tests
to Detect All Path Delay Faults in Combinational Logic
Circuits", Technical Report No. 12-1-1992, ECE Dept.,
U. of Iowa.

[5] C. J. Lin and S. M. Reddy, "On delay fault testing in logic
circuits," IEEE Trans. CAD, pp. 694-703, Sept. 1987.

[6] I. Pomeranz, S. M. Reddy and P. Uppaluri, "NEST: A
Non-Enumerative Test Generation Method for Path Delay
Faults in Combinational Circuits", in Proc. 30th Design
Autom. Conf, 1993, pp. 439-445.

[7] W. K. Lam, A. Saldanha, R. K. Brayton, A. L.
Sangiovanni-Vincentelli, "Delay Fault Coverage and Per-
formance Tradeoffs", in Proc. 30th Design Autom. Conf.,
1993, pp. 446-451.

[8] K. Roy, K. De, J. A. Abraham, and S. Lusky, "Synthesis
of delay fault testable combinational logic," in Proc. Int.
Conf. on Computer-Aided Design, Santa Clara, pp. 418-
421, Nov. 1989.

[9] N. K. Jha and S. Kundu, Testing and Reliable Design of
CMOS Circuits, Kluwer Academic Publishers, Norwell,
MA, 1990.

[10] A. K. Pramanick and S. M. Reddy, "On the design of path
delay fault testable combinational circuits," in Proc. Int.
Symp. on Fault-Tolerant Computing, Newcastle-upon-
Tyne, pp. 374-381, June 1990.

[11] S. Devadas and K. Keutzer, "Synthesis and optimization
procedures for robustly delay-fault testable combinational
logic circuits," in Proc. Design Automation Conf., pp.
221-227, June 1990.

[12] P. Ashar, S. Devadas, and K. Keutzer, "Testability pro-
perties of multilevel logic networks derived from binary
decision diagrams," in Proc. Santa Cruz Conf. on
Advanced Research in VLSI, Apr. 1991.

[13] M. Abramovici, M. A. Breuer and A. D. Friedman, Digi-
tal Systems Testing and Testable Design, Computer Sci-
ence Press, 1990.

[14] I. Pomeranz and Z. Kohavi, "Limited Exponential Algo-
rithms for Increasing the Testability of Digital Circuits by
Testing-Module Insertion", IEEE Transactions on Com-
puter Aided Design, vol. 11, no. 2, February 1992, pp.
247-259.

[15] V. Chickermane, E. M. Rudnick, P. Banerjee and J. H.
Patel, "Non-Scan Design-for-Testability Techniques for
Sequential Circuits", in Proc. 30th Design Autom. Conf.,
1993, pp. 236-241.

[16] W.-W. Mao and M. D. Ciletti, "A Variable Observation
Time Method for Testing Delay Faults", in Proc. 27th
Design Autom. Conf., 1990, pp. 728-731.

[17] V. S. Iyengar and G. Vijayan, "Optimized Test Applica-
tion Timing for AC Test", IEEE Trans. on Computers,
Nov. 1992, pp. 1439-1449.

[18] S. Patil and S. M. Reddy, "A Test Generation System for
Path Delay Faults," Intl. Conf. on Computer Design,
1989, pp. 40-43.

[19] S. Kajihara, H. Shiba and K. Kinoshita, "Removal of
Redundancy in Logic Circuits under Classification of
undetectable Faults", Proc. 22nd Fault-Tolerant Comput-
ing Symp., July 1992, pp. 263-270.

[20] F. Brglez and H. Fujiwara, "A Neutral Netlist of 10 Com-
binational Benchmark Designs and a Special Translator in
Fortran," International Symposium on Circuits and Sys-
tems, June 1985, pp. 663-698.

[21] I. Pomeranz L.N. Reddy and S.M. Reddy, "COMPAC-
TEST: A Method to Generate Compact Test Sets for
Combinational Circuits", 1991 Intl. Test Conf., Oct. 1991,
pp. 194-203.

