
386 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 5, MAY 1998

LOT: Logic Optimization with Testability—New
Transformations for Logic Synthesis

Mitrajit Chatterjee, Dhiraj K. Pradhan, Fellow, IEEE, and Wolfgang Kunz, Member, IEEE

Abstract—A new approach to optimize multilevel logic circuits
is introduced. Given a multilevel circuit, the synthesis method
optimizes its area while simultaneously enhancing its random
pattern testability. The method is based on structural transfor-
mations at the gate level. New transformations involving EX-OR
gates as well as Reed–Muller expansions have been introduced
in the synthesis of multilevel circuits. This method is augmented
with transformations that specifically enhance random-pattern
testability while reducing the area. Testability enhancement is an
integral part of our synthesis methodology. Experimental results
show that the proposed methodology not only can achieve lower
area than other similar tools, but that it achieves better testability
compared to available testability enhancement tools such as tstfx.
Specifically for ISCAS-85 benchmark circuits, it was observed
that EX-OR gate-based transformations successfully contributed
toward generating smaller circuits compared to other state-of-
the-art logic optimization tools.

Index Terms— ATPG, built-in self-test, logic synthesis, opti-
mization, testability.

I. INTRODUCTION

MOST state-of-the-art synthesis and optimization tools
on multilevel combinational circuits focus either on

area [4], [8], [9], [15], performance [17], power [38], or
testability [28]. Targeting multiple design requirements in an
integrated framework is becoming increasingly useful. Al-
though EX-OR gate-based synthesis of two or three-level logic
and Reed–Muller expansions [29], [31] have been explored,
not much work has been reported on general multilevel logic
synthesis using EX-OR gates. Efficient usage of EX-OR gates in
multilevel circuits can be advantageous to a variety of circuits.
These EX-OR gates not only can reduce the circuit area, but
they also make the circuit more easily testable [31], [34]. In
this paper, synthesis is done on multilevel circuits with the
objective of area optimization as well as testability enhance-
ment. Transformations done during synthesis include new
transformations introducing EX-OR gates in multilevel circuits.
Our synthesis method, Logic Optimization with Testability
(LOT), can target effectively both area optimization as well

Manuscript received February 26, 1996; revised April 9, 1997. This research
was supported in part by NSF Grant MIP 9406946 and ONR Grant N00014-
92-J-1366. This paper was recommended by Associate Editor K. T. Cheng.

M. Chatterjee is with Design Automation Group, Integrated Device Tech-
nology Inc., Santa Clara, CA 95054 USA.

D. K. Pradhan is with the Department of Electrical Engineering, Stanford
University, Stanford, CA 94305-9020 USA, on leave from the Department of
Computer Science, Texas A&M University, College Station, TX 77843 USA.

W. Kunz is with the Department of Computer Science, University of
Frankfurt, Frankfurt, Germany.

Publisher Item Identifier S 0278-0070(98)04627-2.

as testability—thus integrating the multiple design goals in an
uniform framework. It is important to note that transformations
[4], [8] using indirect implications [1] provide a powerful,
unified theory for the entire synthesis process [12]. Further
extensions of this framework to delay optimization as well are
currently underway.

The synthesis procedure is based on the gate-level de-
scription of a multilevel circuit. The logic optimization with
Boolean transformations at the structural level [4], [8], [9],
[14] can be more memory efficient [4], [8] and closer to
the physical reality of the design compared to a functional
level logic optimization based on Boolean networks or binary
decision diagrams (BDD’s) [15], [17]. Furthermore, working
on the gate-level can give a better view of other design
costs during synthesis. It applies logic transformations to a
multilevel circuit to yield reduced area as well as enhanced
random testability. The transformations used here are of two
types:

i) transformations based on indirect implications;
ii) new transformations using EX-OR gates as well as

Reed–Muller expansions.

Recursive learning techniques [1]–[4] form the basic mathe-
matical underpinning of our synthesis tool. The transforma-
tions of the first type make use of efficient redundancy iden-
tification techniques to make circuit transformations. These
transformations can perform a wide range of manipulations in
a combinational network [4], [8], thus covering a large design
space. The transformations of the second type are based on
a) replacing conventional gates with EX-OR gates, b) intro-
ducing EX-OR gates, and c) introducing EX-OR gates through
Reed–Muller transformations. Using EX-OR gates as primitive
gates in synthesis has drawn recent attention [29], [30], [34],
particularly in implementing arithmetic and linear functions,
telecommunication, encryption, and encoding schemes [29].
Recent designs of programmable logic designs (PLD) and
field-programmable gate arrays (FPGA’s) also include EX-OR

gates in their logic units. Moreover, circuits with more EX-OR

gates tend to be more testable [31], [34]. Transformations of
both types can be used iteratively to yield an optimized circuit.

While most of the synthesis tools ensure that all faults
of interest are testable, random testability [32] of the faults,
a desirable requirement of built-in-self-test (BIST), is not
considered. Synthesis techniques presented to date [18], [20],
[21] for random pattern testable circuits require two-level
circuit descriptions as inputs. Our technique presented here
differs in that it can take any multilevel circuit as input to

0278–0070/98$10.00  1998 IEEE

CHATTERJEE et al.: LOGIC OPTIMIZATION WITH TESTABILITY 387

the synthesis tool. Thus, this methodology can not only be
applicable in an environment of engineering changes, but also
be used as a postprocessor for other synthesis/optimization
tools. The area optimization results presented here are the best
reported thus far.

The paper is organized as follows. The next section provides
a brief summary of previous work. Section III outlines some
preliminaries and reviews logic synthesis using implication-
based Boolean (IB) transformations. Section IV introduces
new transformations based on EX-OR gates. Section V presents
synthesis for area optimization and its performance in ISCAS-
85 benchmark circuits. Section VI describes an algorithm for
random pattern testability enhancement, presenting related
experimental results. We conclude in Section VII.

II. PREVIOUS WORK

A survey of multilevel combinational logic optimization
techniques based on Boolean networks can be found in [17].
Logic synthesis based on structural transformations has been
effectively applied in [4], [8], [9], and [14]. Synthesis for
area optimization was done by transformations [8], [9] using
redundancy elimination based on adding and removing con-
nections in the circuit. These transformations were also applied
in the form of permissible bridges after technology mapping
in [14]. A generalized form of the IB transformations, based
on orthonormal expansions, has been presented in [4]. The
global flow method proposed by Berman and Trevillyan [17],
[42] iteratively uses two steps in the network: a) making a
connection based on an implication in the network (reduction)
and b) change other nodes based on the new transformation
(expansion). Though the method exploits global transforma-
tions and the Boolean model, it only uses satisfiability don’t
cares in the network.

