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Abstract

None of the available minimizers for 2-level hazard-free logic minimization can

synthesize very large circuits. This limitation has forced researchers to resort to

manual and automated circuit partitioning techniques. This paper introduces two

new 2-level logic minimizers: Espresso-HF, a heuristic method which is loosely

based on Espresso-II, and Impymin, an exact method based on implicit data

structures.

Both minimizers can solve all currently available examples, which range up to

32 inputs and 33 outputs. These include examples that have never been solved

before. For examples that can be solved by other minimizers our methods are

several orders of magnitude faster.

As by-products of these algorithms, we also present two additional results.

First, we introduce a fast new algorithm to check if a hazard-free covering prob-

lem can feasibly be solved. Second, we introduce a novel formulation of the 2-level

hazard-free logic minimization problem by capturing hazard-freedom constraints

within a synchronous function by adding new variables.

� This work was supported by NSF under Grant no. MIP-9501880 and by an Alfred P. Sloan

Research Fellowship. The presented work is an extended version of two recent conference papers [32, 31].
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1 Introduction

Asynchronous design has been the focus of much recent research activity. In fact, asyn-

chronous designs have been applied to several large-scale control- and datapath circuits

and processors [11, 18, 12, 19, 2, 30, 34, 15, 1].

A number of methods have been developed for the design of hazard-free con-

trollers [22, 20, 37, 13, 27]. These methods have been applied to several large and realistic

design examples, including a low-power infrared communications chip [14], a second-level

cache-controller [21], a SCSI controller [35], a di�erential equation solver [36], and an

instruction length decoder [4].

An important aspect of these methods is the development of optimized CAD tools.

In synchronous design, CAD packages have been critical to the advancement of modern

digital design. In asynchronous design, much progress has been made, including tools

for exact hazard-free two-level logic minimization [25], optimal state assignment [10, 27]

and synthesis-for-testability [24]. However, these tools have been limited in handling

large-scale designs.

In particular, hazard-free 2-level logic minimization is an important step in all the

above-mentioned CAD tools. However, while the currently used Quine-McCluskey-like

exact hazard-free minimization algorithm, Hfmin [10], has been e�ective on small- and

medium-sized examples, it has been unable to produce solutions for several large design

problems [13, 27]. This limitation has been a major reason for researchers to invent and

apply manual as well as automated techniques for partitioning circuits before hazard-free

logic minimization can be performed [13].

Contributions of This Paper

This paper introduces two new and very e�cient 2-level hazard-free logic minimizers for

multi-output minimization: Espresso-HF and Impymin.

Espresso-HF is an algorithm to solve the heuristic hazard-free two-level logic mini-

mization problem. The method is heuristic solely in terms of the cardinality of solution.

In all cases, it guarantees a hazard-free solution. The algorithm is based on Espresso-

II[26, 9], but with a number of signi�cant modi�cations to handle hazard-freedom con-

straints. It is the �rst heuristic method based on Espresso-II to solve the hazard-free
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minimization problem. Espresso-HF also includes a new and much more e�cient al-

gorithm to check for existence of a hazard-free solution, without generating all prime

implicants.

Impymin is an algorithm to solve the exact hazard-free two-level logic minimization

problem. The algorithm uses an implicit approach which makes use of data structures

such as BDDs [3] and zero-suppressed BDDs [17]. The algorithm is based on a novel

theoretical approach to hazard-free two-level logic minimization. We reformulate the

generation of dynamic-hazard-free prime implicants as a synchronous prime implicant

generation problem. This is achieved by incorporating hazard-freedom constraints within

a synchronous function by adding new variables. This technique allows to leverage o�

an existing method for fast implicit generation of prime implicants. Moreover, our novel

approach can be nicely incorporated into a very e�cient implicit minimizer for hazard-

free logic. In particular, the approach makes it possible to use the implicit set covering

solver of Scherzo [8, 6, 5, 7], the state-of-the-art minimization method for synchronous

two-level logic, as a black box.

Both Espresso-HF and Impymin can solve all currently available examples, which

range up to 32 inputs and 33 outputs. These include examples that have never been

previously solved. For examples that can be solved by the currently fastest minimizer

Hfmin our two minimizers are typically several orders of magnitude faster. In particular,

Impymin can �nd a minimum-size cover for all benchmark examples in less than 813

seconds, and Espresso-HF can �nd very good covers { at most 3% larger than a

minimum-size cover { in less than 105 seconds.

Espresso-HF and Impymin are somewhat orthogonal. On the one hand Espresso-

HF is typically faster than Impymin. On the other hand, Impymin computes a cover of

minimum size, whereas Espresso-HF is not guaranteed to �nd a minimum cover but

typically does �nd a cover of very good quality.

Paper Organization

The paper is organized as follows. Section 2 gives background on circuit models, haz-

ards and hazard-free minimization. Section 3 describes the Espresso-HF algorithm

for heuristic hazard-free minimization. Section 4 introduces a new approach to hazard-

free minimization where hazard-freedom constraints are captured by a constructed syn-
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chronous function, leading to a new method for computing dynamic-hazard-free prime

implicants. Based on the results of Section 4, Section 5 introduces our new implicit

method for exact hazard-free minimization, called Impymin. Section 6 presents exper-

imental results and compares our approaches with related work, and Section 7 gives

conclusions. Background information on BDD, ZBDDs, and implicit logic minimization

can be found in the appendix.

2 Background

The material of this section focuses on hazards and hazard-free logic minimization, and

is taken from [10] and [25, 23]. For simplicity, we focus on single-output functions. A

generalization of these de�nitions to multi-output functions is straightforward, and is

described in [10].

2.1 Circuit Model

This paper considers combinational circuits having arbitrary �nite gate and wire delays

(an unbounded wire delay model [25]). A pure delay model is assumed as well (see [33]).

2.2 Multiple-Input Changes

De�nition 2.1 Let A and B be two minterms. The transition cube, [A;B], from A to

B has start point A and end point B, and contains all minterms that can be reached

during a transition from A to B. More formally, if A and B are described by products,

with i-th literals Ai and Bi, respectively, then the i-th literal for the product of t = [A;B]

is the Boolean function Ai+Bi (alternatively, [A;B] is the uniquely de�ned smallest cube

that contains A and B: supercube(A,B)). An input transition or multiple-input

change from input state (minterm) A to B is described by transition cube [A;B].

A multiple-input change speci�es what variables change value and what the correspond-

ing starting and ending values are. Input variables are assumed to change simultaneously.

(Equivalently, since inputs may be skewed arbitrarily by wire delays, inputs can be as-

sumed to change monotonically in any order and at any time.) Once a multiple-input
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change occurs, no further input changes may occur until the circuit has stabilized. In this

paper, we consider only transitions where f is fully de�ned; that is, for every X 2 [A;B],

f(X) 2 f0; 1g.

2.3 Function Hazards

A function f which does not change monotonically during an input transition is said to

have a function hazard in the transition.

De�nition 2.2 A function f contains a static function hazard for the input transi-

tion from A to C if and only if: (1) f(A) = f(C), and (2) there exists some input state

B 2 [A;C] such that f(A) 6= f(B).

De�nition 2.3 A function f contains a dynamic function hazard for the input tran-

sition from A to D if and only if: (1) f(A) 6= f(D); and (2) there exist a pair of input

states, B and C, such that (a) B 2 [A;D] and C 2 [B;D], and (b)f(B) = f(D) and

f(A) = f(C).

If a transition has a function hazard, no implementation of the function is guaranteed

to avoid a glitch during the transition, assuming arbitrary gate and wire delays [25, 33].

Therefore, we consider only transitions which are free of function hazards 1.

2.4 Logic Hazards

If f is free of function hazards for a transition from input A to B, an implementation

may still have hazards due to possible delays in the logic realization.

De�nition 2.4 A circuit implementing function f contains a static (dynamic) logic

hazard for the input transition from minterm A to minterm B if and only if: (1)

f(A) = f(B) (f(A) 6= f(B)), and (2) for some assignment of delays to gates and wires,

the circuit's output is not monotonic during the transition interval.

That is, a static logic hazard occurs if f(A) = f(B) = 1 (0), but the circuit's output

makes an unexpected 1 ! 0 ! 1 (0 ! 1 ! 0) transition. A dynamic logic hazard

1Sequential synthesis methods, which use hazard-free minimization as a substep, typically include

constraints in their algorithms such that no transitions with function hazards are generated [22, 37].
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occurs if f(A) = 1 and f(B) = 0 (f(A) = 0 and f(B) = 1), but the circuit's output

makes an unexpected 1! 0! 1! 0 (0! 1! 0! 1) transition.

2.5 Conditions for a Hazard-Free Transition

We now review conditions to ensure that a sum-of-products implementation, F , is

hazard-free for a given input transition (for details, see [25]). Assume that [A;B] is

the transition cube corresponding to a function-hazard-free transition from input state

A to B for a function f . We say that f has a f(A)! f(B) transition in cube [A;B].

Lemma 2.5 If f has a 0! 0 transition in cube [A;B], then the implementation is free

of logic hazards for the input change from A to B.

Lemma 2.6 If f has a 1 ! 1 transition in cube [A;B], then the implementation is

free of logic hazards for the input change from A to B if and only if [A;B] is contained

in some cube of cover F (i.e., some product must hold its value at 1 throughout the

transition).