Table 3: Results for random and deterministic patterns
(a) c 880 (100,000 random patterns)

random deterministic
tps clks faults detect f.c. detect f.c.iii

0 1 17284 1473 8.5% 15454 89.4%
7 17 3414 2101 61.5% 3414 100.0%

70 8 884 884 100.0%cc
c
c
c
c

cc
c
c
c
c

cc
c
c
c
c

(b) c 1355 (200,000 random patterns)

random deterministic
tps clks faults detect f.c. detect f.c.iii

0 1 644224 161 0.02% NA NA
4 6 154348 855 0.6% 88396 57.3%

10 5 5680 2187 38.5% 5680 100.0%
20 9 1988 1988 100.0%cc

c
c
c
c
c

cc
c
c
c
c
c

cc
c
c
c
c
c

(c) c 1908 (200,000 random patterns)

random deterministic
tps clks faults detect f.c. detect f.c.ii

0 1 1458050 2482 0.17% NA NA
5 7 120702 2800 2.3% 62329 51.6%

70 13 1962 1885 96.1% 1962 100.0%cc
c
c
c
c

cc
c
c
c
c

cc
c
c
c
c

(d) c 2670 (200,000 random patterns)

random deterministic
tps clks faults detect f.c. detect f.c.iii

0 1 34358 3024 8.8% 14227 41.4%
120 13 1880 1522 81.0% 1880 100.0%cc

c
c
c

cc
c
c
c

cc
c
c
c

Table 3 (Cntd): Results for random and deterministic patterns
(e) c 3540 (100,000 random patterns)

random deterministic
tps clks faults detect f.c. detect f.c.ii

0 1 15111450 3360 0.02% NA NA
20 24 96198 6240 6.5% 31635 32.9%

210 13 2874 2452 85.3% 2874 100.0%cc
c
c
c
c

cc
c
c
c
c

cc
c
c
c
c

(f) c 5315 (100,000 random patterns)

random deterministic
tps clks faults detect f.c. detect f.c.iii

0 1 2506220 8172 0.33% NA NA
10 11 117120 7626 6.5% 59499 50.8%

320 10 4904 4867 99.3% 4904 100.0%cc
c
c
c
c

cc
c
c
c
c

cc
c
c
c
c

(g) c 6288 (100,000 random patterns)

random deterministic
tps clks faults detect f.c. detect f.c.iii

0 1 9.418E15 158 0.00% NA NA
180 41 95386 21689 22.7% 53888 56.5%

1150 7 6618 6618 100.0% 6618 100.0%cc
c
c
c
c

cc
c
c
c
c

cc
c
c
c
c

(h) c 7552 (200,000 random patterns)

random deterministic
tps clks faults detect f.c. detect f.c.iii

0 1 1310174 6987 0.53% NA NA
30 28 93936 9882 10.5% 39049 41.6%

650 11 6460 6451 99.9% 6460 100.0%cc
c
c
c
c

cc
c
c
c
c

cc
c
c
c
c

Table 4: Clock periods for testing
(a) c 880 with 70 test-points

period faults f.ciiiiiiiiiiiiiiiiiiiii
orig 188 21.3%

8 112 12.7%
6 44 5.0%
5 98 11.1%
4 100 11.3%
3 182 20.6%
2 150 17.0%
1 10 1.1%cc

c
c
c
c
c
c
c
c

(b) c 1355 with 20 test-points

period faults f.c.iiiiiiiiiiiiiiiiiiiii
orig 128 6.4%

18 896 45.1%
12 256 12.9%
11 464 23.3%
10 144 7.2%
8 32 1.6%
4 48 2.4%
3 8 0.4%
2 12 0.6%cc

c
c
c
c
c
c
c
c
c

(c) c 6288 with 1150 test-points

period faults f.c.iiiiiiiiiiiiiiiiiiiiii
orig 4 0.06%

7 30 0.5%
6 1022 15.4%
5 492 7.4%
4 1622 24.5%
3 1128 17.0%
2 2320 35.1%cc

c
c
c
c
c
c
c

	Main Page
	DAC94
	Front Matter
	Table of Contents
	Author Index