Logic synthesis, with extensive use of EX-OR gates, has
been limited to two-level (AND-EXOR) and three-level (AND-OR-

EXOR) designs (see [29]). These methods develop algorithms
for optimizing exclusive-or sum-of-products, yielding a min-
imum number of product terms. Earlier, [31], [34], and [40]
have shown that EX-OR gates enhance testability for AND-EXOR

designs.
Logic synthesis with testability enhancement has been stud-

ied at various levels of synthesis—starting from high-level
synthesis to technology mapping [28]. In the context of random
testable logic synthesis of the unmapped circuit, previous
research consists of redundancy removal from combinational
circuits [17], synthesis of fully testable circuits [13], [23],
testability-preserving of multiple stuck-at-faults, path delay
faults [28], [41], and synthesis of random testable circuits from
two-level circuits [20], [21].

It has been proposed in [18] that careful assignment of
don’t cares of functions and redundant lines can improve
the detectability profile of circuits. The two previous random
pattern testable circuit synthesis methods [20], [21] start with
a two-level circuit, first determining the random testability of
the circuit and identifying the hard faults. Multilevel circuits
are synthesized from two-level circuits using transformations,
with each step being evaluated based on its impact on the

random testability of the circuits. The transformations in [20]
are limited to algebraic factors, namely kernels and common
cubes. The algebraic transformations used in [21] include sin-
gle cube division, double cube division, and some double cube
divisions with multiple outputs. The synthesis procedure in
[20] also uses testability-preserving transformations proposed
in [13] and [23] and inserts test points based on fault detection
probabilities.

III. TRANSFORMATIONS FOR SYNTHESIS

The proposed synthesis method takes as its input a multi-
level combinational circuit and optimizes area while enhancing
testability. Therefore, the cost function used can include both
area and random pattern testability. Structural transformations
are used to minimize the cost function. This section gives the
basic preliminaries for synthesis and presents the transforma-
tions to be used here.

A. Preliminaries

Assume a combinational circuit is given with primary
inputs and primary outputs. The combinational circuit
consists of primary gates like AND, OR, NOT, NAND, NOR, and
EX-OR gates. All gates in the circuit have a unique label, and
their output signals realize Boolean functions

with , where the variable corre-
sponds to the primary input signals of the circuit . Following
the usual representation of a combinational circuit as a directed
acyclic graph (DAG), a signal lies in the transitive fanout
of if and only if there exists a directed path from to .
Furthermore, we assume that there are no external don’t cares;
the function of the combinational network
with is completely specified.

Two combinational networks, and , are called equiva-
lent, denoted as if they implement the same function,

with . They are called
structurally identical [1] if there exists a one-to-one mapping
between and , such that for every node in , there
is a in and vice-versa, where and implement the
same function. A transformation from a network to another
equivalent network is possible by replacing the node in

by a node with an equivalent function. A function at
node can also be replaced by some nonequivalent function

if this does not change the function
of the logic network as a whole. Such functions are called
permissible functions [11].

B. Implication-Based Boolean Transformations—Review

Indirect implications derived by using recursive learning
have been shown to be useful in testing verification and
optimization [1]–[4]. Given a set of value assignments, recur-
sive learning can be used to obtain all indirect implications.
The procedure allows the user to set the maximum level of
recursion to control the computational time. Therefore, this
provides a way of trading off between time for transformations
and redundancy removal. In this paper, we rely on Boolean
transformations derived by using indirect implications. These

388 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 5, MAY 1998

(a) (b) (c)

Fig. 1. An example of an IB transformation.

transformations can be referred to here as IB transformations.
They have three main advantages.

• They are simple, and the cost of each transformation can
be estimated with low time overhead.

• These transformations preserve the functionality of the
circuit; therefore, there is no need to verify for equiva-
lence after transformation.

• The expansions based on IB transformations can cover a
wide variety of logic transformations [4], [8].

The following reviews the basic transformations already pre-
sented in [4]. We augment these transformations with new ones
for our tool. The factorization techniques commonly used in
multilevel optimization can be derived based on the expansion

(1)

Here, we use the following notation, ,
to represent the above equation. The above expression can
take the form of a division operation with as the
divisor, as the quotient, as the dividend, and

as the remainder. The terms and
denote the cofactors of this expansion. The above

expression can be interpreted as a generalized form of the well-
known Shannon expansion [4]. The main issue of this approach
is to divide [15], [17] function by appropriate divisors

, such that the exploitation of the internally created don’t
cares results in a reduced circuit. Though don’t care conditions
are not explicitly calculated, a test pattern generation tool is
used to remove the redundancies resulting from these don’t
cares. This leads to the following two-step process.

1) Transformation:
2) Reduction: Redundancy elimination.

The above can be seen as a special way of performing a
Boolean division [17] for some dividend and some divisor

(Boolean division is not unique). The method to identify
divisors is based on indirect implications [1], [2]. If a value
assignment at a node allows us to imply a unique value
assignment at node , then the four transformations in Table I
are valid [4]. The node must not be in the transitive fanout
of to ensure that the circuit remains combinational after the
transformation.

Example 3.1: Take the circuit shown in Fig. 1(a) as an
example. It can be observed that and a
transformation based on Condition 2) can be applied on the
circuit. The resultant circuit is shown in Fig. 1(b). Redundancy
elimination on the resultant circuit would determine lines “c”
and “d” to be as redundant stuck-at-zero (s-a-0) lines and,

TABLE I
TRANSFORMATIONS BASED ON IMPLICATIONS

hence, can be eliminated. The final circuit after redundancy
elimination is shown in Fig. 1(c).

Transformations identified by testability-based conditions
[4] are related to permissible functions.

Definition 3.1: Given a line and a function , we say
that there is a detectability condition if ,
is a value assignment which is necessary to detect the fault,

s-a- , .
The above definition is a definition of condition for de-

tectability (CD) relation identifying a relationship between
a line and a function. The relation has been referred to as
D-implications in [4]. A CD relation essentially identifies a
necessary condition, , to detect a change in the value
on node from to . In other words, if , then the
fault s-a- becomes undetectable. This is denoted as

This can also be extended to a multiway relation in the
circuit. The conventional implications can be viewed as a
special case of such CD relations. These relations can exploit
the controllability as well as observability conditions in the
concerned nodes. The transformations of [4] are formulated
below in terms of the CD relations.

Theorem 3.1: Let and be arbitrary nodes in a combi-
national network, , where is not in the transitive fanout of

, and is an irredundant node in the network. The following
permissible functions are possible.

a) The function with is a permissible
function at node if and only if the CD relation

is true.
b) The function with is a permissible

function at node if and only if the CD relation

is true.
c) The function with is a permissible function

at node if and only if the CD relation
is true.

CHATTERJEE et al.: LOGIC OPTIMIZATION WITH TESTABILITY 389

(a)

(b)

(c)

Fig. 2. An example of an IB transformation using CD relations.

d) The function with is a permissible function

at node if and only if the CD relation
is true.

In this paper, Transformations 1–4 will refer to the above
permissible changes, a)–d), respectively, followed by redun-
dancy removal.

Example 3.2: The circuit shown in Fig. 2(a) has a CD

relation line d line c . This implies that for
line d to be observable at any one of the primary outputs,
line c has to be set to the value one. Thus, Transformation 3
can be applied on the circuit. The resultant circuit is shown
in Fig. 2(b). Redundancy elimination on the resultant circuit
would determine line f to be stuck-at-one (s-a-1) redundant.
The final circuit after redundancy elimination is shown in
Fig. 2(c).

