
Partitioning Using Second-Order Information and Stochastic-Gain
Functions�

Shantanu Dutt1 and Halim Theny2
1 EECS Dept., Univ. of Illinois at Chicago 2 Intel Corp., Folsom, CA

Abstract
A probability-based partitioning algorithm, PROP, was intro-

duced in [5] that achieved large improvements over traditional
“deterministic” iterative-improvement techniques like FM [7] and
LA [10]. While PROP’s gain function has a greater futuris-
tic component than FM or LA, it incorporates spatially local
information—only information on the removal probabilities of ad-
jacent nets of a cell is used in its gain computation. This pre-
vents a higher-level view of non-local structures. Also, giving uni-
form weights to all nets, results in an inability to differentiate be-
tween the futuristic benefit of removing one net from another. In this
paper, we present a more sophisticated partitioner DEEP-PROP
that incorporates more non-local (second-order) structural infor-
mation than PROP. The second-order information is incorporated
into cell gains as well as variable net weights—the latter helps to
focus future cell moves in a cluster around the currently moved cell
and thus better utilizes the information that led to its selection. A
lower-complexity version, VAR-PROP, that also uses dynamically
assigned variable net weights, but based on first-order information,
has also been developed. Both versions yield significant improve-
ments over PROP on the ACM/SIGDA benchmark suite. DEEP-
PROP yields mincut improvements of as much as 39% for large
circuits and an average improvement of 20% over all circuits; it is
about 3.8 times slower than PROP, which is very fast. VAR-PROP,
which has a much lower computational complexity than DEEP-
PROP, yields maximum and average mincut improvements over
PROP of 27% and 12%, respectively, while being only about 1.14
times slower.

1. Introduction
VLSI circuit partitioning is an important processing step for
many applications in VLSI design such as testing, placement and
multiple-FPGA implementation. While many different partition-
ing methods have been proposed in the past, iterative-improvement
based approaches are widely used due to their efficiency and flex-
ibility in adapting to different optimization objectives. The clas-
sical iterative-improvement methods include those of Kernighan-
Lin (KL) [9] and Fidducia-Mattheyses (FM) [7]; the latter is a
lower-complexity version of the KL algorithm that considers sin-
gle cell moves instead of cell-pair swaps. The techniques work
well for small to medium-sized circuits with up to ten thousand

�This work was supported partly by an UIC Research Grant

cells, but rapidly break down in terms of solution quality for larger
circuits due to their “greedy” gain functions. More recently, a
number of more powerful iterative-improvement based partition-
ers like PANZA [12], GMetis [2], STRAWMAN [8], PROP [5],
CLIP/CDIP [6], hMetis [11], MLc [1] and LSR/MFFS [3] have
been developed, that yield very good results. However, there still
are conceptual issues that warrant further study in order to yield
more insights and improvements in partitioning algorithms, thus
enabling them to deal more effectively with high-complexity cir-
cuits. This paper studies one such issue, the computation and use
of stochastic and non-local information in cell gain functions that
drive iterative-improvement partitioners.

Our main goal in this work is not necessarily to produce the next
best partitioning program, but to delve into the concepts of stochas-
tic and non-local structural information, and their focused use, and
to demonstrate that by using powerful gain functions, even flat par-
titioners can obtain results comparable to multilevel ones. DEEP-
PROP’s results are within 8% of the current best partitioners, and
can very likely be improved further by using orthogonal paradigms
like multilevel partitioning. However, flat partitioners are impor-
tant, especially in complex placement systems (e.g., timing-driven
placement in the presence of multiple constraints), where it may be
detrimental to “hide” useful information about the circuit by clus-
tering subcircuits into large “nodes”, as is done in multilevel parti-
tioners.