The conditions for the 0! 1 and 1! 0 cases are symmetric. Without loss of generality,

we consider only a 1! 0 transition 2.

Lemma 2.7 If f has a 1 ! 0 transition in cube [A;B], then the implementation is

free of logic hazards for the input change from A to B if and only if every cube c 2 F

intersecting [A;B] also contains A (i.e., no product may glitch in the middle of a 1!0

transition).

Lemma 2.8 If f has a 1 ! 0 transition from input state A to B which is hazard-

free in the implementation, then, for every input state X 2 [A;B] where f(X) = 1,

the transition subcube [A;X] is contained in some cube of cover F (i.e., every 1 ! 1

sub-transition must be free of logic hazards).

1 ! 1 transitions and 0 ! 0 transitions are called static transitions. 1 ! 0 transitions

and 0! 1 transitions are called dynamic transitions.

2A 0! 1 transition from A to B has the same hazards as a 1! 0 transition from B to A.
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2.6 Required and Privileged Cubes

The cube [A;B] in Lemma 2.6 and the maximal subcubes [A;X] in Lemma 2.8 are called

required cubes. Each required cube must be contained in some cube of cover F to ensure

a hazard-free implementation. More formally:

De�nition 2.9 Given a function f , and a set, T , of speci�ed function-hazard-free input

transitions of f , every cube [A;B] 2 T corresponding to a 1 ! 1 transition, and every

maximal subcube [A;X] � [A;B] where f is 1 and [A;B] 2 T is a 1 ! 0 transition, is

called a required cube.

Lemma 2.7 constrains the products which may be included in a cover F . Each 1 ! 0

transition cube is called a privileged cube, since no product c in the cover may intersect

it unless c also contains its start point. If a product intersects a privileged cube but

does not contain its start point, it illegally intersects the privileged cube and may not

be included in the cover. More formally:

De�nition 2.10 Given a function f , and a set, T , of speci�ed function-hazard-free

input transitions of f , every cube [A;B] 2 T corresponding to a 1 ! 0 transition is

called a privileged cube.

Finally, we de�ne a useful special case. For certain privileged cubes the function is only

1 at the start point and is 0 for all other minterms included in the transition cube.

In this case, any product that intersects such a privileged cube always covers the start

point, since the cube contains no other ON-set minterms. We call such a privileged cube

trivial. All trivial privileged cubes can safely be removed from consideration without

loss of information.

2.7 Hazard-Free Covers

A hazard-free cover of function f is a cover (i.e., set of implicants) of f whose AND-OR

implementation is hazard-free for a given set, T , of speci�ed input transitions. (It is

assumed below that the function is de�ned for all speci�ed transitions; the function is

unde�ned for all other input states.)

Theorem 2.11 (Hazard-Free Covering [23, 25]) A sum-of-products F is a hazard-

free cover for function f for the set T of speci�ed input transitions if and only if:
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(a.) No product of F intersects the OFF-set of f ;

(b.) Each required cube of f is contained in some product of F ; and

(c.) No product of F intersects any (non-trivial) privileged cube illegally.

Theorem 2.11(a) and (c) determine the implicants which may appear in a hazard-free

cover of a function f , called dynamic-hazard-free (dhf-) implicants.

De�nition 2.12 A dhf-implicant is an implicant which does not intersect any priv-

ileged cube of f illegally. A dhf-prime implicant is a dhf-implicant contained in no

other dhf-implicant. An essential dhf-prime implicant is a dhf-prime implicant which

contains a required cube contained in no other dhf-prime implicant.

Theorem 2.11(b) de�nes the covering requirement for a hazard-free cover of f : every

required cube of f must be covered, that is, contained in some cube of the cover. Thus,

the two-level hazard-free logic minimization problem is to �nd a minimum cost

cover of a function using only dhf-prime implicants where every required cube is covered.

In general, the covering conditions of Theorem 2.11 may not be satis�able for an

arbitrary Boolean function and set of transitions [33, 25]. This case occurs if conditions

(b) and (c) cannot be satis�ed simultaneously.

A hazard-free minimization example is shown in Figure 1. There are four speci�ed

transitions. Transition t1 is a 1 ! 1 transition. It gives rise to one required cube (see

part (a)). Transition t2 is a 0! 0 transition. Thus it gives rise neither to required cubes

nor privileged cubes. Transition t3 is a 1 ! 0 transition. It gives rise to two required

cubes (see (a)) and one privileged cube (see (b)). Transition t4 is also a 1! 0 transition,

and gives rise to three required cubes and one privileged cube. A minimum hazard-free

cover is shown in part (c). It is apparent that all required cubes are covered, and that

no product in the cover illegally intersects any privileged cube. In contrast, the cover

in part (d) is not hazard-free since priv-cube-1 is intersected illegally (shaded region) by

product bd. In particular, this product may lead to a glitch during transition t3.
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Figure 1: Two-Level Hazard-Free Minimization Example: (a) shows the set of required

cubes (shaded); (b) shows the set of privileged cubes (shaded); (c) shows a minimal

hazard-free cover; (d) shows a minimum-cost cover that is not hazard-free, since it

contains a logic hazard.
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2.8 Exact Hazard-Free Minimization Algorithm

A single-output exact hazard-free minimizer has been developed by Nowick and Dill

[23, 25]. It has recently been extended to hazard-free multi-valued minimization 3 by

Fuhrer, Lin and Nowick [10]. The latter method, called Hfmin, has been the fastest

minimizer for exact hazard-free minimization.

Hfmin makes use of Espresso-II to generate all prime implicants, then transforms

them into dhf-prime implicants, and �nally employs Espresso-II's Mincov to solve

the resulting unate covering problem. Each of the algorithms used in the above three

steps is critical, i.e. has a worst-case run-time that is exponential. As a result, Hfmin

cannot solve several of the more di�cult examples.

3 Heuristic Hazard-Free Minimization: Espresso-

HF

3.1 Overview

The goal of heuristic hazard-free minimization is to �nd a very good (but not necessarily

exactly minimum) solution to the hazard-free covering problem. The basic minimization

strategy of Espresso-HF for hazard-free minimization is similar to the one used by

Espresso-II. However, we use additional constraints to ensure that the resulting cover

is hazard-free, and the algorithms are signi�cantly di�erent.

One key distinction is in the use of the unate recursive paradigm in Espresso-II,

i.e. to decompose operations recursively leading to e�ciently solvable sub-operations on

unate functions. To the best knowledge of the authors, the unate recursive paradigm

cannot be applied directly to hazard-free minimization. We therefore follow the basic

steps of Espresso-II, modi�ed to incorporate hazard-freedom constraints, but without

the use of unate recursive algorithms. However, because of the constraints and gran-

ularity of the hazard-free minimization problem, high-quality results are still obtained

even for large examples.

3It is well-known that multi-output minimization can be regarded as a special case of multi-valued

minimization [26].
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In this subsection, we describe the basic steps of the algorithm, concentrating on the

new constraints that must be incorporated to guarantee a cover to be hazard-free. We

then describe the individual steps in detail, in later subsections.

As in Espresso-II, the size of the cover is never increased in size. In addition, after

an initial phase, the cover always represents a valid solution, i.e. a cover of f that is

also hazard-free. Pseudocode for the algorithm is shown in Figure 2.

The �rst step of Espresso-HF is to read in PLA �les specifying a Boolean function,

f , and a set of speci�ed function-hazard-free transitions, T . These inputs are used to

generate the set of required cubes Q, the set of privileged cubes P and their correspond-

ing start points S, and the OFF-set R. Generation of these sets is immediate from the

earlier lemmas (see also [25]) 4.

The set Q can be regarded both as an initial cover F of the function, and as a set

of objects to be covered. Unlike Espresso-II, however, the given initial cover Q does

not in general represent a valid solution: while Q is a cover of f , it is not necessarily

hazard-free. Therefore, processing begins by �rst expanding each required cube into the

uniquely de�ned minimum dhf-implicant covering it. The result is an initial hazard-free

cover, F , and set of objects to be covered, Qf .

The next step is to identify essential dhf-implicants, using a modi�ed EXPAND step.

This algorithm uses a novel approach to identifying equivalence classes of implicants,

each of which is treated as a single implicant. Essential implicants, as well as all required

cubes covered by them, are then removed from F and Qf , respectively, resulting in a

smaller problem to be solved by the main loop. Before the main loop, the current cover

is also made irredundant.

Next, as in Espresso-II, Espresso-HF applies the three operators REDUCE, EX-

PAND, and IRREDUNDANT to the current cover until no further improvement in the

size of the cover is possible. Since the result may be a local minimum, the operator

LAST GASP is then applied to �nd a better solution using a di�erent method. EX-

PAND uses new hazard-free notions of essential parts and feasible expansion. The other

steps di�er from Espresso-II as well.

