
Guarded Evaluation: Pushing Power Management
to Logic Synthesis/Design

Vivek Tiwari, Sharad Malik
Dept. of Electrical Engineering

Princeton Univ.

Pranav Ashar
C&C Research Labs.

NEC USA

Abstract
The need to reduce the power consumption of the next gener-
ation of digital systems is clearly recognized. At the system
level, power management is a very powerful technique and
delivers large and unambiguous savings. This paper de-
scribes the development and application of algorithms that
use ideas similar to power management, but that are applica-
ble to logic level synthesis/design. The proposed approach
is termed guarded evaluation. The main idea here is to de-
termine, on a per clock cycle basis, which parts of a circuit
are computing results that will be used, and which are not.
The sections that are not needed are then “shut off”, thus sav-
ing the power used in all the useless transitions in that part
of the circuit. Initial experiments indicate substantial power
savings and the strong potential of this approach. While this
paper presents the development of these ideas at the logic
level of design – the same ideas have direct application at the
register transfer level of design also.

1 Guarded Evaluation
We believe in the strength of power management and its
unambiguous power savings. We also believe that this idea
can be pushed to lower levels of the digital system design.
In particular, in this paper, we demonstrate the use of power
management at logic level synthesis/design using a technique
we call guarded evaluation. The essential idea here is to
dynamically detect, on a per clock cycle basis, which parts
of a logic circuit are being used and which are not. The ones
that are not, can then be shut off. This is done by ensuring
that no logic transitions propagate through this logic. Gating
the clock inputs of existing latches/flip-flops/registers in a
given RTL description is one way to do this. This is effective
when it is known that the logic fed by the latch is not being
utilized during the current clock cycle. This idea has been
used in the functional aspects of logic design for a long time.
Its utility in terms of power reduction is also known by now,
but not completely exploited [1, 2].

This idea can be pushed further to achieve power savings
that may not be possible through just the gating of existing
latches/registers. As an example, consider a two operation
ALU which is used for either addition or shifting. This
is typically implemented using an adder and a shifter, and
then selecting the result of one of them using a multiplexor
as shown in Figure 1. In any clock cycle only one of the
two functions, addition or shifting, needs to be computed.
However, the multiplexor does the selection only after both
units have completed their evaluation. Clearly the evaluation
of one of the two units could have been avoided. Direct gating
of the clock input of the data registers will not work in this

c

Shifter Adder

Data Register Data Register

MUX

Figure 1: Example RTL Circuit: Dual Operation ALU

case. This is because the same data register feeds both the
adder and the shifter. Duplicating this register is certainly
a possibility, but may not be an acceptable solution if this
register could be one of many possible ones from a register
file. The duplication would involve duplicating the entire
register file – certainly an expensive proposition. Further, if
the inputs to the adder and shifter were from some other logic
or a bus, even this would not be a possibility.

We propose a technique termed guarded evaluation that
overcomes both of these limitations and accomplishes the
task of preventing logic computation in modules when the
results will not be used. We place guard logic, which consists
of a transparent latch with an enable, at the input to each of
the parts of the circuit that need to be selectively turned off.
If the module is to be active in a clock cycle, the enable signal
makes the latch transparent, permitting normal operation. If
not, the latch retains its previous state and no transitions
propagate through the inactive module. This is illustrated in
Figure 2.

On a more abstract note, consider the operation of an
arbitrary combinational logic circuit in any one clock cy-
cle. Events propagate from the primary inputs through the
circuit, and finally result in events that possibly cause the
primary outputs to change. While there is switching activ-
ity at a large number of gates in the circuit, not all of this
switching is useful. A large number of events in the circuit
will never propagate to the primary outputs, instead being
blocked somewhere in the circuit. An event is said to be
blocked at a gate, if it does not influence the output of the
gate. For example, consider a 2-input AND gate, with one
input already set to 0. Any switching at the second input is
blocked, since it cannot change the output of the gate from
its 0 value. Thus, this switching is useless. It is precisely this
switching that this work attempts to eliminate. The idea is
to determine on a per clock cycle basis, which events in the
circuit will be useless and prevent them from occurring.