The rest of the paper is organized as follows. In Sec. 2., we
recap the gain functions of other relevant methods, FM, LA and
PROP. Section 3. introduces the notion of second-order informa-
tion based on removal probabilities of level-2 nets, and the ad-
vantages of incorporating this information. In Sec. 4., we present
techniques for incorporating second-order information as well as
schemes for net weight determination based on this information.
Section 5. formally presents the algorithm and derives time com-
plexities. Sec. 6. presents our experimental results, and we con-
clude in Sec. 7..

2. Relevant Past Methods
The mincut bi-partitioning problem can be formally stated as

follows. A circuit is represented by a hypergraph G = (V;E),
where V = fv1; v2; :::; vng is the set of nodes that represent cells
or modules in the circuit, and E = fn1; n2; :::; neg is the set of
hyperedges which represent nets in the circuit; n and e are the to-
tal numbers of cells and nets in G, respectively. Each net ni will
be represented as a subset of the cells that it connects, and E(u)
is the set of nets connected to cell u. The area of each cell is de-
noted as a(vi). In a bi-partitioning problem, V is partitioned into
two subsets, V1 and V2, such that each vi belongs to either V1 or
V2. We denote the set of nets with incident cells in both V1 and V2
by Ecut, and the total size of V1, V2 by jV1j, jV2j respectively, i.e.,
jVj j =

P
vi2Vj

a(vi) for j = 1, 2.

There are one or more objectives and constraints that any parti-

tioner must achieve and comply with, respectively. One of the most
common objective is to minimize the cutsize of the cutset which is
defined as cutsize =

P
ni2Ecut

c(ni). where c(ni) is the cost or
weight of net associated with ni. Based on this objective, every
cell u in the circuit can be assigned a gain gain(u), which is an
estimate of the improvement of the objective engendered by mov-
ing u to the other subset. The gain function is the most important
determinant of the efficacy of an iterative-improvement algorithm,
and can range from simplistic to complex. The gain function is de-
fined differently for different partitioners like FM, LA, and PROP.
Both FM and LA define a cell’s gain (LA has a gain vector) as a
deterministic one:

gain(u)[k] =
X

ni2Ek(u)

c(ni)�
X

nj2Ik(u)

c(nj); k = 1 to l

where Ek(u) is the set of nets that have exactly k cells (includ-
ing u) in u’s subset, and Ik(u) is the set of nets that have exactly
k � 1 cells in the other subset [10], [7]; l is the degree of “look-
ahead”, and is 1 for FM which lacks of any look-ahead informa-
tion. PROP’s gain function captures more accurate futuristic infor-
mation (thus yielding much better results [5]) as follows.

PROP [5] defines a probabilistic gain for every cell u and its ad-
jacent nets based on the cells’ initially estimated approximate prob-
abilities. A cell u’s probability p(u) is then computed from its gain
using a monotonically increasing function f(g(u)) (usually a lin-
ear function). The probabilistic gain of cell u, assuming u 2 V1, is
given by

gain(u) =
X

ni2E(u)

gni(u) (1)

where each gain component gni(u) for net ni is formulated as

gni(u) = c(ni)[(Prob: of moving ni to V2 given u
0s move)�

(Probability of moving ni to V1 given that u is not moved)]

The rationale for the negative term in the above expression is that
moving u precludes the event of moving ni to V1 from occurring,
and thus eliminates the possibility of removing ni from the cutset
in that manner. Using conditional probabilities, this leads to the ex-
pression

gni(u) = c(ni)[
Y

ux2ni;1

p(ux))=p(u)�
Y

uy2ni;2

p(uy)] (2)

where ni;j = ni\Vj , for j = 1; 2. Note that the above expression
also applies to netsni that are not in the cutset, but lie entirely in the
subset that u is in, viz., V1 for the above expressions. In this case,
the probability of moving ni to V1 (i.e., the second term in Eqn. 2)
is 1, and thus gni(u) is a penalty (i.e., it is negative) equal to the
probability of not being able to move ni out of the cutset after it is
introduced in it by moving u from V1 to V2.