At the end, there is an additional step to make the resulting implicants dhf-prime,

4The algorithm does not need an explicit cover for the don't-care set because the operations only

require the OFF-set to check if a cube is valid.
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Espresso-HF(f,T)

Q = generate set of required-cubes(f,T)

P = generate set of privileged-cubes(f,T)

S = generate set of start-points(f,T)

R = OFF-set(f)

Qf = fsupercubedhf(q)jq 2 Qg

If \unde�ned" 2 Qf then no solution is possible; exit

Minimize Qf with respect to single cube containment

F = Qf

(F;E) = expand and compute essentials(F )

Remove all cubes from Qf that are already covered by E

F = F - E

F = irredundant(F )

do

�2 = jF j

do

�1 = jF j

F = reduce(F )

F = expand(F )

F = irredundant(F )

while (jF j < �1)

F = last gasp(F )

while (jF j < �2)

F = F [ E

F = make dhf prime(F )

Figure 2: The Espresso-HF algorithm.
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MAKE DHF PRIME, since it is desirable to obtain a cover that consists of dhf-prime

implicants. The motivation for this step will be made clear in the sequel.

In addition to the steps shown in Figure 2, our implementation has several optional

pre- and postprocessing steps.

3.2 Dhf-Canonicalization of Initial Cover

In Espresso-II, the initial cover of a function is provided by its ON-set, FON . This

cover is a seed solution, which is iteratively improved by the algorithm. By analogy, in

Espresso-HF, the initial cover is provided by the set of required cubes, Q. However,

unlike Espresso-II, our initial speci�cation does not in general represent a solution:

though Q is a cover, it is not necessarily hazard-free. Therefore, processing begins by

expanding each required cube into the uniquely de�ned minimum dhf-implicant contain-

ing it. This expansion represents a canonicalization step, transforming a potentially

hazardous initial cover Q into a hazard-free initial cover Qf .

Example. Consider the function f in the Karnaugh map of Figure 3. A set T

of speci�ed multiple-input transitions is indicated by arrows. There are two 1 ! 0

transitions, each corresponding to a privileged cube: p1 = a0c0 (start point p1strt =

a0bc0d0) and p2 = ad (start point p2strt = abc0d). The initial cover is given by the set Q

of required cubes: fa0c0d0, a0bc0, ac0, ac0d, abd, bcd, bcd0g. This cover is hazardous. In

particular, consider the required cube r = bcd, corresponding to the 1 ! 1 transition

from abcd = 0111 to 1111. Required cube r illegally intersects privileged cube p2, since

it intersects p2 but does not contain p2strt. To avoid illegal intersection, r must be

expanded to the smallest cube which also contains p2strt: r
(1) = supercube(fr; p2startg).

However, this new cube r(1) = bd now illegally intersects privileged cube p1, since it

does not contain p1strt. Therefore, cube r
(1) in turn must be expanded to the smallest

cube containing p1strt: r
(2) = supercube(fr(1); p1startg). The resulting expanded cube,

r(2) = b, has no illegal intersections and is therefore a dhf-implicant. 2

In this example, r(2) is a hazard-free expansion of r, called a canonical required

cube; it can therefore replace r in the initial cover. (Note that such a canonicalization is

feasible if and only if the hazard-free covering problem has a solution; see Section 3.10.)

Thus, an initial set Q of required cubes is replaced by a set Qf of canonical required

cubes (after having been minimized with respect to single cube containment). Qf is a
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Figure 3: Canonicalization Example

valid hazard-free cover of the function to be minimized, and is used as an initial cover

for the minimization process. In fact, Qf has a second role as well: it is used to simplify

the covering problem. In particular, Qf de�nes a new covering problem: each cube of

Qf (not Q) must be contained in some dhf-implicant. It is straightforward to show that

the two covering problems are equivalent: if a dhf-implicant p contains a required cube

r in Q, p must also contain the canonical required cube of r in Qf ; if not, p would not

be a dhf-implicant.

In the above example, any dhf-implicant which contains required cube r = bcd must

also contain canonical required cube r(2) = b. Therefore, the hazard-free minimization

problem is unchanged, but canonical required cubes are used. An advantage of using

Qf is that it may have smaller size than Q, i.e. being a more e�cient representation of

the problem. Also, since the cubes in Qf are in general larger than the corresponding

ones in Q, the EXPAND operation may be sped up.

In sum, the set of canonical required cubes Qf replaces the set of required cubes Q

as both (i) the initial cover, and (ii) the set of objects to be covered. Henceforth, the

term \set of required cubes" will be used to refer to set Qf .

We formalize the notion of canonicalization below.

De�nition 3.1 Let f be a Boolean function, T be a set of function hazard-free transi-

tions, and C be a set of implicants. The dhf-supercube of C with respect to function

f and transitions T , indicated as supercube
(f;T )
dhf (C), is the smallest dhf-implicant con-

taining the cubes of C.

The superscript (f; T ) is omitted when it is clear from the context. supercubedhf(C)
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supercubedhf (set of cubes C = fc1; : : : ; cng)

r = supercube(fc1; : : : ; cng)

while (r intersects some privileged cube pi illegally)

r = supercube(fr; sig) where si is the start point of pi

if r intersects the OFF-set then return \unde�ned" else return r

Figure 4: Supercubedhf computation

is computed by the simple algorithm shown in Figure 4.

The canonical required cube of a required cube r can now be de�ned as the dhf-

supercube of the set C = frg. The computation of dhf-supercubes for larger sets will be

needed to implement some of the operators presented in the sequel.

3.3 Expand

In Espresso-II, the goal of EXPAND is to enlarge each implicant of the current cover

in turn into a prime implicant. As an implicant is expanded, it may contain other

implicants of the cover which can be removed, hence the cover cardinality is reduced.

If the current implicant cannot be expanded to contain another implicant completely,

then, as a secondary goal, the implicant is expanded to overlap as many other implicants

of the current cover as possible.

In Espresso-HF, the primary goal is similar: to expand a dhf-implicant of the cur-

rent cover to contain as many other dhf-implicants of the cover as possible. However,

EXPAND in Espresso-HF has two major di�erences. Unlike Espresso-II, expansion

in some literal (i.e., \raising of entries") may imply that other expansions be performed.

That is, raising of entries is now a binate problem, not a unate problem. Further-

more, Espresso-HF's EXPAND uses a di�erent strategy for its secondary goal. By

the Hazard-Free Covering Theorem, each required cube needs to be contained in some

cube of the cover. Therefore, as a secondary goal, an implicant is expanded to contain

as many required cubes as possible.

We now describe the implementation of EXPAND in Espresso-HF. Pseudocode for

the expansion of a single cube is shown in Figure 5.
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Expand cube(cube a, req-set Qf , priv-set P , cover-set F , OFF-set R)

Fa = F � a

Qa = Qf

Pa = P

Ra = R

free entries =complement pos cube notation(a)

while (Fa 6= �)

update(a; free entries; Fa; Qa; Pa; Ra)

Fa = fc 2 Fajsupercubedhf(fa; cg) is de�ned g

Let cb be the best candidate in Fa

a = supercubedhf(fa; cbg)

while (Qa 6= �)

update(a; free entries; Fa; Qa; Pa; Ra)

Qa = fq 2 Qajsupercubedhf(fa; qg) is de�ned g

Let qb be the best candidate in Qa

a = supercubedhf(fa; qbg)

Figure 5: Expand (for a cube a)

3.3.1 Determination of Essential Parts and Update of Local Sets

As in Espresso-II, free entries are maintained, to accelerate the expansion [26]. The

free entries consist of all entries of the current implicant, in positional cube notation [16],

which are still candidates to be raised to 1. Initially, a free entry is assigned a 1 (0)

if the current implicant to be expanded, a, has a 0 (1) in the corresponding position.

An overexpanded cube is de�ned as the cube a where all free entries have been raised

simultaneously.

An essential part is one which can never, or always, be raised[26]. Our de�nition

of \essential parts" is di�erent from Espresso-II, since a hazard-free cover must be

maintained.

First, we determine which entries can never be raised and remove them from

free entries. This is achieved by searching for any cube in the OFF-set R that has

distance 1 from a, using the same approach as in Espresso-II.

Next, we determine which parts can always be raised, raise them and remove them

from free entries. This step di�ers from Espresso-II. In Espresso-II, a part can
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always be raised if it is 0 in all cubes of the OFF-set, R. That is, it is guaranteed that

the expanded cube will never intersect the OFF-set. In contrast, in Espresso-HF, we

must ensure that an implicant is also hazard-free: it cannot intersect the OFF-set, nor

can it illegally intersect a privileged cube. Unlike in Espresso-II, this is achieved by

searching for any column that has only 0s in R AND where each 1 in P implies that the

corresponding start point is covered by a.

Example. Figure 1(a) indicates the set of required cubes, which forms an initial

hazard-free cover. Consider the cube bcd (11010101, in positional cube notation). As

in Espresso-II, the 0-entries for literals b0 and d0 can never be raised, since the cube

would intersect the OFF-set. However, after updating the free entries, Espresso-II

indicates that literal c0 can always be raised, since the resulting cube will never intersect

the OFF-set. In contrast, in Espresso-HF, raising c0 results in an illegal intersection

with privileged cube a0c0, so it cannot \always be raised". 2

Since the hazard-free minimization is somewhat more constrained, the expansion of

a cube a can be accelerated by the following new operations on 3 local sets: Pa, Ra,

Qa. These sets are associated with cube a, and are updated as expansion proceeds. (1)

Remove privileged cubes from Pa where the corresponding start point is already covered

by a (since no further checking for illegal intersection is required). (2) Move privileged

cubes from set Pa to the local OFF-set Ra if the overexpanded cube does not include the

corresponding start points (since a can never be expanded to include these start points,

therefore one must avoid intersection with these privileged cubes entirely). (3) Move

privileged cubes from Pa to the local OFF-set Ra where supercubedhf(fa, start pointg)

intersects the OFF-set (a can never be expanded to include these start points, therefore

one must avoid intersection with the cubes entirely).