1



c

c = 1c = 0

0 1

Guard Logic

L1 L2

Transparent
Latches

Shifter Adder

Data Register Data Register

MUX

Figure 2: Example RTL Circuit: Dual Operation ALU with
Guard Logic

xF

Combinational
Logic

(a)

I xF

s

Guard
Latches Combinational

Logic

(b)

I

Figure 3: Pure Guarded Evaluation

The idea of using a transparent latch as a signal barrier
is not new, it has been used in the past to prevent glitches
from propagating through logic [8, 10] in the design of a
multiplier. However, the enabling condition on the latches
in that case is activated after certain time has elapsed, and
not by a logical condition that is true. Also, in the work
on pre-computation based logic synthesis [1], this use of
latches as barriers has been suggested. We would like to
emphasize that the contribution of this paper is not the use of
transparent latches as barriers, but rather the recognition and
exploitationof the fact that different parts of a logic circuit are
not performing useful functions in different clock cycles, and
thus can be effectively “powered down”. The use of latches
as guarding barriers is just an obvious implementation of this
idea.

2 Formal Overview
Consider an arbitrary combinational logic circuit C. Let x
be some signal in the circuit. Let F be the set of gates in C
that are being used to compute x and no other signal. Let I
be the set of inputs to F . This is illustrated in Figure 3(a).
Let ODCx refer to the set of primary input assignments toC
for which the value at x has no influence on the value of the
primary outputs [4]. These are the observability don’t care
primary input assignments for x. Thus, for these primary
input assignments the value on x is not required to compute
the primary outputs. Let s be any arbitrary signal in C which
satisfies the conditions) ODCx, i.e s̄+ODCx � 1. Thus,
when s = 1, the value on x is not needed to compute the
primary outputs. Let te(I) be the earliest time (with respect
to the clock edge origin) that any signal in I can switch when
s = 1. Let tl(s) be the latest time that s stabilizes at value 1.
If tl(s) < te(I) then s can be used to control the guard logic

x
F

Guard
Latches Combinational

Logic

s
yI

s

Figure 4: Extended Guarded Evaluation

for F as shown in Figure 3(b). In this figure the latches are
enabled when s = 0 and disabled when s = 1. Since x is
not needed to compute the primary outputs when s = 1, it is
logically correct to “shut off” F , by disabling the latches at
the inputs of F . Disabling the latches ensures that the inputs
to F do not switch, and thus none of the gates in F switch.
The condition tl(s) < te(I) ensures that this shut off is “in
time”, i.e. the latches are disabled before any of its inputs can
make a transition. This ensures that for this primary input
vector, none of the gate outputs in F make any transitions.
This application of the idea of guarded evaluation is referred
to as pure guarded evaluation; it directly shuts of parts of the
logic that will not be used in a clock cycle by means of the
guard logic, without modifying the logic in any other way.
Thus, carefully hand-crafted logic by expert designers is left
largely untouched.

The applicability of this idea can be extended easily if some
additional change in the logic is permitted. Let us relax the
logical condition on signal s. Let us assume that s satisfies the
conditions) (x+ODCx), i.e. s̄+x+ODCx � 1. Clearly
this is a weaker condition since it contains the condition
s ) ODCx. Let us assume that the temporal condition
tl(s) < te(I) still holds. Consider the use of s̄ as the enabling
condition on the guard latches in Figure 3(b). Consider the
following possible cases:

� For primary input assignments for which s = 0: In this
case there is no problem, since the logic in F is being
used to compute x.

� For primary input assignments which are contained in
ODCx and for which s = 1: Again the circuit in Fig-
ure 3(b) is logically correct, since the value of x is not
needed at the primary outputs for these assignments.