CD relations to be used in the transformations
are determined by recursive learning. This is accom-
plished by two routines: make all implications() and
fault propagation learning(), as given in [1], if they are
performed to the Roth’s five-valued logic alphabet. The
implication-based synthesis procedure only looks at indirect
implications as the promising candidates for optimization.

IV. TRANSFORMATIONS WITH EX-OR GATES

Circuits transformations based on Transformations 1–4 can
make manipulations in a combinational network based on
AND, OR, and NOT gates. These transformations, however,
preclude EX-OR gates and other complex gates. Transforma-
tions involving EX-OR gates and complex gates can provide an

added dimension in the search for circuit optimization. This
is evident from the results presented later. New implication-
based transformations introduce EX-OR gates a) by replacing a
two-input gate with an EX-OR or EX-NOR gate, b) addition of
an extra EX-OR gate, and c) using Reed–Muller Expansions. It
may be noted that, as in [4], these transformations are designed
to preserve functionality, thus avoiding the expensive step
of checking the validation of the transformation. Also, they
introduce redundancy in the circuit which, when removed, can
often lead to a reduced circuit.

A. Transforming Gate Functionality

Two-input gates in circuits can be transformed to EX-OR

gates or EX-NOR gates if they are permissible, based on
implications [9], [11], [17]. A two-input gate, however, when
transformed to an EX-OR gate, does not necessarily enhance the
random testability. If the transformation is followed by other
transformations, as we show, the EX-OR gate may enhance
random pattern testability. A two-input AND (OR) gate or a
two-input NOR (NAND) gate can be transformed to an EX-NOR

(EX-OR) gate, due to an observability don’t care condition [9],
[17]. We can identify two such types of gate transformations.

Theorem 4.1: Let be the output of an AND (NOR) gate with

two inputs, and . If the condition
holds, this gate can be replaced by a permissible EX-NOR gate,
now becoming equal to .

Proof: The value assignments at the input of an AND

(NOR) gate required to test a s-a-1 at the output of the gate
are , and . When the necessary
condition to test the s-a-1 fault satisfies the relation (

), it implies that only possible value assignments that can
test the fault are and . The value assignment

to inputs of the AND (NOR) gate is either not
satisfiable or observable, and hence, can be treated as a don’t
care to the circuit behavior. Thus, under such a condition,
transforming the AND (NOR) gate to an EX-NOR gate does not
change the functionality of the circuit, and is permissible.

Theorem 4.2: Let be the output of an OR (NAND) gate with

two inputs, and . If the condition
holds, this gate can be replaced by a permissible EX-OR gate,
now becoming equal to .

Transformations 5 and 6: Transformations based on Theo-
rems 4.1 and 4.2 followed by redundancy removal.

Example 4.1: The circuit shown in Fig. 3(a) can be rep-
resented as (+ +). At node , the condition for a
change from one to zero, to be observed at , is [

]. This condition can allow the two-
input OR gate at node to be transformed to an EX-OR gate,
(Transformation 6), yielding the circuit in Fig. 3(b).

The search for such gate functionality transformations can
be used in conjunction with other IB transformations. What
these transformations will provide is an added flexibility in
the search for optimal area.

B. Transforming with Addition of EX-OR Gates

In the above, we described how one can replace a two-
input gate with an EX-OR gate. The following shows how one

390 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 5, MAY 1998

(a) (b)

Fig. 3. An example of Transformation 6.

(a) (b)

Fig. 4. An example of Transformation 8.

can combine lines through an additional EX-OR gate like it is
done in Transformations 1–4. EX-OR gates can be introduced
as permissible functions based on conditions testing for line
s–a-0 as well as the line s-a-1. The following transformations
give the condition for introducing permissible EX-OR gates.

Theorem 4.3: Let and be arbitrary nodes in a combi-
national network, , where is not in the transitive fanout of

, and is an irredundant node in the circuit. The function
with is a permissible function at node if and

only if the CD relations and
are true.

Theorem 4.4: Let and be arbitrary nodes in a combi-
national network, , where is not in the transitive fanout of

, and is an irredundant node in the circuit. The function
with is a permissible function at node if and

only if the CD relations and
are true.

Transformations 7 and 8: Transformations based on Theo-
rems 4.3 and 4.4, followed by redundancy removal.

Example 4.2: The circuit shown in Fig. 4 illustrates an
example for Transformation 8. The conditions required to
test s-a-0, as well as s-a-1, both include the assignment
(). Thus, from the definition of CD relations, we get

and as true. The resultant
circuit is shown in Fig. 4(b).

The transformations introduced here are new and can be
used for area optimization as well as for random testability
enhancement in combinational circuits. Introduction of the
EX-OR gate may result in more than one line becoming
redundant, thus aiding area optimization. The EX-OR gate will
also enhance the observability of all the faults in the input
cone of , resulting in better random testability.

C. Transformation Based on Reed–Muller Expansions

Transforming AND and OR gates into Reed–Muller expan-
sions can lead to different circuit representations from where

(a) (b)

(c) (d)

Fig. 5. Example of an IB transformation using Reed–Muller expansions.

the intermediate nodes can be used as “divisors.” Two-input
AND gates and OR gates can be expanded by the relations

A B A B A B

A B A B A B

To represent the expanded relations, the output of the new
gates introduced can become part of an IB transformation.
These transformations are different from those used in [4] and
hence can aid in circuit optimization and random testability
enhancement.

Transformation 9: Expand node functions using
Reed–Muller expansions, use intermediate nodes for IB
transformations, and then reduce the expanded function back
to original form.

Given below is an example to yield better understanding to
these types of transformations.

Example 4.3: Consider a subcircuit, shown in Fig. 5(a).
Let the OR gate in the subcircuit be expanded, based on its
Reed–Muller expansion, as shown in Fig. 5(b). Now, it may
happen that in the subcircuit, there is a CD relation, denoted
by . The circuit transformation based on the
CD relation is shown in Fig. 5(c). The final subcircuit, after
extracting back the OR gate, is in Fig. 5(d). The transformation
from the subcircuit in Fig. 5(a) to the one in Fig. 5(d) is new
and may lead to a different search space in circuit optimization.
Moreover, stuck-at faults at and are observable through the
AND gate whenever is one. This would enhance the detection
probabilities of all the faults in the fanin cone of and .

Reed–Muller expansions can be further extended to multi-
input gates, which can allow a large number of intermediate
functions.

V. SYNTHESIS FOR AREA OPTIMIZATION

Here, the main emphasis during optimization is on area
only. The new transformations introduced in the paper are
used in combination with the existing IB transformations

CHATTERJEE et al.: LOGIC OPTIMIZATION WITH TESTABILITY 391

Fig. 6. Algorithm LOT for area optimization.