To begin the partitioning process, PROP refines the cells’ prob-
abilistic gains and probabilities with one or two iterations of prob-
ability assignment and gain calculation. After moving the cur-
rent best cell u at each step (assuming no constraints are violated),
PROP records the immediate gain of u and at the end of each pass
computes the maximum prefix of immediate gains. Whileu’s prob-
abilistic gain is an indication of future immediate gains from mov-
ing other nodes, and is thus a good node selection function, the im-
mediate gain needs to be recorded for each move to compute the
maximum improvement point.

As reflected in PROP’s cell gain function expressed in Eqn. 1
and Eqn. 2, PROP captures information on the advantage of mov-
ing a cell based only on the removal probabilities of its incident

1

4

7

8

3

n1

n2

n3

n9

n10

9

10

2

5

6

n4

n5

n6

n7

n8

11

cutline

V V12

Figure 1: Base cell selection which shows the advantage of using
the second-order information.

nets—these are called level-1 nets, and information based on them
is referred to as first-order information. Besides 1st-order informa-
tion, DEEP-PROP also incorporates in the cell gain function, the
futuristic benefit of removing each incident net ni from the cutset
in terms of the subsequent (after ni is removed) removal probabili-
ties of nets adjacent to ni; a net nj is said to be adjacent to another
net ni if there is at least one common cell v between them. Nets ad-
jacent to level-1 nets of a cell u that are themselves not its level-1
nets, are called level-2 nets with respect to u. The removal proba-
bilities of level-2 nets, called second-order information, represents
non-local structures around each cell u, and is incorporated in its
gain function.

Another difference between PROP and DEEP-PROP is that the
former treats all nets in the circuit uniformly in terms of their signif-
icance, whereas DEEP-PROP gives nets different weights (or pri-
ority factors). The priority factor for a net ni is based on much its
removal from the cutset increases or decreases the probabilities of
either removing nets adjacent to it from the cutset or maintaining
them as internal nets on a particular subset. Higher priority fac-
tors translate to higher cell gains for those cells that promote the
removal of corresponding nets from the cutset, and lower cell gains
for those that inhibit this removal (e.g., by locking a net in the cut-
set). This enables DEEP-PROP to better identify nets and their
connected cells that yield higher benefits by being removed from
the cutset.

3. Using Second-Order Information
3.1. Advantages of Second-order Information

Figure 1 illustrates the benefit of using second-order informa-
tion. For simplicity, we assume that all cells shown in the figure
have the same move probabilities, and all nets in the cutset have
the same probabilities of being removed from it by cell moves from
V1 to V2 (this is also called the going probability to V2). As far as
PROP is concerned, the difference between the gains of cells 1 and
2 are only due to the components corresponding to net n2 and n6,
respectively. Hence, PROP will compute a larger gain for cell 1.
However, closer scrutiny reveals that cell 2 is a much better candi-
date to move because the move of cell 2 engenders the removal of
level-1 net n5 (among other level-1 nets), which in turn engenders
the removal of level-2 nets n4 and n8. The removal of the corre-

u1

u2

u3

ni n1

n2

n3

n5

n4

V V12

cutline

u

Figure 2: Example circuit used for determining the benefit of re-
moving net ni based on information provided by its neighboring
nets n1, n2, n3 n4 and n5.

sponding netn1 by moving cell 1, on the other hand, does not facili-
tate the removal of any level-2 nets from the cutset; on the contrary,
it leads to the introduction of level-2 nets n9 andn10 into the cutset.
Since PROP does not take second-order information into account,
it cannot distinguish between the benefits of removing net n5 ver-
sus removing net n1—these benefits are not reflected on the gains
of their incident cells 2 and 1, respectively. Thus it is clear that by
considering level-2 nets, the gain function can be made more accu-
rate.