3.3.2 Detection of Feasibly Covered Cubes of F

In Espresso-II, a cube in F is expanded through a supercube operation. A cube d in

F is said to be feasibly covered by a if supercube(fa,dg) (the smallest cube containing

both a and d) is an implicant. In Espresso-HF, this de�nition needs to be modi�ed

to insure hazard-free covering, after expansion of cube a.

De�nition 3.2 A cube d in F is dhf-feasibly covered by a if supercubedhf(fa,dg) is

de�ned.
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This de�nition insures that the resulting expanded cube, supercubedhf(fa,dg), is (i) an

implicant (does not intersect OFF-set), and (ii) is also a dhf-implicant (does not intersect

any privileged cube illegally). E�ectively, this de�nition canonicalizes the resulting su-

percube to produce a dhf-implicant. That is, supercubedhf(fa,dg) may properly contain

supercube(fa,dg), since the former may be expanded through a series of implications

in order to reach the minimum dhf-implicant which contains both a and d. Using this

de�nition, the following is an algorithm to �nd dhf-feasibly covered cubes of F .

While there are cubes in F that are dhf-feasibly covered, iterate the following:

Replace a by supercubedhf(fa; dg), where d is a dhf-feasibly covered cube

such that the resulting cube will cover as many cubes of the cover as possible.

Covered cubes are then removed, reducing the cover cardinality. Determine

essential parts and update local sets (see above).

3.3.3 Detection of Feasibly Covered Cubes of Qf

Once cube a can no longer be feasibly expanded to cover any other cube, d, of F , we

still continue to expand it. This is motivated by the Hazard-Free Covering Theorem,

which states that each required cube needs to be contained in some cube of the cover.

Therefore, as a secondary goal, cube a is expanded to contain as many required cubes as

possible. The strategy used in this sub-step is similar to the one used in the preceding

one, i.e. while there are cubes in Qf that are dhf-feasibly covered, iterate the following:

Replace a by supercubedhf(fa; qg), where q is a dhf-feasibly covered required

cube such that the resulting cube will cover as many required cubes not

already contained in a as possible. Covered required cubes are then removed.

Determine essential parts and update local sets (see above).

3.3.4 Constraints on Hazard-Free Expansion

In Espresso-II, an implicant is expanded until no further expansion is possible, i.e.

until the implicant is prime. Two steps are used: (i) expansion to overlap a maximum

number of cubes still covered by the overexpanded cube; and (ii) raising of entries to

�nd the largest prime implicant covering the cube.

18



In Espresso-HF, however, we do not implement these remaining EXPAND steps,

based on the following observation. The result of our EXPAND steps (cf. 3.3.2 and 3.3.3)

guarantees that a dhf-implicant can never be further expanded to contain additional

required cubes. Therefore, by the Hazard-Free Covering Theorem, no additional objects

(required cubes) can be covered through further expansion. In contrast, in Espresso-

II, further expansion steps may result in covering additional ON-set minterms. Because

of this distinction, the bene�ts of further expansion are mitigated. Therefore, in general,

our algorithm does not transform dhf-implicants into dhf-prime implicants. However,

since expansion to dhf-primes is important for literal reduction and testability, it is

included as a �nal post-processing step: MAKE DHF PRIME (see Figure 2).

3.4 Essentials

Essential prime implicants are prime implicants that need to be included in any cover of

prime implicants. Therefore, it is desirable to identify them as soon as possible to make

the resulting problem size smaller. On the one hand, we know of no e�cient solution for

identifying the essential dhf-primes using the unate recursion paradigm of Espresso-II.

On the other hand, the hazard-free minimization problem is highly constrained by the

notion of covering of required cubes, allowing a powerful new method to classify essentials

as equivalence classes.

Example. Consider Figure 6. The required cube, r = bcd, is covered by precisely

two dhf-prime implicants: p1 = bd and p2 = cd. Neither p1 nor p2 is an essential dhf-

prime, since r is covered by both. And yet, clearly, either p1 or p2 (not both) must be

included in any cover of dhf-primes. Also, if we assume the standard cost function of

cover cardinality, p1 and p2 are of equal cost. 2

Our EXPAND method therefore supports the notion of equivalence classes, since

implicants are not expanded beyond the required cubes which they cover. In the above

example, product r (regarded as a covering object) would not be expanded further,

since no feasible required cubes can be found. Cube r therefore represents an essential

equivalence class, corresponding to the set fbd; cdg of dhf-primes. It should be removed

from the cover.

Espresso-II computes essentials after an initial EXPAND and IRREDUNDANT.

In contrast, Espresso-HF computes essentials as part of a modi�ed EXPAND-step.
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Figure 6: Essential Example

The algorithm is outlined as follows:

The algorithm starts with the initial hazard-free cover, Qf , of required cubes. To

simplify the presentation, assume that one seed cube is selected and expanded greedily,

using EXPAND, to a dhf-implicant p. This implicant is characterized by the set, Qp, of

required cubes which it contains. Dhf-implicant p is called an essential equivalence

class if it contains some required cube, qf , which cannot be expanded into any other

equivalence class. To check if qf can be expanded into a di�erent equivalence class, a

simple pairwise check is used: for each required cube sf not covered by p, determine

if supercubedhf(fq
f ; sfg) is feasible. If no such feasible expansion exists for qf , qf is

called a distinguished required cube, and therefore p is essential. Otherwise, the

process is repeated for every required cube qf contained in Qp. Whenever an essential

p is identi�ed, all required cubes covered by p are removed, and the covering problem

is updated. This step can result in \secondary essential" equivalence classes. The

procedure iterates until all essentials are identi�ed.

The above discussion seems to imply that the essentials step is more or less quadratic

in the number of required cubes, i.e. very ine�cient. However, by making use of tech-

niques similar to the ones described in the EXPAND-section, e.g. by using an overex-

panded cube, the number of necessary supercubedhf -calls can be reduced dramatically.

Therefore, in practice, essentials can be identi�ed e�ciently and the problem size is

usually signi�cantly reduced (see Section 6).
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3.5 Reduce

The goal of the REDUCE operator is to set up a cover that is likely to be made smaller

by the following EXPAND step. To achieve this, each cube c in a cover F is maximally

reduced in turn to a cube ~c, such that the resulting set of cubes, fF � cg [ ~c is still a

cover.

Espresso-II uses the unate recursive paradigm to maximally reduce each cube.

Since Espresso-HF is a required cube covering algorithm, there is no obvious way to

use this paradigm. Fortunately, the hazard-free problem is more constrained, making it

possible to use an e�cient enumerative approach based on required cubes.

Our REDUCE algorithm is as follows. The algorithm reduces each cube c in the

cover in order. In particular, a cube c is reduced to the smallest dhf-implicant ~c that

covers all required cubes that are uniquely coverd by c (i.e. contained in no other cube of

the cover F ). This means, that if r1; : : : ; rl is the set of required cubes that are uniquely

covered by c, then c is replaced by ~c = supercubedhf(fr1; : : : ; rlg).

Note that the outcome of this algorithm depends on the order in which the cubes c

of the cover F are processed. Suppose ci is reduced before cj, and that ci and cj cover

some required cube r but no other cube of F covers r. If ci is reduced to a cube ~ci that

does not cover r, then cj cannot be reduced to a cube that does not cover r.

3.6 Irredundant

Espresso-II uses the unate recursive paradigm to �nd an irredundant cover. However,

in our case, there is no obvious way to employ this paradigm, since a \redundant cover"

(according to covering of minterms) may in fact be irredundant with respect to covering

of required cubes.

Therefore, as in REDUCE, our approach is required-cube based. Considering the

Hazard-Free Covering Theorem, it is straightforward that IRREDUNDANT can be re-

duced to a covering problem of the cubes in Qf by the cubes in F . That is, the problem

reduces to a minimum-covering problem of (i) required cubes, using (ii) dhf-implicants

in the current cover. In practice, the number of required cubes and cover cubes usually

make the covering problem manageable. Espresso-II's Mincov can be used to solve

this covering problem exactly, or heuristically (using its heuristic option).
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3.7 Last Gasp

The inner loop of Espresso-HF may lead to a suboptimal local minimum. The goal

of LAST GASP is to use a di�erent approach to attempt to reduce the cover size. In

Espresso-II, each cube c 2 F is independently reduced to the smallest cube containing

all minterms not covered by any other cube of F . In contrast, Espresso-HF computes,

for each c 2 F , the smallest dhf-implicant containing all required cubes that are not

covered by any other cube in F .

As in Espresso-II, cubes that can actually be reduced by this process are added

to an initially empty set G. Each such g 2 G is then expanded in turn with the goal

to cover at least one other cube of G, using the supercubedhf operator, and if achieved

added to F . Finally, the IRREDUNDANT operator is applied to F with the hope to

escape the above-mentioned local minimum.

3.8 Make dhf-prime

The cover being constructed so far does not necessarily consist of dhf-primes. It is

usually desirable to expand each dhf-implicant of the cover to make it dhf-prime as a

last step. This can be achieved by a modi�ed EXPAND step. A simple greedy algorithm

will expand an implicant c to a dhf-prime: While dhf-feasible, raise a single entry of c.