[4] to obtain a stronger combinational multilevel area opti-
mization tool. Application of EX-OR-based transformations is
motivated by the fact that optimized AND-EXOR expressions
require fewer products than sum-of-product expressions in
many circuits [29]. Efficient library implementation of EX-OR

gates can ensure that their extra delay and area overhead is
not significant compared to other gates. EX-OR gates can be
particularly useful if they can replace several two-input gates.
For the implementation for area optimization, we have re-
stricted ourselves to Transformations 1–8. As the Reed–Muller
based transformations were found computationally intensive,
they were applied to selective areas to improve testabil-
ity as shown in the next section. Transformations made on
the circuit are accepted or rejected based on the resultant
area of the circuit. This method is greedy in nature and
accepts any of the transformations which can reduce the
area. The new transformations based on Transformations 5–8
can cover new search spaces during optimization and, thus,
have the potential to yield a smaller circuit. The proce-
dure stops after a predetermined number of iterations across
the circuit.

A. Experimental Results

Experiments were conducted on the ISCAS 85 benchmark
circuits to demonstrate the combined strength of the transfor-
mations. Our tool, LOT, has been implemented by making
extensions to the HANNIBAL code [4], which also includes
the public domain fault simulator FSIM [5]. A short pseu-
docode of the implementation has been presented in Fig. 6. For
cost estimation during synthesis, technology mapping would
have given the best estimate of the circuit area—but it would
not have been efficient. Instead, we have used the number of
two-input gates, denoted as 2-i/p GE (equivalent to half the
number of connections in [4]) to evaluate the cost. A two-input
EX-OR gate has been counted as 2.5 two-input gates as in [36].
After the synthesis procedure is complete, however, all the
circuits were mapped to a library to compare the areas of the
circuits after technology mapping. The library used is derived,
from stdcell2 2.genlib—the library and its parameters are
described in the Appendix. The results, presented in Table II,
show that the new EX-OR-based transformations can make an
important difference in the area of the circuits, particularly
when EX-OR gates can be accommodated by the library.
The circuits synthesized by the proposed tool, LOT, were
compared with those synthesized by SIS 1.2 (script.rugged)
and HANNIBAL [4]. It may be seen that there is a clear
potential for smaller area by LOT when compared to SIS 1.2

TABLE II
COMPARISON OF AREA WITH SIS 1.2 AND HANNIBAL

Fig. 7. Area savings compared to SIS 1.2 and HANNIBAL.

or HANNIBAL. It is interesting to note that the amount of
savings for LOT over SIS 1.2 has a similar pattern to that
over HANNIBAL, as shown in Fig. 7. On the average, LOT
reduced the area over HANNIBAL by 8% and over SIS 1.2
by 18%. The synthesis time, as reported in the sixth column,
was measured in a Sparc 5 machine and is comparable to
[4]. This run-time can be significantly improved by a better
software implementation techniques. Also, one of the areas
we can obtain major savings in time is in redundancy removal
as seen in [10]. One other tradeoff that needs to be studied is
increasing the maximum level of recursion learning which can
yield more indirect implications and therefore, more flexibility
in the search for optimality.

Though the synthesis tool does not use path delay in the cost
function, the “longest sensitizable” path lengths of the resultant
circuits were measured [37] and presented in Table III. The
path length is counted in terms of the number of levels in
the unmapped circuit. It can be observed that the length of
the critical paths do not vary drastically and appears to be
within acceptable limits. Also, the synthesis process using IB
transformations can be modified to ensure that a given list of
critical paths remain unchanged during synthesis.

Table IV presents the number of EX-OR gates that were used
in the optimized circuits. The number of two-input EX-OR gates
has been presented in Column 3. Column 4 gives the total

392 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 5, MAY 1998

TABLE III
ESTIMATE OF THE LONGEST PATH LENGTHS

TABLE IV
ESTIMATE OF THE NUMBER OF EX-OR GATES

number of two-input equivalent gates in the circuit (as has
been measured in [9]). Here, a two-input EX-OR gate is counted
as a two-input gate. As can be observed, LOT incorporates
many EX-OR gates in the optimized circuit and uses them in
the circuit. As an example, it could identify all the EX-OR gate
structures in c1355, and the resultant structure is now similar
to c499 (c1355 was derived from c499, by transforming its
EX-OR gates to NAND gate representations).

VI. RANDOM PATTERN TESTABILITY ENHANCEMENT

The following describes the integrated framework for the
tool to simultaneously optimize area and enhance testability.
The underlying philosophy here is to integrate the primary ob-
jective of optimal area with a secondary objective of testability.
The proposed framework, however, allows for reordering and
expanding the objectives. For example, if the primary objective
is testability and the secondary objective is area, the ordering
of the optimization procedures can be changed, as shown here.

Effective BIST requires design of random pattern testable
circuits or design of test pattern generators (TPG’s), tailored
for the circuit under test (CUT). Those faults that need long
TPG sequences for testing are termed hard-to-detect (HTD)
faults. A less randomly testable circuit will have a high
number of HTD faults. Standard techniques used to test HTD
faults, using shorter TPG sequences, use complex additional
hardware, either inside the circuit with additional pins (test
points) or in the TPG [32]. The additional hardware incurred
can be minimized if the circuits are synthesized with a higher
random pattern testability.

During synthesis, most of the transformations applied here
would result in reducing the area, but some may increase the

area to sacrifice for better testability. The two main features of
our procedure include a synthesis guidance procedure based on
random pattern testability and a method for efficient detection
of the cost function of the circuit. The cost function here will
depend on the fault detection probabilities in the circuit, and
an approximate estimate is used to guide the search.

A. Calculating Detection Probabilities

As the proposed synthesis procedure is guided by the
random testability of the combinational circuit at each it-
eration, a fast estimation of the detection probabilities of
the faults is very important. Though exact calculation of
fault detection probabilities is done by signal probability
calculations [22], [32], an approximate and quick estimate is
more practical for our synthesis methodology. This method is
based on statistical estimation of fault detection probabilities,
as proposed in STAFAN [26]. STAFAN uses results on control-
lability of lines, as well as statistics on sensitization frequency
of lines, computed by simulating a given set of patterns
against the logic, to deduce fault detection probabilities. A
s-a-0 (s-a-1) detection probability is estimated as the product
of 1-controllability (0-controllability) and 1-observability (0-
observability) of the line. The 1-observability (0-observability)
of a line is the probability of observing a 1(0) on line
at a primary output. The 1-controllability (0-controllability)
of a line , denoted by [], is estimated
statistically. The 1-observability (0-observability) of a line ,
denoted by [], is estimated from the one-
level path sensitization probability of the line and other
controllability parameters. The one-level path sensitization
probability of the line is the probability that a given
input vector will sensitize the value on the line to the output of
the gate to which it is connected. The value of an output line,
or a fanout stem, is defined as one. Simulations are done for
the circuit to estimate the controllabilities and the values
of each line. The method of calculating the observabilities
from the estimated parameters is described in [22] and [26].
STAFAN was chosen as it can provide fast and efficient test
analysis of the circuit at each iteration. There can be cases,
however, where the predicted test analysis may differ from
the actual values [33]. These differences are typically caused
by redundancies which would not occur in the synthesized
circuits. One can also choose any alternative test analysis tool
with this methodology.