In order to incorporate 2nd-order information in our new tech-
niques, the benefit factor (BF) of each net will be computed—it in-
dicates the benefit of removing it from the cutset in terms of the
subsequent removal probabilities of adjacent cut-nets (nets in the
cutset), which contributes positively to the BF, and the cutset in-
sertion probabilities of adjacent internal nets (nets not in the cut-
set), which contributes negatively to the BF. Hence, for the circuit
shown in Fig. 1, net n1 will be given a much lower benefit factor
than net n5.
3.2. Formulation

We denote by Cs(nx; ny) the set of cells in partition subset
s that the two nets nx and ny have in common, and Cs(nx; ny)
is its counterpart for the other subset s of the partition. Hence,
C1(ni; n1) = fu1g and C2(ni; n1) = ; for the circuit in Fig. 2.
Further, we denote Ns(nx) to be the set of neighboring nets ny
of nx for which Cs(nx; ny) 6= ;. For the circuit in Fig. 2,
N1(ni) = fn1; n2; n3g and N2(ni) = fn2; n4; n5g. Note that,
Ns(nx) [Ns(nx) = N(nx), the set all nets adjacent to nx, and
Cs(nx; ny) [Cs(nx; ny) = C(nx; ny), the set of all common
cells between nx and ny . We introduce a new term G(ni) which
is the 2nd-order benefit factor of net ni. For nets that are in the
cutset, there are two components of G(ni), namely G(ns!s

i) and
G(ns!s

i). G(ns!s
i) is the expected benefit, given ni is removed

from the cutset by moving all its incident cells from subset s to
subset s, whereas G(ns!s

i) is the expected benefit for moving ni
from s to s. Hence, for nets that are not in the cutset, there is only
one component of G(ni), G(ns!s

i) or G(ns!s
i), depending on

whether ni is internal to subset s or subset s, respectively. The
value of G(ni) is determined by the neighboring nets of ni as fol-
lows.

G(ns!s
i) =

X
nj2Ns(ni)

Gnj (n
s!s
i) (3)

G(ns!s
i) =

X
nj2Ns(ni)

Gnj (n
s!s
i) (4)

where for a net nj in the cutset,

Gnj (n
s!s
i) = c(nj)[Probability of removing nj from the cutset

given that ni is moved from s to s]

Thus

Gnj (n
s!s
i) = c(nj) � p(n

s!s
j)=

Y
u2Cs(ni;nj)

p(u) (5)

where p(ns!s
j) is the probability of net nj being removed from the

cutset by moving all the adjacent cells from s to s (also called the
going probability of nj from s), and using the derivation in [5]

p(ns!s
j) =

Y
v2ni\s

p(v)

For a net nj internal to subset s,

Gnj (n
s!s
i) = �c(nj)[Prob: that nj will remain in the cutset

given that it is introduced in it by moving ni from s to s]

Thus

Gnj (n
s!s
i) = �c(nj) � (1� p(ns!s

j))=
Y

u2Cs(ni;nj)

p(u) (6)

A similar set of equations holds for moves from s to s. Note that
G(ns!s

i) and G(ns!s
i) can be either positive or negative.

Using this second-order information given by Eqns. 3 to 6,
DEEP-PROP uses the following gain functions gni(u) for a cell
u 2 V1. For a net ni in the cutset

gni(u) = [(Expected 1st & 2nd order bene�t of moving ni
from V1 to V2) �

(Probability of moving ni to V2 given that u has been moved)] �
[(Expected 1st & 2nd order bene�t of moving ni from V2 to V1) �

(Probability of moving ni to V1 given that u is not moved)]

Similar to PROP’s gain function, the rationale for the negative term
in the above expression is that moving u precludes the event of
moving ni to V1 from occurring, and thus eliminates the corre-
sponding expected benefits of ni. Also note that the 1st-order ben-
efit of removing ni from the cutset is simply c(ni), and is used in
PROP’s gain function (Eqn. 2). We thus obtain

gni(u) = [G(n1!2
i) + c(ni)]p(n

1!2
i)=p(u)�

[(G(n2!1
i) + c(ni))]p(n

2!1
i) (7)