� For primary input assignments which are not contained
in ODCx and s = 1: In this case, there is a prob-
lem since F is being shut off, while the the value at x
is needed to compute the primary outputs. Thus, this
circuit will function incorrectly for these assignments.
Note, however, that in this case x must be 1, since
s ) (x + ODCx). Thus, if in this case x could be set
to a 1 while F was shut down, then correct function-
ality will be restored. This is accomplished by using a
simple OR gate as shown in Figure 4 and using signal y
wherever xwas needed. In this figure, when s = 0, F is
used to compute x, and y is the same as x. When s = 1,
then either the value of x is not needed, or it should be
1. In either case, y is set to 1. This logic transforma-
tion is similar to what is done in logic synthesis using
global flow [3, 9]. The motivation there is to use this
additional gate to help simplify other parts of the logic.
Our motivation is to find a larger set of conditions under
which we can shut off parts of the logic.



x1
x2
x3
x4
x5

A
B

(a)

f

x1
x2
x3
x4
x5

A
B

g

(b)

f

c

x1
x2
x3
x4
x5

A
B

(c)

f

Figure 5: Pre-computation and Guarded Evaluation

The condition s) (x+ODCx) is actually the contrapos-
itive of the following condition used in automatic test pattern

generation (ATPG): x̄ D
) s̄. This is read as: x = 0D-implies

s = 0 [9]. In the context of test pattern generation for stuck at
faults, this condition indicates that in order to test the stuck-at
fault, x stuck-at-1, s must be set to 0, i.e. there are no test
vectors for this fault with s = 1. Thus, existing ATPG tools
can be directly used to determine the pairs (s; x) for which

x̄
D
) s̄, or equivalently, s) (x+ODCx) holds.
The exposition in this section has been in terms of only

one polarity for s and x. All possible combinations of their
polarities are actually used.

This application of guarded evaluation is referred to as
extended guarded evaluation, since it involves the addition of
some additional logic besides the guard logic. The advantage
of using extended guarded evaluation over the pure form is
that it permits the shut off ofF under a larger set of conditions.
However, this comes at a price of adding some additional
logic which contributes to additional delay and area.

2.1 Relationship with Pre-computation

Recently a powerful class of techniques collectively called
logic pre-computation has been proposed as a way to reduce
the power consumption of logic circuits [1]. Pre-computation
also uses the idea of eliminating transitions in logic blocks
by using the enable inputs of storage elements (equivalent
to gating clocks), or using additional transmission gates and
latches. Thus, both pre-computation and guarded evaluation
share the common mechanism of power reduction by means
of transition blocking. While this mechanism is the same,
the two approaches differ in how and where the transitions
are blocked. The goal of pre-computation, as the name sug-
gests, is to derive a pre-computation circuit, that, under some
conditions does the computation for all or part of the circuit.
Thus, under these conditions, the corresponding circuit/sub-
circuit does not have to be active. In order to accomplish
this, the original circuit may need to be resynthesized. The
goal of guarded evaluation, again as the name suggests, is to
determine when parts of the original circuit can be shut down
using existing signals from the circuit, i.e., the sub-circuit
evaluation is guarded by these signals. The original circuit
does not have to be resynthesized to discover these possibil-
ities. It does not need derive any new circuit to dynamically
substitute for the main circuit or some sub-circuit in it.