The proposed method begins by applying STAFAN to
estimate the fault detection probabilities and to identify the
HTD faults in the given multilevel circuit. Whenever the
circuit is changed structurally to a functionally equivalent
circuit, there will be a change in the estimated parameters
in the circuit. If the testability has to be measured at each
iteration of the synthesis process, estimating the parameters
every time will be time consuming. The proposed synthesis
method uses some incremental updates on earlier estimated
parameters based on the nature of transformation made on the
circuit. Calculation of fault detection probabilities based on
the estimated parameters is done in a single traversal through
the graph [26]. Presented below are techniques to update the

CHATTERJEE et al.: LOGIC OPTIMIZATION WITH TESTABILITY 393

Fig. 8. Algorithm to estimate
���

values and � values during redundancy elimination.

values and the value of each node in the circuit, based
on the IB transformations.

As the IB transformation is a two-step process, transfor-
mation and reduction, updates on the estimated parameters
are also done in two steps. For the first step, transformations
are based on Theorem 3.1. The updates made in a line

, during redundancy elimination, are related to the change
of the parameters in the fanin cone of the line . The
update procedure is described in the algorithm Update_Stafan
(Fig. 8).

The procedure first sets the values of the s-a-
1 (s-a-0) redundant lines equal to one. This would create a
change in the values of the redundant lines, compared to
its values before the transformation. Any change in the
values at line will cause a change in the values at the
outputs of the gate to which it is connected. Moreover, the
change in the values will also cause a change in the
values of all the inputs to the gate to which it is connected. The
nature of the change in these parameters depends on the nature
of the gate line to which it is connected. As an example,
consider a input AND gate. The updates related to an OR

gate, NOR gate, or a NAND gate can be determined in a similar
manner. Denote the inputs to the AND gate by ,
and output by . Assume a change in the controllability of
line and determine its effect on the values of and the

values of . If no fanout exists in the circuit,
can be estimated by the following equation:

(2)

Moreover, the value at is estimated by

(3)

The proposed method calculates the estimate updates, even in
the presence of fanouts in the circuit and is hence, approxi-
mate. A change in by an amount would
result in the following changes for an AND gate in the
values and values:

and (4)

(a) (b)

Fig. 9. Transformation 1—An example.

When more than one input to the gate has changed its
controllability, the update procedure will take one input at a
time. The updates should take into account that has to
be less than or equal to the values of all its inputs. The
updated values at the gate inputs should always be greater
than or equal to [26]. The update procedure involving
each gate is linear with the fanin of the gate.

The update procedure during transformations depends upon
the nature of the “implication” relationship on which it is
based. The type of the transformation determines the way
the values are updated. Given below are the steps incurred
by the update procedure for the Transformation 1. The steps
for update procedures based on Transformations 2–4 will be
similar.

Consider the subcircuit shown in Fig. 9(a). A transformation

based on the CD relation (Transformation 1)
would result in the subcircuit shown in Fig. 9(b). As can be
observed, there is a NOT gate and an OR gate added in the new
subcircuit, resulting in four new lines, namely, , and

. The updated values and the values are expressed as

Because these estimates are determined regardless of
whether the transformation was based on an equivalent
or permissible function, the estimates are approximate.
The proposed method uses simulation for better parameter
estimation, after every predetermined number of incremental
updates on the parameters.

Testability Cost: The testability cost (TC) takes into ac-
count the change in the fault detection probabilities of the
HTD faults, as these faults impact on the random pattern
test length. In the proposed method, HTD faults are those

394 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 5, MAY 1998

(Circuit A) (Circuit B)

Fig. 10. IB transformations for Example 6.1.

faults whose fault detection probabilities lie between
and (). is equal to the mini-
mum fault detection probability. is given as an
input parameter to the synthesis process. Thus, the TC of a
transformation is given by

TC NEW PD OLD PD (5)

B. Testability Enhancement Algorithm

Proposed is an algorithm that can be used to optimize area
with enhancement of random pattern testability. IB transfor-
mations which enhance random testability can be classified
into two types.

1) Type A: IB transformation enhancing testability which
requires no increase in area.

2) Type B: IB transformation enhancing testability which
may require increase in area.

The proposed method uses both these transformations itera-
tively in the synthesis process. It has been observed that as a
circuit is transformed during logic synthesis to improve area or
speed, its testing property can change, often in unpredictable
ways [23]. The most important factor in such a procedure is
the ability to identify transformations that are good for the
random testability of the circuit.

Example 6.1: Consider two circuits, A and B, in Fig. 10.
Circuit A can be transformed to Circuit B using the transfor-
mation based on (line) (line c). Furthermore,
circuit B can be transformed back to circuit A, using the
transformation (line d) (line c). It can be
observed that both the circuits have the same area in terms of
connections and literal counts. Here, one can verify whether
one of the circuits is better than the other in random pattern
testability. The detectability profile of the circuits is presented
in Fig. 11. Note that circuit A has two HTD faults (faults
with only two test vectors), compared to circuit B having
three HTD faults. If we assume that all the test vectors are
equiprobable, circuit A is a more randomly testable circuit
compared to circuit B. Any synthesis method optimizing area
or delay may choose circuit B instead of circuit A, and degrade
random pattern testability of the circuit. If the circuit is a
subcircuit of a larger circuit, the test vectors at the input of the
subcircuit may not be equiprobable and the random testability
might be different.

Type A Transformations: IB transformations of Type A are
the area-optimization Transformations 1–8. In the proposed

Fig. 11. Detectability profile. (a) Circuit A. (b) Circuit B.

method, among these, only those transformations are accepted
where the estimated testability cost (5) is positive. Thus, area
optimization is allowed with improvement of random pattern
testability of the circuit.

Type B Transformations: IB transformations of Type B,
where the area can be increased to enhance testability, involve
addition of redundant lines which improve the observability
of areas in the circuit containing a high concentration of HTD
faults. These transformations involve the addition of some
redundant lines to improve the observability of hard-to-detect
faults. Though these transformations may introduce redundant
lines in the circuit, the synthesis procedure ensures that these
lines are not removed in the next few iterations during
redundancy elimination. Subsequent transformations make
most of these lines irredundant in the circuit. Observability is
enhanced using two types of transformations:

Observability Enhancement Based on Transformations 1–4:
Extra connections can be introduced based on Transforma-
tions 1–4 to enhance observability. Fig. 9 gives the example
of Transformation 1. Note that such a transformation en-
hances the observability at the vicinity of the fanin cone
of : the shaded area in the figure. If this area consists
of considerably fewer HTD faults, the transformation does
not make any improvement in the random testability of the
circuit. Transformations where the area at the vicinity of
the cone of has a large concentration of HTD faults and
where has a high observability are useful in enhancing
random pattern testability. The procedure tries to introduce
a large number of such redundant lines and ensures that
these lines are not removed in the next few iterations during
redundancy elimination.