Substituting for p(n1!2
i) and p(n2!1

i),

gni(u) = [
X

nj2N1(ni)

Gnj (n
1!2
i)+c(ni)][(

Y
ux2ni;1

p(ux))=p(u)]�

[
X

nj2N2(ni)

Gnj (n
2!1
i) + c(ni)][

Y
uy2ni;2

p(uy)] (8)

For net ni internal to V1, the above formulation of gni(u) still
holds, except that in this case G(n2!1

i) = 0. Hence

gni(u) = �(c(ni)� [G(n1!2
i) + c(ni)][p(n

1!2
i)=p(u)]) (9)

or

gni(u) = �(c(ni)� [
X

nj2N1(ni)

Gnj (n
1!2
i) + c(ni)]�

[(
Y

ux2ni;1

p(ux))=p(u)]) (10)

current best cell

next best cell

cutline

V V12

n1

n2

n3

n5

n6

n7

n4

u

u

u1

u

2

3

4

u

u

u5

6

7

focus is put on the
nets with darker lines

Figure 3: The focus on removing level-1 nets n1, n2, n3 and n4,
and level-2 nets n6 and n7 should be maintained after moving u1
by giving more weight to the level-1 nets.

4. Variable Net Weights
4.1. Determining Net Weights

Based on DEEP-PROP’s gain function, let u1 be the highest-
gain cell moved; u1 is selected because it will engender the move-
ment of the most number of “removable” (nets that can be removed
from the cutset with high probability) level-1 and level-2 nets. This
initial effort should not be stopped after the move of cell u1. Other-
wise, the information regarding removable level-1 and level-2 nets
contained in g(u1) will be wasted, especially if the next best cell(s)
w moved are in the opposite direction tou1’s move. In other words,
the focus of the partitioner in removing u1’s level-1 and level-2
nets shifts to removing w’s level-1 and level-2 nets, and may shift
again in the next moves. Thus there is a potential problem of the
partitioner moving from one promising cluster to another without
pulling an entire cluster out of the cutset; this can and does result in
many removable clusters being locked in the cutset. The problem is
illustrated in Fig. 3. In the current situation, cell u1 is the best cell
to move and cell u4 is the second best. Moving cell u1 is an ini-
tial effort towards removing level-1 nets n1, n2, n3, n4 as well as
level-2 netsn6 andn7 by cell moves fromV1 toV2. However, since
there is no direct connection between cells u1 and u4, the move of
u1 will not alter the gain of the next-best cell u4. Hence cell u4 will
be moved next, and this reduces the gain of cell u2, thus reducing
the probability of removing nets n1 and n6 from V1 to V2.

After moving the best cell u1, the goal should thus be to follow
through with cell moves that engender the removal of high-benefit
level-1 and level-2 nets that contributed to the selection of u1. The
level-1 cut-nets of u1 are n1, n2, and n3 for the circuit in Fig. 3.
The level-2 nets will be automatically removed either fully or par-
tially once the level-1 nets are removed. The partitioner’s focus on
these nets can be retained by simply amplifying the weight of level-
1 nets of the moved cell by a constant factor. This will amplify ei-
ther positively or negatively the gains of free cells which are con-
nected to these level-1 nets (i.e., neighboring cells of u1). This will
promote those neighboring cells which are on the same (original)
subset as u1, and will demote those on the other subset. Therefore,
cells u2 and u3 will have positive amplification while cells u5, u6
and u7 will have negative amplification from their corresponding
nets. The move of u1 will then be followed by cells u2 and u3 ei-
ther immediately after or in near-future moves. It can thus be en-
sured that nets that are intended to be removed (stemming from the
decision to move cell u1) do indeed get removed, and that the par-

titioner retains focus on a particular subset of nets before it shifts
its effort to others.