3.9 Pre- and postprocessing steps

Espresso-HF includes optional pre- and postprocessing steps. In particular, the ef-

�ciency of Espresso-HF depends very much on the size of the ON-set and OFF-set

covers that are given to it. Thus, Espresso-HF includes an optional preprocessing step

which uses Espresso-II to �nd covers of smaller size for the initial ON-set and OFF-

set 5. Espresso-HF also includes a postprocessing step to reduce the literal count of a

cover, similar to Espresso-II's MAKE SPARSE.

5ON-set and OFF-set are necessary to form the initial set of required cubes, Q. More importantly,

the OFF-set is used to check if a cube expansion is valid, see Figure 4.
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3.10 Existence of a hazard-free solution

As indicated earlier, for certain Boolean functions and sets of transitions, no hazard-free

cover exists. The currently used exact hazard-free minimization method Hfmin is only

able to decide if a hazard-free solution exists after generating all dhf-prime implicants.

A solution does not exist if and only if the dhf-prime implicant table includes at least

one required cube not covered by any dhf-prime implicant.

Since the generation of all primes may very well be infeasible 6 for even medium-sized

examples, it is important to �nd an alternative approach. We therefore present a new

theorem for the existence of a solution, leading directly to a fast and simple algorithm

that is incorporated into Espresso-HF.

Theorem 3.3 A solution of the hazard-free minimization problem exists i�

supercubedhf(q) is de�ned for all required cubes q.

The proof is immediate from the discussion in Section 3.2.

Example. Consider the Boolean function in Figure 7, with four speci�ed input tran-

sitions. To check for existence of a hazard-free solution, we compute supercubedhf(q)

for each required cube q. Except for abd, it holds that q = supercubedhf(q) since no

privileged cube is intersected illegally. To compute supercubedhf(abd), note that priv-

ileged cube c is intersected illegally, i.e. supercubedhf(abd) = supercubedhf(bd). Since

bd now intersects privileged cube a0c0, we get supercubedhf(abd) = supercubedhf(b) lead-

ing directly to the fact that supercubedhf(abd) does not exist because b intersects the

OFF-set. Thus, there is no hazard-free cover for this example. 2

4 A Novel Approach of Incorporating Hazard-

Freedom Constraints Within a Synchronous Func-

tion

After having discussed the heuristic hazard-free minimization problem in the previous

section, we will now shift our discussion to the exact hazard-free minimization problem.

6This refers to \explicit representations"; we will show later that \implicit representations" very

often are feasible.
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Figure 7: Existence Example

We begin by presenting, in this section, a novel technique which recasts the dhf-prime

implicant generation problem into a prime generation problem for a new synchronous

function, with extra inputs. Based on this approach, we present a new implicit method

for exact 2-level hazard-free logic minimization in Section 5.

4.1 Overview and Intuition

In this subsection, we �rst give a simple overview of our entire method. Details and

formal de�nitions are provided in the remaining subsections.

Our approach is to recast the generation of dhf-prime implicants of an asynchronous

function (f; T ) into the generation of prime implicants of a synchronous function g.

Here, hazard-freedom constraints are incorporated into the function g by adding extra

inputs. An overview of the method is best illustrated by a simple example.

Example 4.1 Consider Figure 8. The Karnaugh map in part A represents a function

(f; T ) de�ned over the set of 3 variables fx1; x2; x3g. The shaded area corresponds to

the only non-trivial privileged cube of f (the second privileged cube [101; 100] is trivial,

cf. Section 2.6). We now de�ne a new synchronous function g, shown in part B. g

is obtained from f by adding a single new variable z1. That is, g is de�ned over 4

variables: fx1; x2; x3; z1g. In general, to generate g, one new z-variable is added for each

non-trivial privileged cube. Next, the prime implicants of the synchronous function g

are computed (shown in part B as ovals). Finally, we use a simple �ltering procedure

to �lter out those prime implicants that correspond to those in f which intersect the
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Figure 8: Example for recasting prime generation. A) shows the function (f; T ) whose

dhf-primes are to be computed. B) shows the auxiliary synchronous function g and

its primes. C) shows primes of g that do not intersect illegally. D) shows the �nal

dhf-primes of f , after deleting the z1 variable.

privileged cube illegally. The remaining prime implicants of g are shown in part C. We

then \delete" the z1-dimension from the prime implicants, and obtain the entire set of

dhf-prime implicants of (f; T ) (part D). 2

Our approach is motivated by the fact that dhf-prime-implicants are more con-

strained than prime implicants of the same function. While prime implicants are max-

imal implicants that do not intersect the OFF-set of the given function, dhf-prime-

implicants, in addition, must also not intersect privileged cubes illegally. This means

that there are two di�erent kinds of constraints for dhf-prime-implicants: \maximality"

constraints and \avoidance of illegal intersections" constraints. Our idea is now to unify

these two types of constraints, i.e. to transform the avoidance constraints into maxi-

mality constraints so that dhf-primes can be generated in a uniform way. Intuitively,
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this can be achieved by adding auxiliary variables, i.e. by lifting the problem into a

higher-dimensional Boolean space.

In summary, the big picture is as follows. The de�nition of g ensures that all dhf-

prime implicants of f (dhf-Prime(f,T)) can be easily obtained from the set of prime

implicants of g (Prime(g)). While Prime(g) may also include certain products which

are non-hazard-free, these are �ltered out easily, using a post-processing step.

4.2 The auxiliary synchronous function g

In this subsection, we explain how the synchronous function g is derived. For simplicity,

assume for now that f is a single-output function.

Suppose f is de�ned over the set of variables fx1; : : : ; xng, and that the set of tran-

sitions T gives rise to the set of non-trivial privileged cubes PRIV (f; T ) = fp1; : : : ; plg.

The idea is to de�ne a function g over fx1; : : : ; xn; z1; : : : zlg; that is, one new variable is

added per privileged cube. Formally, g is de�ned as follows:

g(x1; : : : ; xn; z1; : : : ; zl) = f �
Y

1�i�l

(zi + pi)

That is, the function g is the product of f and some function which depends on the

added inputs. The intuition behind the de�nition of g is that in the zi = 0 half of the

domain g is de�ned as f , while in the zi = 1 half of the domain g is de�ned as f but

with the i-th privileged cube pi \�lled in" with all 0's (i.e., pi is \masked out").

Example 4.2 As an example, Figure 8A shows a Boolean function (f; T ) with privileged

cube x2 (highlighted in gray). Figure 2B shows the corresponding new function g, with

added variable z1. In the z1 = 0 half, function g is identical to f . In the z1 = 1 half,

g is identical to f except that g is 0 throughout the cube z1x2, which corresponds to

the privileged cube in the original function f . In particular, function g is de�ned as

g = f � (z1 + p1), where p1 = x2. 2

4.3 Prime implicants of function g

To understand the role of function g, we consider its prime implicants Prime(g).

We start by considering a function (f; T ) that has only one privileged cube p1. Let q

be any implicant of the function g that is contained in the z1 = 0 plane of g. Since the
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z1 = 0 plane is de�ned as f , q also corresponds to an implicant of f . Now, consider the

expansion of q into the z1 = 1 plane of function g. There are 2 possibilities: either (i)

q can expand into z1 = 1 plane, or (ii) q cannot expand into the z1 = 1 plane. In case

(i), expansion of q into the z1 = 1 plane means that g is identical to f in the expanded

region. Therefore, q does not intersect privileged cube p1 in the original function f (if it

did, g would have all 0's in p1 in the z1 = 1 plane, and expansion would be impossible).

In case (ii), expansion into the z1 = 1 plane is impossible. In this case, q must intersect

p1 in function f (g has all 0's in p1).

In summary, q may or may not be able to expand from z1 = 0 into z1 = 1 planes.

Expansion can occur precisely if q does not intersect the privileged cube p1 in the original

function.

Example 4.3 Consider the minterm q1 = z1x1x2x3 of g in Figure 8B, which corresponds

to the minterm x1x2x3 of f . q can be expanded into the z1 = 1 plane into the prime

implicant of g: x1x2x3 (shaded oval). Intuitively, the expansion is possible since q1 does

not intersect the privileged cube, i.e. the cube z1x2, which corresponds to the privileged

cube x2 of the original function f . However, the implicant q2 = z1x1x3 (oval with thick

dark border) of g cannot be expanded into the z1 = 1 plane: it intersects the privileged

cube, and therefore the corresponding region in the z1 = 1 plane is �lled with 0's. Note

that prime generation is an expansion process until no further expansion is possible. 2

Let us now consider the general case, i.e. where (f; T ) may have more than one

privileged cube. We show that the support variables of each prime of g precisely indicate

which privileged cubes are intersected by the prime's corresponding implicant in f . Let

q be any prime implicant of g:

q = xi1 � � �xin̂zj1 � � � zjl̂

Here, xik is a positive or negative x-literal 7. However, zjk can only be a negative

z-literal. The reason is that g is a negative unate function in z-variables (see de�nition

of g), and therefore prime implicants of g will not include positive z-literals.