CHATTERJEE et al.: LOGIC OPTIMIZATION WITH TESTABILITY 395

(a) (b)

(c) (d)

Fig. 12. Example illustrating an observability enhancing transformation. (a) Original circuit, (b) circuit after Transformation2, (c) final circuit, and
(d) test vectors.

Example 6.2: The circuit in Fig. 12(a) has six faults having
a detection probability of less than 0.1, including three in the
fanin cone of gate D. The three HTD faults, s-a-1, s-a-1,
and s-a-1 cannot be tested in the given test set [Fig. 12(d)],
as an instance. The untestable fault lines are denoted by bold
lines in the figure. A transformation possible here based on

the relation can improve the observability
of the fanin cone of D. The connection as shown in Fig. 12(b)
also results in a redundant line at the input of gate E. The
final circuit in Fig. 12(c) has only three faults of detection
probability less than 0.1. In fact, all the faults can now be
tested in the given test set. Note that the number of two-input
gates in the initial circuit and the final circuit is the same and
there is now a difference in the testability.

Observability Enhancement Based on Reed–Muller Expan-
sions: Using Transformation 9 will enable creation of dif-
ferent intermediate circuit structures and connections that can
improve the observability of HTD fault zones. Moreover, these
transformations introduce more EX-OR gates in the circuit.

Example 6.3: Consider a circuit shown in Fig. 13(a). This
circuit has three faults with a detection probability less than
0.1. Given an instance of a test set, as in Fig. 13(d), among the
three, two of the faults, s-a-1 and s-a-1 cannot be tested (de-
noted by bold lines). To improve the testability, a Reed–Muller
based transformation can be used as in Fig. 13(b). Here, such

a transformation was possible as .
The new connection, denoted by the broken line, improves
the observability at the fanin cone of gate C. The connection
also results in a redundant line at the input of gate A. The final
circuit is given in Fig. 13(c). Thus a new EX-OR gate has been
introduced, the EX-OR gate improves the testability and it was

found that all the stuck-at faults can be tested by the test set
in Fig. 13(d).

C. Synthesis Algorithm

The synthesis procedure, as shown in Fig. 14, has two
phases. In Phase 1, area optimization is done on the circuit,
based on the earlier proposed IB transformations (1–8). In
Phase 2, we use Type B and Type A transformations to
realize testability enhancement. The synthesis procedure starts
with Phase 1 and continues reducing the circuit size until
further reduction would reduce its testability. At this point,
the procedure changes to Phase 2 (Steps 12 and 13) and
continues with transformations with testability enhancement
(Steps 8–11). Phase 1 minimizes the area without degrading
the random testability, whereas Phase 2 tries to improve the
random testability. Finally, any line introduced by Type B
transformations and left redundant will be removed in Step 14.

Though the above procedure concentrates only on the testa-
bility, the emphasis on area optimization can also be easily
controlled. Our synthesis method can iteratively use Phases
1 and 2 until the design goals are met. Moreover, in this
synthesis methodology we have not considered the delay of
the resulting circuit. The IB transformations presented here
can also be used under the added constraint of the delay of
the network.

D. Experimental Results

Experiments were performed on PLA benchmarks as well
on some ISCAS benchmark circuits. Those circuits were
chosen which had poor testability and contained a number of
random-pattern-resistant faults. The synthesis algorithm begin

396 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 5, MAY 1998

(a) (b)

(c) (d)

Fig. 13. Example illustrating observability enhancement. (a) Original circuit, (b) circuit after Transformation 9, (c) final circuit, and (d) test vectors.

Fig. 14. Algorithm LOT for enhancing testability.

with multilevel circuits and improve the testability based on a
given criteria. For the PLA benchmarks, the tools used circuits,
synthesized by tstfx [21], as their input, and optimized them.

To make the circuits compatible to our implementation,
the multilevel circuits synthesized by tstfx were mapped to
a SIS library [16] obtained from mcnc.genlib which had no
complex gates. The mapped circuits were then synthesized
by LOT. For the sake of comparison, these circuits were
also synthesized by HANNIBAL [4], SIS 1.2 [16] (using
script.boolean and script.rugged) which only optimizes area.
The test lengths of the circuits were obtained by using LFSR-
generated pseudorandom sequences. The test sequences for
100% single stuck-at fault coverage presented are an average,

TABLE V
100% FAULT COVERAGE TEST LENGTH AND

AREA COMPARISON WITH tstfx AND SIS 1.2

over several different LFSR-generated sequences (typically,
five to ten primitive polynomials were used). For selected
circuits including some ISCAS benchmark [25] circuits, which
had a test length more than half a million vectors, testability
is measured by the number of undetected (testable) faults. The
circuit areas (Ar) were compared, based on two-input GE’s.
The results are presented in Tables V–VII.

Comparison with tstfx: As can be observed from Table V,
the proposed method improves both the area and the test
length of the circuits synthesized by tstfx. The area of the
tstfx-synthesized circuits was further reduced by 83%, on the
average, by LOT. For seven out of the ten circuits, there was
a considerable reduction in the test length by the synthesis
tool—the average ratio being equal to 4.48 : 1. In particular,
circuits with a high test length (in4, in7, vg2, x1dn) have
shown considerable improvement in testability.

Comparison with SIS 1.2: The ISCAS circuits and the cir-
cuits from the PLA benchmark circuits were optimized by

CHATTERJEE et al.: LOGIC OPTIMIZATION WITH TESTABILITY 397

Fig. 15. Fault coverage for c2670 with optimization.

Fig. 16. Fault coverage for c7552 with optimization.

TABLE VI
TESTABILITY COMPARISON OF RANDOM-PATTERN RESISTANT ISCAS CIRCUITS

SIS 1.2. Both the scripts, script.boolean and script.rugged,
were used and the better implementation is reported here. The
comparison of the PLA benchmark circuits in Table V show
that LOT optimized circuits have 41% lesser area and 66%
smaller test length. For the ISCAS circuits, in Table VI, LOT
gives a much lesser area and lesser undetected faults. For seven
out of the 17 circuits considered, it was found that SIS 1.2

TABLE VII
100% FAULT COVERAGE TEST LENGTH

AND AREA COMPARISON WITH HANNIBAL

degrades the testability of the circuit during optimization. Also
seven circuits synthesized by SIS 1.2 were found to contain
redundant faults after optimization.

398 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 5, MAY 1998

TABLE VIII
DESCRIPTION OF THE LIBRARY USED FOR TECHNOLOGY MAPPING

Comparison with HANNIBAL: HANNIBAL optimizes cir-
cuits on the basis of area. When the same circuits are optimized
for testability as in LOT, the area of the resultant circuits
were slightly higher compared to HANNIBAL, as shown in
Table VII. The increase in area is not significant, however,
with the average being equal to 5%. On the contrary, the test
length for 100% fault coverage was reduced by 88%. Though,
in many circuits, optimization by HANNIBAL can reduce the
test length, the test length was found to increase in three out
of the ten circuits.