However, the constant factor amplification will not always work
well, since different nets have different benefit factors—a more re-
fined method is needed. If all level-1 nets of a moved node are
given a uniformly high weight, then even those nets and neighbors
that have very low probabilities of being moved will accumulate
high gains that are misleading. This will cause the partitioner to fo-
cus too heavily on removing such nets with negative consequences
(e.g., those with low or negative expected benefits—meaning that
they cause other nets to get introduced or locked in the cutset),
and at the expense of diverting attention from other more promis-
ing nets. Rather than giving a constant weight to every net, they
are given different priority factors �(ni)’s according to their de-
gree of “goodness” of being removed from the cutset. The good-
ness of a net ni can be measured in two ways: one is based on the
expected benefit G(n1!2

i) (used by DEEP-PROP), and the other
one is based on the going probability of ni from a subset, say V1
(p(n1!2

i)). The version which uses the second variable net-weight
scheme is called VAR-PROP. Assigning net weights in this manner
allows the partitioner to properly reward or penalize nets and their
connected cells. This serves the purposes of focusing on nets to
be removed as well as prioritizing these nets according to their ex-
pected benefits (nets whose removal will likely lead to the removal
of other adjacent nets should be focused on first) or their removal
probabilities (nets that are easier to remove should be focused on
first).

4.2. Formulation
The priority factor �(ni) on a net ni is normalized with a lin-

early increasing function given by

�(ni) =

8<
:

�max when �(ni) > Tup

�min + (�max ��min)� when
(�(ni) � Tlow)=(Tup � Tlow) Tlow � �(ni) � Tup

�min when �(ni) < Tlow

where �(ni) is the metric of goodness being used (G(ns!s
i) for

DEEP-PROP, and p(ns!s
i) for VAR-PROP), �max, �min , Tup,

and Tlow limit the upper and lower bounds of �(ni) and �(ni).
Hence the higher is G(ns!s

i) or p(ns!s
i), the higher is its �(ni).

Let u1 be the current best cell being moved from V1 to V2; when
cellu1 is moved for the first time on a netni, for all unlocked neigh-
bors u of u1 on ni, gni(u) = �(ni)g

upd
ni

(u), where gupdni
(u) is the

gni(u) after normal PROP-type updation of neighbors of u1 after
it is moved—see algorithm DEEP-PROP in Fig. 4 for details. Fur-
ther, gni(u) � 0 for all u 2 ni;1 whereas gni(u) � 0 for all
u 2 ni;2; recall that ni;s = ni \ Vs, s = 1; 2. This means that
all neighbors of u1 in V1 will have positive magnification from the
corresponding nets; in contrast, all the neighbors in V2 will have
negative magnification.

To illustrate this further, let us consider the example circuit of
Fig. 3, and apply the variable net-weight method used by DEEP-
PROP after cell u1 is moved from V1 to V2. The following
conditions hold after the move: E(u1) = fn1; n2; n3; n4g,
G(n1!2

1) = 1, G(n1!2
2) = 0, G(n1!2

3) = 0, andG(n1!2
4) = 1.

Thus the gain of cells u2 and u3 due to nets n1 and n4 will be pos-
itively magnified, while the gains of cells u5, u6, and u7 due to
nets n1 and n2 will be negatively magnified. A similar process ap-
plies to VAR-PROP which uses p(n1!2

1), p(n1!2
2), p(n1!2

3), and
p(n1!2

4) to determine the �(ni) values.
In the actual implementation, all cell gains are initially shrunk

by a factor �, 0 � � � 1, to yield the initial cell gains, i.e., initially,
g(u) = � � g(u). However, the un-shrunk gains and all their com-
ponents values are stored. All the update procedures after the initial