We indicate by qx the restriction of q to the x-literals, i.e. qx = xi1 � � �xin̂ . Note

that qx is an implicant of f by the de�nition of g. If q includes the literal zi, then qx

7Note that q may not depend on all x-variables.
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intersects pi. The reason is that the primality of q indicates that q cannot be expanded

into the zi = 1 plane. As explained above, this is equivalent to the intersection of pi

in the original function f . On the other hand, if q does not include zi, then qx does

not intersect pi. Intuitively, the primes, Prime(g), are maximal in two senses: they are

maximally expanded in f, or maximally non-intersecting of privileged cubes, in some

combination, which is indicated by the set of support of the primes.

Therefore, the key observation is that the set of support of a prime implicant q of g

precisely indicates which privileged cubes are intersected by the corresponding implicant

qx in f . This observation will be critical in obtaining the �nal set of dhf-prime implicants

of f , dhf -Prime(f; T ).

4.4 Transforming Prime(g) into dhf-Prime(f,T)

Once Prime(g) is computed, dhf -Prime(f; T ) can be directly computed. The key

insight for this computation is that the prime implicants of Prime(g) fall into 3 classes

with respect to a speci�c privileged cube pi. Each prime q is distinguished based on if

and how it intersects the privileged cube pi in f , i.e. based on the intersection of qx with

pi:

� Class 1: Prime implicants q that do not intersect the privileged cube, i.e. qx does

not intersect pi.

� Class 2: Prime implicants q that intersect the privileged cube legally, i.e. qx

intersects pi and contains its start point.

� Class 3: Prime implicants q that intersect the privileged cube illegally, i.e. qx

intersects pi but does not contain the start point.

Dhf -Prime(f; T ) can now be computed as follows. Start with Prime(g). Filter out

all prime implicants that fall in Class 3 with respect to the �rst privileged cube. Then,

�lter out all prime implicants that fall in Class 3 with respect to the second privileged

cube, and so on. Finally, we obtain a set such that each of its elements is a valid dhf-

implicant of (f; T ) if restricted to the x-variables. The reason is, �rst, that all primes

of g are implicants of f if restricted to x-variables. Second, the �ltering removed any

element that intersected any privileged cube illegally. Therefore, the set only includes
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dhf-implicants. In fact, it contains all dhf-prime-implicants of (f; T ). This will be proven

in the next subsection.

Example 4.4 Figure 8B shows function g and its prime implicants, Prime(g) =

fx1x2x3; z1x1x3; z1x2x3; z1x1x2g. Part C shows the result of �ltering out primes that

illegally intersect regions corresponding to privileged cubes in f . In this case, z1x1x3

(oval with thick dark border) falls into Class 3 with respect to p1: it is deleted since it

has a z1-literal, i.e. intersects the region corresponding to privileged cube p1 and does

not contain the start point z1x1x2x3. However, x1x2x3 (shaded oval) falls into Class

1: it is not deleted since it does not have a z1-literal and therefore does not intersect

the region corresponding to the privileged cube p1. The remaining two primes z1x2x3

and z1x1x2 fall into Class 2: they intersect the region corresponding to p1 and contain

the start point. Part D shows the result of step 3 which deletes the z-literals in each

cube. We obtain fx1x2x3; x2x3; x1x2g, which is dhf -Prime(f; T ). Note that the intro-

duction of the z1-variable ensures that the dhf-implicant of f , x1x2x3, which is not a

prime implicant of f , since it is contained by the prime implicant, x1x3, is nevertheless

generated. 2

4.5 Formal characterization of dhf-Prime(f,T) in terms of func-

tion g

In this subsection, based on above discussion, we present the main result of this section: a

new formal characterization of dhf -Prime(f; T ). We use the following notations. gzi and

gzi denote the positive and negative cofactors of g with respect to variable zi, respectively.

RemZ denotes an operator on a set of cubes which removes all z-literals of each cube. As

an example, RemZ (fx1x2z1; x1x3z2; x1x3z1z3g) = fx1x2; x1x3g. The SCC-operator on

a set of cubes (single-cube-containment) removes those cubes contained in other cubes.

Theorem 4.5 Given (f; T ). Let PRIV (f; T ) = fp1; : : : ; plg be the set of non-trivial

privileged cubes, and START (f; T ) = fs1; : : : ; slg be the set of corresponding start

points. De�ne

g(x1; : : : ; xn; z1; : : : ; zl) = f �
Y

1�i�l

(zi + pi)
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Then the set dhf-Prime(f,T) can be expressed as follows:

SCC

 T
1�i�l

�
RemZ (Prime (gzi))

[fq 2 RemZ (Prime (gzi)) jq � sig
�!

Intuition: RemZ (Prime (gzi)) includes implicants of f that do not intersect the priv-

ileged cube pi. fq 2 RemZ (Prime (gzi)) jq � sig includes implicants of f that legally

intersect pi, i.e. contain the corresponding start point si. The
T

ensures that only

those implicants remain that are legal with respect to all privileged cubes, i.e. that are

dhf-implicants. The SCC removes implicants contained in other implicants to yield the

�nal set of dhf-prime-implicants.

Proof: \�" (any product in dhf�Prime(f,T) is also contained in the SCC-

expression 8 ):

Let q 2 dhf -Prime(f; T ), then q does not intersect any privileged cube illegally, i.e. for

each privileged cube it holds that q either contains the corresponding start point or does

not intersect the privileged cube at all.

Suppose q intersects legally p1; : : : ; pl̂, and q does not intersect pl̂+1; : : : ; pl - i.e. q is

an implicant of pl̂+1; : : : ; pl -, then qz1 � � � zl̂ is an implicant of g.

qz1 � � � zl̂ is a prime implicant of g because:

(i) Removing (any) zi results in a cube which is not an implicant of zi+pi, and hence

not an implicant of g.

(ii) Removing (any) positive or negative xj literal (of q) results in a cube such that

its restriction to the x-literals, qnew, either intersects the OFF-set of f , or intersects for

some i privileged cube pi, i 2 fl̂ + 1; : : : ; lg and is therefore no longer an implicant of

zi + pi. In either case qnew is not an implicant of g.

Thus, for each i, q is by construction in at least one of RemZ (Prime (gzi)) or

fq 2 RemZ (Prime (gzi)) jq � sig). Therefore, q is contained in the intersection of those

l sets. Also, q cannot be �ltered out by the SCC-operator since by construction all

8\SCC-expression" refers to the entire expression:

SCC

 T
1�i�l

�
RemZ(Prime(gzi))[fq2RemZ(Prime(gzi))jq�sig

�!
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cubes contained in the SCC-expression are dhf-implicants. Thus, q is contained in the

SCC-expression.

\�" (any product contained in the SCC-expression is also contained in dhf-Prime(f)):

Let q =2 dhf -Prime(f; T ). We show that q is not contained in the SCC-expression.

Case (i): q is a dhf-implicant that is strictly contained in some dhf-prime implicant.

Then q is �ltered out because of the SCC-operator and therefore not contained in the

SCC-expression.

Case (ii): q is not a dhf-implicant. Since by construction all cubes contained in the

SCC-expression are dhf-implicants, q cannot be contained in the SCC-expression. 2

4.6 Multi-output Case

For simplicity of presentation only, it was assumed that f is a single-output function.

However, it is well-known [29] that multi-output logic minimization can be reduced to

single-output minimization. Based on this theorem, the above characterization carries

over in a straightforward way to multi-output functions. All examples given later in the

experimental results section are multi-output functions.

5 Exact hazard-free minimization: Impymin

Based on the ideas of the previous section, we are now able to present a new exact

minimization algorithm for multi-output 2-level hazard-free logic. We will show in the

next section that our implicit method outperforms existing minimizers by a large factor.

Nowick/Dill reduced 2-level hazard-free optimization to a unate covering problem

(see Section 2) where each required cube has to be covered by at least one dhf-prime

implicant. As with synchronous logic minimization in Scherzo 9, hazard-free logic

minimization can also be considered over the lattice of the set of products (over the

set of literals). The major di�erence to synchronous two-level logic minimization is the

setting up of the covering problem, i.e. we need to �nd a method that computes the set

dhf-Prime(f,T) e�ciently, i.e. preferably in an implicit manner. Fortunately, this can

be done using the new characterization of dhf-Prime(f,T) of Section 4. Our algorithm is

9An introductory discussion of Scherzo can be found in the appendix.

31



as follows.

Algorithm: Implicit hazard-free logic minimization

Input: Boolean function f , set of input transitions T .

Output: All minimum hazard-free 2-level implementations of (f; T ).

1. Compute the ZBDD 10 P (init) of dhf -Prime(f; T ).

2. Compute the ZBDD Q(init) of REQ(f; T ) (set of required cubes of (f; T )).

3. Solve the implicit unate set covering problem hQ(init); P (init);�i.

We now explain each of the steps in detail.

5.1 Computation of the ZBDD of dhf-Prime(f,T)

Suppose that f is given as a BDD (if f is given as a set of cubes, we �rst compute its

BDD). From the BDD representing f , we can easily compute the BDD representing g,

and then the ZBDD of Prime(g) using an existing recursive algorithm [5]. From the

ZBDD of Prime(g), we compute the ZBDD of dhf -Prime(f; T ) using Theorem 4.5. It

remains to show that the necessary operations Prime(gzi); P rime(gzi); RemZ; and SCC

can be implemented e�ciently on ZBDDs:

� Computing Prime(gzi): Assuming that positive and negative literal nodes of the

same variable are always adjacent in the ZBDD, we only need to traverse the

ZBDD of Prime(g). We apply at each zi variable the following operation. We

compute the set union of the two successors corresponding to those products that

include positive literal zi and to those products that do not depend on zi.