Therefore, in summary, LOT can achieve significantly better
testability with area compared to available synthesis tools
like tstfx and SIS 1.2. In fact, compared to HANNIBAL,
which only synthesizes for area, LOT can synthesize more
testable circuits with little penalty in area. Fault coverages
for the two random-pattern-resistant ISCAS85 [25] circuits,
c2670 and c7552 are presented in Figs. 15 and 16. Most of
the HTD faults that could not be eliminated can be denoted
as functionally HTD faults, i.e., they are a property of the
circuit function and any implementation of the circuit will
have those faults (or equivalent faults). To illustrate a case,
the HTD faults at the primary inputs and primary outputs are
functionally HTD faults. Some of the AND gates or OR gates
with large fanins, near the primary inputs, may result in HTD
faults of this nature. For example, c2670 has four AND gates
with fanin 15, which results in most of the HTD faults after
optimization using LOT. During optimization, however, if new
HTD faults are created as in SIS 1.2, the testability of the
circuit worsen.

VII. CONCLUSIONS

A novel optimization procedure using recursive learning-
based implications is presented here. The transformations
proposed are based on a) new logic transformations based
on EX-OR gates, b) methods to guide the synthesis process
enhancing random pattern testability, and c) heuristics to
identify difficult-to-test faults. The new EX-OR logic transfor-
mations, which were developed with the primary objective
of enhancing observability difficulties, also play an important
role in area optimization. Our synthesis scheme can be ap-
plied to poor random-testable multilevel circuits, which were
synthesized by another synthesis tool, to improve random
testability, as well as area. Experiments indicate improvement

over other optimization tools, in terms of area as well as
testability.

APPENDIX

LIBRARY FOR TECHNOLOGY MAPPING

The library used for technology mapping has been derived
from stdcell2 2.genlib [16]. Table VIII, presents the contents
of the library elements. The library only consists of simple
logic gates. The only complex gate used here is a two-input
EX-OR gate.

REFERENCES

[1] W. Kunz and D. K. Pradhan, “Recursive learning: A new implication
technique for efficient solution to CAD problems—Test, verification and
optimization,” IEEE Trans. Computer-Aided Design, vol. 13, no. 9, pp.
1143–1158, Sept. 1994.

[2] D. K. Pradhan and W. Kunz, “Method for circuit verification and multi-
level circuit optimization based on structural implications,” US Patent
05/526 514, June 11, 1996.

[3] W. Kunz, D. K. Pradhan, and S. Reddy, “A novel framework for logic
verification in a synthesis environment,” IEEE Trans. Computer-Aided
Design, vol. 15, no. 1, pp. 1–15, Jan. 1996.

[4] W. Kunz and P. R. Menon, “Multilevel logic optimization by implication
analysis,” in Int. Conf. Computer-Aided Design, San Jose, CA, 1994,
pp. 6–13.

[5] H. K. Lee and D. S. Ha, “A efficient forward fault simulation algorithm
based on the parallel pattern single fault propagation,” in Proc. Intl. Test
Conf., Washington, DC, 1991, pp. 946–953.

[6] V. K. Agarwal and E. Cerny, “Store and generate built-in testing
approach,” in Proc. Fault Tolerant Computer Symp., Boston, MA, June
1981, pp. 35–40.

[7] S. Pateras and J. Rajski, “Cube-contained random patterns and their
application to the complete testing of synthesized multi-level circuits,”
in Proc. Int. Test Conf., Washington, DC, 1991, pp. 473–481.

[8] L. A. Entrena and K. T. Cheng, “Combinational and sequential logic
optimization by redundancy addition and removal,” IEEE Trans.
Computer-Aided Design, vol. 14, no. 7, pp. 909–916, July 1995.

[9] S. C. Chang and M. Marek-Sadowska, “Perturb and simplify: Multi-level
boolean network optimizer,” in Int. Conf. Computer-Aided Design, San
Jose, CA, 1994, pp. 2–5.

[10] S. C. Chang, L. P. P. P. Van Gineeken, and M. Marek-Sadowska, “Fast
boolean optimization by rewiring,” in Int. Conf. Computer-Aided Design,
San Jose, CA, 1996, pp. 262–269.

[11] S. Muroga, “The transduction method—Design of logic networks
based on permissible functions,” IEEE Trans. Computers, vol. 38, pp.
1404–1423, Oct. 1989.

[12] W. Kunz and D. Stoffel, Reasoning in Boolean Networks—Logic Synthe-
sis and Verification Using Testing Techniques. Norwell, MA: Kluwer,
1997.

[13] J. Rajski and J. Vasudevamurthy, “Testability preserving transformations
in multi-level logic synthesis,” in Proc. Intl. Test Conf., Washington DC,
1990, pp. 265–273.

CHATTERJEE et al.: LOGIC OPTIMIZATION WITH TESTABILITY 399

[14] B. Rohfleisch and F. Berglez, “Introduction of permissible bridges with
application to logic optimization after technology mapping,” in Proc.
EDAC/ETC/EUROASIC, Feb. 1994, pp. 87–93.

[15] R. K. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and A. R. Wang,
“MIS: Multi-level interactive logic optimization system,” IEEE Trans.
Computer-Aided Design, vol. 6, pp. 1062–1081, Nov. 1987.

[16] University of California, Berkeley, 1994, “Design Tech-
nology Warehouse,” [Online]. Available: http://www-
cad.eecs.berkeley.edu/Software/software.html.

[17] G. De. Micheli, Synthesis and Optimization of Digital Circuits. New
York: McGraw-Hill, Inc., 1994.

[18] A. Krasniewski, “Can redundancy enhance testability?,” in Proc. Intl.
Test Conf., Washington, DC, 1991, pp. 483–491.

[19] A. Krasniewski and A. Albicki, “Random testability of redundant cir-
cuits,” in Int. Conf. Computer Design, Boston, MA, 1991, pp. 424–427.

[20] N. Touba and E. J. McCluskey, “Automated logic synthesis of random
pattern testable circuits,” in Proc. Int. Test Conf., Washington, DC, 1994,
pp. 174–183.

[21] C. H. Chiang and S. K. Gupta, “Random pattern testable logic syn-
thesis,” in Int. Conf. Computer-Aided Design, San Jose, CA, 1994, pp.
125–128.

[22] P. H. Bardell, W. H. McAnney, and J. Savir, Built-in Test for VLSI:
Pseudo-random Techniques. New York: Wiley, 1987.

[23] M. J. Batek and J. P. Hayes, “Test-set preserving logic transformations,”
in Proc. Design Automation Conf., Anaheim, CA, 1992, pp. 454–458.

[24] P. H. Bardell, “Analysis of cellular automata used as a pseudo-random
pattern generators,” in Proc. Int. Test Conf., Washington, DC, 1990, pp.
762–768.

[25] F. Brglez and H. Fujiwara, “A neural netlist of ten combinational
benchmark circuits and a target translator in FORTRAN,” in Proc. Int.
Symp. Circuits and Systems, London, U.K., June 1985, pp. 356–360.