Since pre-computation is a collection of techniques and not
a single algorithm, it is hard to do a more direct comparison
of the two approaches. The pre-computation work presented

in [1] mostly focusses on sequential pre-computation, where
the pre-computation is done one cycle before the computa-
tion results are needed. Combinational pre-computation has
been introduced in that paper but only a brief description is
given there. Figures 5 (a) and (b) are taken from that paper
and illustrate the combinational pre-computation described
there. Function f is being computed using two sub-functions
A and B as shown in Figure 5(a). Function g is used to
control the transmission gates in the pre-computation based
circuit shown in Figure 5(b). g = 0 is the set of conditions
under which f does not depend on the inputs x1; x2; x3 and
has been derived accordingly. Thus, when g = 0, the trans-
mission gates can be shut off and transitions occurring at
the output of block A will not propagate through block B.
Figure 5(c) shows what guarded evaluation would do in this
case. It would search for a signal c in the circuit (as opposed
to synthesizing g) such that the output of block A is not be-
ing used when c = 0, and use that to control the guarding
latches at the input of block A, as opposed to the outputs. If
no such c can be found, then the circuit will not be modified
at all. The reason for placing the latches at the inputs (and
not the outputs) of A is that in this case the transitions that
occur in block A can also be saved and are not needed. In
the pre-computation circuit shown in Figure 5(b), there will
be transitions in block A, even when g = 0.

3 Implementation

As described in the previous section, extended guarded eval-
uation involves guard latches (referred to as guards from here
on), logic that generates the controlling (or guarding) signals
for the latches (referred to as guarding signal logic from here
on), and some extra gates that are needed to preserve circuit
functionality (referred to as extension gates from here on).

3.1 Implementation Overview

The most general statement for the problem of guarded eval-
uation is - determine the guarding conditions and the asso-
ciated overhead, such that the resulting circuit has the least
power consumption. As mentioned in Section 2, only exist-
ing signals in the circuit are used for guarding. Greater power
savings may be attained using multiple pre-existing signals
for guarding because (1) A single signal may be effective in
guarding only a particular portion of the entire circuit. Other
signals may be more effective for other parts. Using multi-
ple signals helps guard a greater part of the circuit. (2) The
number of input vectors for which a guard is effective can be
increased if a Boolean OR of more than one signal is used
to control the guard. While there is the additional overhead
of the guarding signal logic (an OR gate), the guard itself is
shared.

The chosen method works as follows: In the first phase,
single pre-existing signals are evaluated in terms of the po-
tential power savings they can achieve alone. Next, a limited
number of candidate single signals are selected. Different
combinations of the candidates are then evaluated to deter-
mine the combined power savings attained. The overall flow
of the implementation methodology is shown below.

Step 0: Initial circuit
Step 1: Evaluate single controlling signals

Step 1.1: Select signals to evaluate
for each selected signal

Step 1.2: Determine gates implied by signal
Step 1.3: Determine guards, extension gates,



and potential benefit
Step 2: Select subset of controlling signals
Step 3: Evaluate combinations of controlling signals

Step 3.1: Generate a combination
Step 3.2: Evaluate combination

Step 4: Select final combination and generate circuit

3.2 Implementation Details

Step 0: A mapped initial circuit is preferable to ensure “in-
time” guarding.
Step 1: Step 1.1: For guarding to be most effective, the
guarding signal should arrive at the controlling input of a
guard earlier than the transition that travels through the short-
est path from the primary inputs to the guard. Therefore, sig-
nals which arrive early can potentially guard more gates than
signals that arrive later. Signals are thus ranked in increasing
order of arrival times. A user-defined fraction of the earliest
signals is then processed in Steps 1.2 and 1.3. This pruning
step is not necessary but is simply an efficiency tradeoff, as
the later arriving signals are less likely to be better candidates
than the earlier signals.
Step 1.2: The signals that can be guarded by each signal
chosen in Step 1.1 are determined here. This determination
is done based on the relative arrival times and logical im-
plication (cf Section 2). Implication incorporating ODCs is
not used since obtaining such implication after each iteration
is very expensive. Logical implication is determined using
OBDDs [5] in the current implementation. It can also be
determined using ATPG-like search algorithms.
Step 1.3: Given a candidate signal s and a phase a,
a 2 f0; 1g, this step determines the following for the whole
circuit:

a) The set of gates that are guarded by s = a

b) The set of locations where guards are required

c) The set of locations where extension gates are required

This information is obtained by a procedure whose basic
flow is as follows: The set of gates x, such that, s = a implies
x or x̄ are first listed in a depth first order, i.e., a gate precedes
all gates that are in its transitive fanin. All gates are initially
unmarked. The top unmarked gate is then considered. An
extension gate is recorded for this gate. The exact extension
gate required depends on the phases of s and x. Starting
from this gate, the gates in the transitive fanin are visited in
a depth-first recursive fashion. Each gate that is visited is
marked and is recorded as a gate that is guarded.