� Computing the ZBDD of Prime(gzi): Analogously.

� Computing the ZBDD of RemZ: RemZ deletes all z-literals in the ZBDD. We

traverse the ZBDD, and at each zi- or zi-literal, we replace the corresponding node

with the ZBDD corresponding to the union of the two successors.

� SCC (Single-Cube Containment): The last task, the application of the SCC-

operator, which removes cubes contained in other cubes, is actually not done in

this step, since it is automatically taken care of in step 3.

10Background on BDDs and ZBDDs is provided in the appendix.

32



To summarize, based on Theorem 4.5 we can compute the covering objects, dhf -

Prime(f; T ), in an implicit manner.

5.2 Computation of the ZBDD of REQ(f,T)

From the set of input transitions, T , the set of required cubes can be easily computed

(see [25]). The set of required cubes can then be stored as a ZBDD.

5.3 Solving the Implicit Covering Problem

The implicit set covering problem hQ(init); P (init);�i can be solved analogously to Step

3 of Scherzo (i.e. passed to the unate set covering solver of Scherzo).

One subtle di�erence regarding the correctness is worth considering. Scherzo's �

operators map products onto other products (for details, see the Appendix). It is possible

that a product which is a dhf-implicant is mapped, by � , onto a non-dhf implicant. This

does not do any harm because we are ensured that all products of the �nal solution

produced by the solver are products that were given to the solver, i.e. dynamic-hazard-

free, through a re-mapping operation (see Step 3(c) in the Appendix). Hence, it is �ne

to use Scherzo's set covering solver as a black box.

5.4 A Note on the E�ciency of Impymin

It is worth pointing out that appending z-variables for dhf-prime generation is only a

small change to the corresponding synchronous problem. In particular, the BDD for

g is not much larger than the BDD for f . Thus, the generation of dhf -Prime(f; T )

can be done nearly as fast as the generation of primes without hazard-freedom consid-

erations. Moreover, the resulting covering problem is unlikely to be much harder than

the corresponding synchronous problem. To summarize, the proposed method performs

hazard-free logic minimization nearly as e�cient as synchronous logic minimization by

incorporating state-of-the-art techniques for implicit prime generation and implicit set

covering solving. However, note that this could only be achieved based on the pre-

sented new and non-trivial formulation of the set of dhf-prime implicants, presented in

Section 4.
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6 Experimental Results and Comparison with Re-

lated Work

Prototype versions of our two new minimizers Espresso-HF11 and Impymin were run

on several well-known benchmark circuits [10, 32] on an ULTRA-SPARC 140 workstation

(Memory: 89 MB real/ 230 MB virtual).

6.1 Comparison of exact minimizers: Impymin vs. Hfmin

The table in Figure 9 compares our new exact minimizer Impymin with the currently

fastest available exact minimizer, Hfmin, by Robert Fuhrer et al. [10].

For the smaller problems, Hfmin is faster, since our implementation is not yet opti-

mized 12. However, the bottleneck of Hfmin becomes clearly visible already for medium-

sized examples. For examples sd-control and stetson-p2, Impymin is more than three

times faster; for the benchmark pscsi-pscsi even more than �fteen times.

For very large examples, Impymin outperforms Hfmin by a large factor. While

Hfmin cannot solve stetson-p1 within 20 hours, we can solve it in just 813 seconds. The

superiority of implicit techniques becomes very apparent for the benchmark cache-ctrl.

While Hfmin gives up (after many minutes of run-time) because the 230MB of virtual

memory are exceeded, our method can minimize the benchmark in just 301 seconds.

6.2 Comparison of our new methods: Impymin vs. Espresso-

HF

Figure 10 compares our two new minimizers Espresso-HF and Impymin. Besides run-

time and size of solution, the table also reports the number of essentials (for Espresso-

11Our implementation is not a simple modi�cation of the Espresso-II code. We do not re-use

any Espresso-II code. The reason is that while we use the same set of main operators - EXPAND,

REDUCE, IRREDUNDANT - the algorithms that implement these operators, as explained in detail in

Section 3, are actually very di�erent from Espresso-II.
12Our BDD package is still very ine�cient. In particular, it includes a static (i.e. not a dynamic)

hashtable. The hashtable for small examples is unnecessarily large. In fact, the run-time is completely

dominated by initializing the hashtables. If we use an appropriate-sized hashtable for smaller examples,

experiments indicate that Impymin can solve the small examples as fast as Hfmin.
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Hfmin [FLN] Impymin

name i/o #c time(s) time(s)

cache-ctrl 20/23 97 impossible 301

dram-ctrl 9/8 22 1 13

pe-send-ifc 12/10 27 9 16

pscsi-ircv 8/7 12 1 10

pscsi-isend 11/10 23 3 15

pscsi-pscsi 16/11 77 1656 105

pscsi-tsend 11/10 22 3 13

pscsi-tsend-bm 11/11 23 3 13

sd-control 18/22 34 172 52

sscsi-isend-bm 10/9 22 1 11

sscsi-trcv-bm 10/9 24 1 13

sscsi-tsend-bm 11/10 20 2 13

stetson-p1 32/33 60 > 72000 813

stetson-p2 18/22 37 151 49

stetson-p3 6/4 7 1 8

Figure 9: Comparison of exact hazard-free minimizers (#c - number of cubes in minimum

solution, time - run-time in seconds)
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HF) and the number of variables that need to be added (for Impymin).

The two minimizers are somewhat orthogonal.

On the one hand, Impymin computes a cover of minimum size, whereas Espresso-

HF is not guaranteed to �nd a minimum cover, but typically does �nd a cover of very

good quality. In particular, Espresso-HF �nds always a cover that is at most 3% larger

than the minimum cover size. It is worth pointing out that many examples were very

positively inuenced by our notion of essentials. Quite a few examples can be minimized

by just the essentials step, resulting in a guaranteed minimum solution, see e.g. dram-ctrl

and pe-send-ifc.

On the other hand, Espresso-HF is typically faster than Impymin. However, since

neither tool has been highly optimized for speed, we think it is very important to an-

alyze the intrinsic advantages and disadvantages of the two methods. Intuitively, both

methods overcome the three bottlenecks of Hfmin|prime implicant generation, trans-

formation of prime implicants to dhf-prime implicants, and solution of the covering

problem|each of which being solved by an algorithm with exponential worst-case be-

havior. However, the way in which Espresso-HF and Impymin overcome the bottle-

necks is very di�erent. Whereas Impymin uses implicit data structures (but still follows

the same steps as Hfmin), Espresso-HF follows a very di�erent approach. Thus, the

two methods are orthogonal in its approach to overcome the bottlenecks. Moreover,

while Espresso-HF is faster than Impymin on all of our examples, this does not mean

that this is necessarily true for other examples.

In this context, it is important to note that very often the role data structures like

BDDs play in obtaining e�cient implementations of CAD algorithms is misunderstood.

Using BDDs, many CAD problems can now be solved much faster than before the

inception of BDDs. However, the naive approach of taking an existing CAD algorithm

and augmenting it with BDDs does not necessarily lead to a good tool (see discussion

in [5]). In particular, it is impossible to just augment Espresso-HF or Hfmin with

BDDs and get a superb tool. That is why we needed a new theoretical result on the

characterization of dhf-prime implicants (cf. Section 4.5) on which our new exact implicit

minimizer is based.
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Espresso-HF Impymin

name i/o #c time(s) #e #c time(s) #v

cache-ctrl 20/23 99 105 50 97 301 39

dram-ctrl 9/8 22 1 22 22 13 6

pe-send-ifc 12/10 27 1 27 27 16 5

pscsi-ircv 8/7 12 1 12 12 10 3

pscsi-isend 11/10 23 1 23 23 15 6

pscsi-pscsi 16/11 78 11 55 77 105 23

pscsi-tsend 11/10 22 1 22 22 13 4

pscsi-tsend-bm 11/11 23 1 23 23 13 4

sd-control 18/22 35 3 23 34 52 0

sscsi-isend-bm 10/9 22 1 22 22 11 3

sscsi-trcv-bm 10/9 24 1 21 24 13 5

sscsi-tsend-bm 11/10 20 1 20 20 13 4

stetson-p1 32/33 60 21 34 60 813 9

stetson-p2 18/22 37 2 26 37 49 0

stetson-p3 6/4 7 1 7 7 8 1

Figure 10: Comparison of the heuristic minimizer Espresso-HF with the exact min-

imizer Impymin (#c - number of cubes in solution, time - run-time in seconds, #e -

number of essentials, #v - number of added variables)
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6.3 Comparison with Rutten's Work

An interesting alternative approach to our new characterization of dhf-prime implicants

(cf. Section 4.5) was recently presented by Rutten et al. [28]. His new algorithm to

computing dhf-prime implicants is very di�erent from ours. His approach follows a

divide-and-conquer paradigm. In particular, the problem is split into three sub-problems

with respect to a splitting variable. The �rst (second, third) sub-problem generates those

dhf-prime implicants that have a positive literal (negative literal, don't care-literal) for

the splitting variable. The underlying idea why this approach may be e�cient is that it

allows to determine illegal intersections of privileged cubes already during the splitting

phase (see [28] for details), which can signi�cantly reduce the recursion tree and lead

fast to terminal cases. In the merging phase of the divide-and-conquer approach, the

solutions to the sub-problems are combined.