[26] S. K. Jain and V. D. Agrawal, “Statistical fault analysis,” IEEE Design
Test Comp., vol. 2, no. 1, pp. 38–44, 1984.

[27] S. C Seth, L. Pan, and V. D. Agarwal, “PREDICT—Probabilistic
estimation of digital circuit testability,” IEEE Trans. Computers, vol.
C-18, pp. 457–459, 1986.

[28] S. Gupta, “Synthesis of testable combinational circuits: An overview of
university activities,” presented at International Test Conference, Test
Synthesis Seminar, Washington DC, 1994.

[29] T. Sasao, Ed., Logic Synthesis and Optimization. Norwell, MA:
Kluwer, 1993.

[30] T. Sasao and P. Besslich, “On the complexity of MOD-2 sum PLA’s,”
IEEE Trans. Computers, vol. 39, no. 2, pp. 171–178, Feb. 1990.

[31] D. K. Pradhan, “Universal test sets for multiple fault detection in AND-
EXOR arrays,” IEEE Trans. Computers, vol. C-27, pp. 181–187, Feb.
1978.

[32] M. Abramovichi, M. A. Breuer, and A. D. Friedman, Digital Testing
and Testable Design. New York: Instit. Electrical and Electronics
Engineers,, 1990.

[33] L. Hsuiman and V. Iyengar, “Clarifying statistical fault analysis,” IEEE
Design and Test, vol. 3, pp. 101–115, Aug. 1985.

[34] A. Sarabi, “Design of testability properties of AND/XOR networks,” in
FIP WG 1 0.5 Workshop on Applications on Reed—Muller Expansion in
Circuit Design, Germany, 1993, pp. 138–142.

[35] J. Saul, “An algorithm for the multi-level minimization of Reed–Muller
representations,” in Proc. Int. Conf. Computer Design, 1991, pp.
634–637.

[36] J. Hartmann and G. Kemnitz, “How to do weighted random testing for
BIST,” in Int. Conf. Computer-Aided Design, Santa Clara, CA, 1993,
pp. 568–571.

[37] J. Bell, “Timing analysis of logic level digital circuits using uncer-
tainty analysis,” M.S. thesis, Dept. of Computer Science, Texas A&M
University, Aug. 1996.

[38] S. Devadas and S. Malik, “A survey of optimization techniques targeting
low power VLSI circuits,” in Proc. Design Automation Conf., San
Francisco, CA, 1995, pp. 242–247.

[39] I. Pomeranz and S. M. Reddy, “Testability considerations in technology
mapping,” in Proc. 3rd Asian Test Symp., 1994, pp. 151–156.

[40] S. M. Reddy, “Easily testable realizations for logic functions,” IEEE
Trans. Computers, vol. C-21, pp. 1183–1188, Nov. 1972.

[41] H. Hengster, R. Drechsler, and B. Becker, “On local transformations
and path delay fault testability,” J. Electron. Test. Theory Applicat., vol.
7, pp. 173–192, 1995.

[42] L. Berman and L. Trevillyan, “Global flow optimization in automated
logic design,” IEEE Trans. Computer-Aided Design, vol. 7, no. 6, pp.
557–564, May 1991.

Mitrajit Chatterjee received the B.Tech. degree
in electronics and electrical communication engi-
neering from the Indian Institute of Technology,
Kharagpur, in 1992 and the M.S. and Ph.D. degrees
in computer science, from Texas A&M University,
College Station, TX, in 1994 and 1997, respectively.

Among other places, he has worked at AT&T Bell
Laboratories, Princeton, NJ; Max Planck Institute,
Germany; Synopsys Inc., Beaverton, OR; and Re-
liable Computer Technology, College Station, TX.
He is currently working at the Design Automation

Group in Integrated Device Technology, Inc., Santa Clara, CA. His research
interests include VLSI synthesis, design, timing analysis, and testing.

Dr. Chatterjee is the recipient of the Dr. B. C. Roy Memorial Gold Medal
at I.I.T. Kharagpur in 1992.

Dhiraj K. Pradhan (S’70–M’72–SM’80–F’88) is
currently a Visiting Professor in the Department
of Electrical Engineering, Stanford University, CA,
and is also the COE Endowed Chair Professor
in Computer Science at Texas A&M University,
College Station, TX. Prior to joining Texas A&M,
he served as Professor and Coordinator of Computer
Engineering at the University of Massachusetts,
Amherst. He also has worked at Oakland University,
MI; University of Regina, Canada; and Stanford
University, CA. His research interests include VLSI

CAD and test, fault-tolerant computing, computer architecture, and parallel
processing. Currently, he is also an Editor for several journals, including
the IEEE TRANSACTIONS ON COMPUTERS, IEEE PRESS, and the Journal of
Electronic Testing: Theory and Applications (JETTA). He is co-author and
editor of various books, including Fault-Tolerant Computing: Theory and
Techniques, Vols. I and II (Englewood Cliffs, NJ: Prentice Hall, 1986), Fault-
Tolerant Computer Systems Design (Englewood Cliffs, NJ: Prentice Hall,
1996), and IC Manufacturability: The Art of Process and Design Integration
(Piscataway, NJ: IEEE Press, 1996).

Dr. Pradhan is the recipient of the Humboldt Distinguished Senior Scientist
Award, Germany. He is also the recipient of the 1997–1998 Fulbright-
Flad Chair in Computer Science. He has also served as General Chair and
Program Chair for various major conferences. He has received several Best
Paper Awards, including The 1996 IEEE TRANSACTIONS ON COMPUTER-AIDED

DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS Best Paper Award. He has
served as Guest Editor of special issues in prestigious journals such as IEEE
TRANSACTIONS ON COMPUTERS.

Wolfgang Kunz (S’90–M’91) was born in
Saarbrüken, Germany, in 1964. He received the
Dipl.-Ing degree in electrical engineering from the
University of Karlsruhe, Germany, in 1989 and the
Dr.-Ing. degree in electrical engineering from the
University of Hannover, Germany, in 1992.

In 1989, he was a Visiting Scientist at the
Norwegian Institute of Technology, Trondheim,
Norway. From 1989 to 1991, he was with the
Department of Electrical and Computer Engineering
at the University of Massachusetts, Amherst, and

from 1991 to 1993, he was with the Institut für Theoretische Elektrotechnik at
the University of Hannover. From 1993 to 1996, he was with the Max-Planck-
Society, Fault-Tolerant Computing Group, at the University of Potsdam,
Germany, and from 1996 to 1998 he was with the Institute of Computer
Science at the University of Potsdam. He has held summer appointments as a
Research Assistant Professor with Texas A&M University in 1995 and 1996.
Since March 1998, he has been a Professor with the Department of Computer
Science, University of Frankfurt, Germany. His research interests are in VLSI
testing, formal verification, logic synthesis, and fault-tolerant computing.

Dr. Kunz is recipient of the Berlin-Brandenburg Academy of Sciences
Award and IEEE TRANSACTIONS ON CAD Best Paper Award.