The recursion terminates when a gate y for which the
earliest arrival time te(y) is less than tl(s) + t is reached.
tl(s) is the latest arrival time of the guarding signal s, and
t is a user-defined threshold value. Guards are placed at the
outputs of the gates fed by y. The appropriate value of t
depends on the circuit parameters of the guard and a positive
value indicates a conservative approach to ensure that no
transitions leak through the guard. te(y) is adjusted to reflect
the fact that the load due to a guard may be different from the
original load seen by y.

Another terminating condition is when a gate y with mul-
tiple fanouts is reached, and s = a does not imply y or ȳ. For
example, in Figure 6(a), if recursion has flowed through the
fanout branch 1, a guard should be placed at the output of y
but only on branch 1. If guards are placed anywhere on the
transitive fanin of y, or if branches 2 or 3 are fed through the
guard output rather than the original output, the functionality

y

1

2

3

G
U
A
R
D

(c)

y

1

2

3

G
U
A
R
D

(a)

y

1

2

3

G
U
A
R
D

(b)

y
1

2

3(d)

s

Figure 6: Handling Multiple-fanout Points

of the logic fed by branches 2 and 3 will change. The reason
is that the functionality restoring extension gates are only
present on the transitive fanouts of branch 1. Of course, if a
guard was already present at gate y, branch 1 can now be fed
through the guard and no additional guard is needed. This is
illustrated in Figure 6(b), where a guard was already present
on branch 2. Another scenario is when all the fanouts of y
are fed by a guard as shown in Figure 6(c). In this case, when
s = a, y is not needed by any of its fanouts, and thus, the
transitions that occur in the logic that computes y are useless.
The guard at y is removed and y is treated as a new starting
point for the recursive procedure. In effect, guards will now
be placed somewhere on the transitive fanins of y.

The final case to consider during recursion is when a mul-
tiple fanout gate y is reached, where either y or ȳ is implied
by s = a. In this case recursion can continue beyond y, i.e. y
and its fanins can be considered as guarded. What is required
is that the other fanouts of y be fed by an appropriate exten-
sion gate. For example, in Figure 6(d), if (s = 1)) (y = 1),
and recursion has reached y through fanout branch 1, fanout
2 and 3 should be fed by s OR y. If in subsequent steps,
recursion reaches y through branch 2, it can then be fed di-
rectly by y. Recursion will also stop at y in this case, since
the presence of the extension gate means that y and its fanins
have already been visited and counted. If all the fanouts of
y ultimately get directly fed by y, the extension gate can be
removed.

When recursion returns back to the initial root gate, the
next unmarked gate is selected from the list of implied gates,
and the above recursive procedure is repeated. When all the
implied gates have been visited, the procedure finally ends.

The number of gates guarded is a measure of the guarding
effectiveness of s = a. However, the actual impact of guard-
ing by s = a on the average power consumption of the whole
circuit also depends on how frequently the condition s = a
is expected to occur over the typical input-space. Therefore,
the figure of merit used to evaluate the guarding effectiveness
of s = a is:

P (s = a)� num gates guardeds=a

P (s = a) is equal to Ps, if a = 1, and 1 � Ps, if a = 0,
where Ps is the signal probability of s and has been used by
researchers in the past to estimate power consumption [11, 6].
Ps is obtained by a traversal of the OBDD of s.