However, it is worth pointing out that a major di�erence of our work to Rutten's

work is that his approach is not based on implicit representations. While Rutten's work

is nevertheless very promising, it has not been fully evaluated so far. In particular, he

only presented run-times for the computation of dhf-prime implicants of single-output

functions, i.e. only for functions that are signi�cantly smaller than those that can be

handled by our method (cf. Section 6.1). Moreover, no results for hazard-free 2-level

logic minimization, based on his new approach to computing dhf-prime implicants, were

presented.

7 Conclusions

We have presented two new minimization methods for multi-output 2-level hazard-free

logic minimization: Espresso-HF, a heuristic method based on Espresso-II, and

Impymin, an exact method based on implicit data structures.

Both tools can solve all examples that we available. These include several large

examples that could not be minimized by previous methods 13. In particular both tools

can solve examples that cannot be solved by the currently fastest minimizer Hfmin.

On examples that can be solved by Hfmin, Espresso-HF and Impymin are typically

13In publications on the 3D method (see e.g. [37, 35]), note that several of these examples appear

but only single-output minimization is performed.
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orders of magnitude faster.

Although Espresso-HF is a heuristic minimizer, it almost always obtains an ab-

solute minimum-size cover. Espresso-HF also employs a new method to check for

existence of solution that does not need to generate all prime implicants.

Impymin performs exact hazard-free logic minimization nearly as e�ciently as syn-

chronous logic minimization by incorporating state-of-the-art techniques for implicit

prime generation and implicit set covering solving.

Impymin is based on the new idea of incorporating hazard-freedom constraints within

a synchronous function by adding extra inputs. We expect that the proposed technique

may very well be applicable to other hazard-free optimization problems, too.
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Appendix

A Background on BDDs and ZBDDs

A.1 BDDs

Binary Decision Diagrams (BDDs) [3] are used to e�ciently represent Boolean functions.

A BDD of a function f is obtained from the Shannon tree representation of f by reduction

rules which (i) identify isomorphic subgraphs and (ii) delete each vertex that has the

same left and right children.

Example A.1 In Figure 11a) the Shannon tree of the function f = ab+ c is shown. To

�nd the function value for a speci�c assignment to the variables, one follows the path

from the root node to a terminal node, taking the left (right) branch if the corresponding

variable is assigned the value 0 (1). The corresponding BDD obtained by above reduction

rules is shown in part b) of the �gure. Note that the BDD of f is just a compact

representation of the Shannon tree of f . In particular, the same algorithm can be used

to evaluate the function for an assignment to the variables. 2

Important properties of BDDs include canonicity of representation (if the variable

ordering is �xed), and the e�ciency of binary operators, e.g. the Boolean AND of two

functions represented by BDDs can be e�ciently computed in time proportional to the

product of the number of nodes of the two BDDs.

A.2 ZBDDs

Zero-suppressed BDDs [17] are a variant of BDDs which were introduced to e�ciently

represent sets of products, e.g. the set of prime implicants of a function f . A ZBDD of a

set of products is obtained from a tree representation of the set of products by reduction

rules which (i) identify isomorphic subgraphs and (ii) delete each vertex whose right

children points to 0 (i.e. the empty set). Note that to achieve small representations for

sparse sets, the second reduction rule di�ers from the second reduction rule for BDDs.

Another di�erence from BDDs is that a ZBDD makes decisions based on literals instead

of variables.
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Figure 11: BDDs and ZBDDs

Example A.2 Consider the tree representation of the set of products fb0; a0; a0b0; a; ab0g

in Figure 11c). Here each path from the root node to a terminal 1 node corresponds to

a product in the set. The product consists of those literals encountered on taking right

branches on the path. Here, positive (negative) literals are denoted by a '+' superscript

('-' superscript). The ZBDD for this set of products obtained by above reduction rules

is shown in part d) of the �gure. 2

Important properties of ZBDDs include canonicity of representation and e�cient

computation of set-operations, such as union and intersection.

B Implicit 2-Level Logic Minimization: Scherzo

This section briey reviews the state-of-the-art synchronous exact two-level logic mini-

mization algorithm, called Scherzo [8, 6, 5, 7], which forms a basis of our new hazard-

free implicit minimization method. Using implicit minimization techniques, Scherzo

is 10 to more than 100 times faster than the best previous minimization methods.

Scherzo has two signi�cant di�erences from classic minimization algorithms like

the well-known Quine-McCluskey algorithm:
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� Scherzo uses data structures like BDDs and ZBDDs to represent Boolean func-

tions and sets of products very e�ciently (see the Appendix for a review of BDDs

and ZBDDs). Thus, the complexity of the minimization problem is shifted, and

the cost of the cyclic core computation 14 is independent of the number of products

(e.g. the number of prime implicants) that are manipulated.

� Scherzo includes new algorithms that operate on these data structures. The mo-

tivation is that the logic minimization problem can be considered as a set covering

problem over a lattice. More speci�cally, both the covering objects, P , and the

objects-to-be-covered, Q, are subsets of the lattice P of all Boolean products (over

the set of literals). A new cyclic core computation algorithm (see below) uses then

two endomorphisms �P and �Q, which operate on Q and P respectively, to capture

dominance relations and to compute the �xpoint C, which can be shown to be

isomorphic to the cyclic core.

Below is a short description of Scherzo's algorithmic approach 15. Note that for the

understanding of this paper the actual implementation of algorithms is not important.

Rather it is of interest which data structures they manipulate and that the algorithms

have been very e�ective in practice.

Algorithm: Scherzo

Input: Boolean function f .

Output: All minimum 2-level implementations of f .

1. Compute the ZBDD P (init) of Prime(f) (the set of all prime implicants of f , or

covering objects). Here, f is given as a BDD.

2. Compute the ZBDD Q(init) of the set of ON-set minterms of f , (i.e., the objects

to be covered).

3. Solve the implicit set covering problem hQ(init); P (init);�i (Note that \�" replaces

\2", usually used to describe the relation between the two sorts of objects of a

14A set covering problem can be reduced in size by repeated elimination of essential elements and

application of dominance relations. The remaining set covering problem (if any) is called the cyclic

core.
15The ZBDD based recursive algorithms that implement the steps e�ciently can be found in [5].
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covering problem, since our set covering problem is considered over a lattice, as

explained above.)

(a) Determining the cyclic core:

Compute the �xpoint C, which is isomorphic to the cyclic core, produced by

the following rewriting rules on the implicit set covering problem hQ;P;�i :=

hQ(init); P (init);�i,

hQ;P;�i ! hmax
�

�P (Q);max
�

�Q(P );�i

hQ;P;�i ! hQ� E; P � E;�i;

withE = Q \ P

where �P and �Q are de�ned from P into P by:

�Q(r) = sup
�

fq 2 Qjq � rg

�P (r) = inf
�
fp 2 P jr � pg

Intuition for � -operators

To understand the rewriting rules consider �rst the following examples

for sup (supremum) and inf (in�mum): sup�fx1x2; x2x3g = x2 and

inf�fx1x2; x2x3g = x1x2x3.

Operator �Q maps each product r of the covering objects (initially a prime

implicant) onto the supremum of all products (initially on-set minterms) that

it covers. Basically, r is mapped onto the smallest cube r0 such that r0 still

covers the same set of products as r. This process often reduces product r.

Operator �P maps each product r of the objects-to-be-covered (initially an

on-set minterm) onto the in�mum of all products (initially prime implicants)

by which it is covered. Basically, r is mapped onto the largest cube r0 such

that r0 is still covered by the same set of products as r. This process often

enlarges product r.

max removes cubes contained in other cubes. Each non-maximal covering

object can be removed since it is included in a \better" cube, i.e. one that
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covers more. Each non-maximal object-to-be-covered can be removed since

the containment in another larger object-to-be-covered ensures its covering.

The intuition behind the � -operators (together with max) is that they are

very often not injective, that is, they may reduce the size of the covering

problem. Basically, the � operators capture dominance relations. Also, it

can be shown that the essential elements 16 (above denoted by E) are those

elements that are present in the intersection of P and Q at any iteration.

The rewriting rules for hQ;P;�i are iterated until no change: the �xpoint C

is computed, which means that the cyclic core is determined and implicitly

represented by Q and P .

(b) Solving the cyclic core:

The resulting �xpoint C is solved using a branch-and-bound method, modi�ed

to generate all minimum-cost solutions, and step 3(a).

(c) Solutions to covering problem:

Let F be the union of the sets E found during the computation of the �xpoint

C in step 3(a). Let Sol(C) be the set of solutions to C. Then the set of all

solutions of the 2-level logic minimization of f is:

[
S2Sol(C)

�r2S[F fp 2 P (init)jr � pg

Intuition: Each r 2 S [ F represents an equivalence class of primes, which

is the set of primes that cover r. Each solution includes exactly one of these

primes. The Cartesian product therefore gives rise to the set of all solutions.

16Essential elements are products that are in every minimum solution
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