Note that the exact positioning of guards has an impact on
the number of gates guarded and the power savings obtained.
In the above discussion, guards were moved as close to the
inputs as is allowed by the timing constraint imposed by the
arrival time of the guarding signal. This is because more
gates can be guarded if the guards are closer to the inputs.
However, it may sometimes be more beneficial to place a
guard at a gate that is the sink of a re-convergent section of



the circuit. Pushing the guards beyond this sink, towards
the primary inputs, can lead to guarding of more gates, but
can also require more guards, whose power consumption
can affect the power saving obtained. A related effect can
sometimes occur at the source of a re-convergent fanout.
If the source gate has a large number of fanouts, it-may
be beneficial to push the guards placed on its immediate
transitive fanout, to its inputs, even if that violates the timing
constraints. Fewer guards are now required, though the data
inputs of the guards may have to be delayed a bit to satisfy
the timing constraints. The issue of the ideal positioning of
latches will be explored further as part of future work.
Step 2: In this step, a specified number n of controlling
signals are selected as candidates for evaluating combinations
of multiple signals. The signals are first ranked in decreasing
order of their figures of merit, which were determined in the
previous step. Note again, that the two phases of a controlling
signal are considered as separate cases.
Step 3: Different combinations of the n signals, selected
in the previous step, are generated, and the power savings
attained by each combination are evaluated. The following
sub-steps are needed.
Step 3.1: Ifn is small, all combinations of the selected signals
can be tried out. Currently this is the method used. For larger
n, for the sake of efficiency, it may be be beneficial to adopt
a faster, though possibly less effective, search strategy.
Step 3.2: This step evaluates the power saving possible when
a given subset(combination) of selected signals, (s1 . . . sn),
is used for guarding. Without going into the actual im-
plementation details, the basic idea for the evaluation is as
follows. First, determine the complete set of guards and ex-
tension gates needed. Let these be L and E, respectively.
Also determine the complete set of gates guarded, G. Then
estimate the power savings attained due to guarding of the
gates in G. Let this be PG. PG is calculated as follows.
Consider a gate g 2 G. Without loss of generality, let g be
included in the set of gates guarded by (s1 . . . sk); k � n. Let
s = s1+s2 . . .+sk , where+ indicates Boolean OR. Now us-
ing the traditional, zero delay, temporal independence model
for power calculation [11, 7], the power consumption of gate
g is Pg = (2 � Pg � (1 � Pg) � Cg � A), where Pg is the
signal probability of g, and Cg is the total capacitance at the
output of g, and A is a constant1. Since g is guarded when-
ever s = 1, the power savings may appear to be Ps � Pg,
where Ps is the signal probability of s, i.e., probability that s
equals 1.

However, this is not completely accurate, since it is not
necessary that g would have had a transition in the original
circuit, for every input vector for which s = 1. The probabil-
ity of g having a 1 ! 0 transition in the original circuit, for an
input vector for which s = 1 is given by Pg �Pḡ�s, where Pḡ�s
is the signal probability of ḡ � s and “�” stands for Boolean
AND. Similarly the probability of a 0 ! 1 transition in the
original circuit, when s = 1 is given by Pḡ � Pg�s. From this
it follows that the total power saving for all the guarded gates
under the given combination of controlling signals is:

PG =

X

g2G

(Pg �Pḡ�s + Pḡ � Pg�s)� Cg � A

where for each g, s is the Boolean OR of the subset of the
controlling signals that guard g. Cg is obtained from the
library parameters of the given gates [12], and the signal
probabilities are obtained from OBDDs.

1
A = 0:5� V

2
DD

, where VDD is the supply voltage

The power consumed in the guards, extension gates, and
the guarding signal logic constitutes the power overhead as-
sociated with guarded evaluation. To estimate the power
consumed in the guards, note that a guard’s output switches
only when the guarding condition is not true, i.e., when the
controlling signal on the guards allows transitions to pass
through. Using the above reasoning, the power consumed in
the guards is given by:

PL =

X

l2L

(Pl �Pl̄�s̄ + Pl �Pl�s̄) �Cl �A

where Pl is the signal probability of the node at which the
guard is present, and for each guard l, s is the Boolean OR
of the subset of the controlling signals that share l.

The extension gates also consume power and this power is
estimated. LetPE be the sum of the power consumption of all
the extension gates. Various combinations of the controlling
signals may be required to control the different guards and
feed the different extension gates. The logic associated re-
quired to generate these combinations also consumes power.
The power consumed in this logic is also estimated. Let this
be PK .

Thus, given a subset of controlling signalsS = (s1 . . . sn),
the figure of merit for evaluating the combination is the net
power saving achieved, and this is given by:

PS = PG �PL � PE �PK

Step 4: The combination of controlling signals that yields
the maximum power savings is selected and the final circuit,
incorporating the guards,guarding signal logic,and extension
gates is generated.

4 Experimental Results

An implementation of the algorithm has been carried out in
the SIS framework. All circuits were mapped using inverters
and 2-input NOR gates from the lib2.genlib library 2.
Only these basic gates were used because the set of implying
and implied signal pairs that exist in a circuit depends on the
result of mapping, since implications can be checked only
for signals that are exposed at the outputs of complex gates.
Different mappings can expose different signals leading to
different guarding opportunities. Using the two basic gates
eliminates this degree of freedom, thus simplifying the pre-
sentation of results, while simultaneously exposing a greater
number of signals, which provides for greater guarding op-
portunities. Our method, however, is completely general,
and works with any library. In practice, a circuit should
first be decomposed into basic gates to determine the guard-
ing opportunities. It can subsequently be re-mapped using
more complex gates, with the stipulation that nodes that have
guards or extension gates at their outputs should be retained
as gate outputs.

A large number of circuits from the IWLS 91 benchmark
set were evaluated. Varying amounts of power reduction
were obtained, only a subset of the circuits that yielded at
least 15% power savings are shown here. We feel that this
is the minimum amount of power savings that will make this
method acceptable for a circuit. Table 1 shows the circuit
statistics for the initial mapped circuits.

Table 2 shows the results after the application of guarded
evaluation. The number of controlling signals that were

2The lib2.genlib library is distributed with the SIS package



Circuit #Gates #PIs #POs Delay
dalu4 2894 75 16 118.98
duke2 1124 22 29 47.63
frg2 2687 143 139 62.62
k2 5297 45 45 92.22

misex3 1524 14 14 54.92
mux 154 21 1 24.33

sao2-hdl 389 10 4 68.67
term1 783 34 10 32.46

too large 1752 38 3 56.60
x3 1845 135 99 37.62

Table 1: Circuit Statistics for the Benchmark Circuits

evaluated in phase 2 of the process described in Section 3 is 3,
for all circuits. This number was observed to be a good choice
for a majority of the circuits. Column 2 shows the percent
increase in area and Column 3 shows the percent increase in
delay. The area and delay overhead comes from the guards,
extension gates, and the guarding signal logic. The outputs
of the guarding signal logic may have to feed a large number
of guards. Thus, fanout buffer optimization is used to reduce
the delay of these signals. This actually reduces the final
circuit delay in some cases, as shown in Column 3. This can
happen when the controlling signal from the guard comes
directly from the original circuit, as opposed to the output
of an added guarding signal logic gate. Depending on the
exact arrival times in the final circuit, the inputs of some
guards may have to be delayed to prevent power loss due
to early glitches, or the guards maybe moved forward in the
circuit. The actual power reduction obtained is shown as a
percentage in Column 6. Power for the original circuit was
estimated using a zero-delay model, with capacitance values
obtained from library parameters [12, 6]. The capacitance
switching per transition of a guard was considered to be 3
times that of an inverter. Power for the final guarded circuit,
incorporating all the guards, extension gates and guarding
signal logic was measured using the method described in
Section 3.2. Large power savings are indicated, with the
maximum being 67.4% for sao2-hdl. The experiments
were executed on SUN SPARC 2 workstations. The CPU
times ranged from 32 minutes for dalu, to 10.8 seconds for
cc.

We believe that the power savings will be even greater
when these techniques are applied on complete logic descrip-
tions, rather than on individual blocks of combinational logic
that are represented in the benchmark suite. In addition, if
dynamic logic is used, a guard can be implemented at a much
lower cost, through the use of a single transmission gate, re-
sulting in potentially much higher power savings. The use
of extension gates also provides an opportunity to optimize
the logic in the guarded portion of the circuit, through some
traditional logic synthesis techniques [3, 9].

References
[1] M. Alidina, J. Monteiro, S. Devadas, A. Ghosh, and

M. Papaefthymiou. Precomputation-based sequential
logic optimization for low power. IEEE Transactions
on VLSI Systems, pages 426–436, December 1994.

[2] L. Benini, P. Siegel, and G. De Micheli. Automatic syn-
thesis of gated-clocks for power reduction in sequential
circuits. IEEE Design and Test, December 1994.

Circuit %Area Ovh %Delay Ovh %Power Red
dalu 13.5 -20.4 23.9

duke2 30.1 -12.4 39.2
frg2 19.0 11.8 38.7
k2 18.6 21.1 21.5

misex3 14.5 -37.7 29.1
mux 48.5 28.0 24.1

sao2-hdl 8.4 8.9 67.4
term1 27.3 4.7 38.6

too large 21.5 3.2 51.6
x3 22.9 26.4 17.7

Table 2: Statistics for the Guarded Circuits

[3] L. Berman and L. Trevillyan. Global flow optimiza-
tion in automatic logic design. IEEE Transactions on
Computer-aided design, 10(5), May 1991.

[4] R. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and
A. Wang. MIS: A Multiple-Level Logic Optimization
System. In IEEE Transactions on Computer-Aided De-
sign, pages 1062–1081, November 1987.

[5] R. Bryant. Graph-Based Algorithms for Boolean Func-
tion Manipulation. IEEE Transactions on Computers,
C-35:677–691, Aug. 1986.

[6] A. Ghosh, S. Devadas, K. Keutzer, and J. White. Esti-
mation of average switching activity in combinational
and sequential circuits. In Proceedings of the Design
Automation Conference, pages 253–259, June 1992.

[7] A. Ghosh, A. Shen, S. Devadas, and K. Keutzer. On
Average Power Dissipation and Random Pattern Testa-
bility. In Proceedings of the International Conference
on Computer-Aided Design, November 1992. To ap-
pear.

[8] U. Ko, P. Balsara, and W. Lee. A self-timed method
to minimize spurious transitions in low power CMOS
circuits. In Proceedings of the 1994 IEEE Workshop on
Low Power Electronics, October 1994.

[9] W. Kunz and P. R. Menon. Multi-level logic optimiza-
tion by implication analysis. In Proceedings of the
International Conference on Computer-Aided Design,
pages 6–13, November 1994.

[10] C. Lemonds and S. S. Shetti. A low power 16 by
16 multiplier using transition reduction circuitry. In
Proceedings of the 1994 Intl. Workshop on Low Power
Design, pages 139–142, April 1994.

[11] F. Najm. Transition Density, A Stochastic Measure
of Activity in Digital Circuits. In Proceedings of the
Design Automation Conference, pages 644–649, June
1991.

[12] V. Tiwari, P. Ashar, and S. Malik. Technology mapping
for low power. In Proceedings of the Design Automation
Conference, pages 74–79, June 1993.


	Compendium95 Home Page
	ISLPD95
	Table of Contents
	Session Index
	Author Index