Procedure DEEP-PROP(G)
/* G is the hypergraph to be partitioned */
Repeat

1. Assign each cell an uniform initial probability pinit of, say, 0.5.
2. Compute the initial expected benefits of all nets, and the gains of all

cells according to Eqn. 3 to Eqn. 10.
3. Recompute cell probabilities p(u)’s using a monotonic function

f(g(u)) of g(u)’s.
4. Sort all the cells based on their gain separately for V1 and V2.
5. Shrink all the cell gains by a common factor � < 1 (g(u) = �g(u)).
6. Repeat Steps 7 to 9 until all cells are moved.
7. Choose the base cell u based on the cell’s updated gain and the bal-

ance criterion. Move the cell, update its neighbors.
8. For each ni 2 E(u) update Gni (nj) for all nj 2 N(ni).
9. For each unlocked neighboring cells w on each net ni 2 E(u), do

Steps (a) to (b).
(a) Update gni (w)with un-shrunk gain components and compute

the �(ni) for nets ni.
(b) gni(w) = �(ni) � gni (w).

10. Find the point in the move sequence which corresponds to the mini-
mum cutsize, and reverse all the moves after this point.

Until(the min. cutsize obtained in this pass [Steps 1-10] does not represent
any improvement over the previous pass)

Figure 4: The second-order probability-based partitioning algo-
rithm DEEP-PROP

move use the un-shrunk values and the calculated �(ni)’s. This re-
sults in giving net ni a weight factor of �(ni)=� after a node con-
nected to it has been moved for the first time. The next section for-
mally presents algorithm DEEP-PROP, which incorporates second-
order information and variable net weights into a probabilistic gain
function.

5. Algorithm Description and Complexities
Figure 4 formally describes the partitioning algorithm DEEP-

PROP. The flow of the partitioning process is essentially the same
as PROP except for some additional steps during the initial cell gain
calculation and updation. An initial probability is assigned to every
cell at the start. Based on the cell probabilities and nets’ expected
benefits, the cell probabilistic gains are computed using Eqn. 3 to
Eqn. 10. All cell gains and their components are then shrunk by a
factor of � < 1; the cell ordering remains unchanged. The max-
gain cell is selected, moved to the other subset and locked. The ex-
pected benefits of all adjacent nets (level-1 nets) are first updated,
then gains of cells connected to them are updated with the corre-
sponding �(ni) values. Note that the updating process uses the un-
shrunk gain components gni(u)s. The next best cell is then chosen
and the process continues until all cells are locked.

Let �n, �u be the numbers of adjacent cells, nets (pins) on net
n and cell u respectively, and �netmax, �cellmax be the maximum �n,
�u over all nets and cells, respectively, in the circuit. The num-
ber of nets whose benefit factors G(ni) need to be updated for
each move is O(�netmax�

cell
max). Hence in the worst case, the tim-

ing complexity of DEEP-PROP is O(�netmax�
cell
max) per cell move,

or O(n�netmax�
cell
max) over the entire pass. The �netmax�

cell
max value is

not constant throughout a pass; it decreases during a pass as cells
and nets are locked and their gains and benefit factors, respectively,
do not need to be updated. Thus the time complexity is much lower
in practice.

6. Experimental Results
DEEP-PROP was implemented in C++ on top of PROP. Ex-

periments have been performed on the ACM/SIGDA benchmark
suite. The characteristics of these circuits are given in Table 1. All
experimental results presented in Table 1 (comparisons of DEEP-

PROP and VAR-PROP with PROP) were run on a SPARC-Station
20. The relevant common parameters values for both DEEP-PROP
and VAR-PROP are: initial probability = 0:3, � = 0:1, �max = 2,
�min = 1. For DEEP-PROP,Tup = 8, Tlow = �8, and for VAR-
PROP Tup = 0:9, Tlow = 0:1.

Table 1 shows that most of the improvements yielded by DEEP-
PROP are for large-size circuits (near the bottom of the table). For
the largest circuit golem3 the improvement is 15.6% and 26.8%
in mincut and average-cut, respectively, over both PROP with 20
and 40 runs. Also, there is an improvement of 39% in mincut for
avq large over both runs of PROP. Circuits38417 improves in
mincut by 38% and 19% over PROP 20 and 40 runs, respectively.
Mincut improvement is also obtained for avq small which is
as much as 15% over both PROP with 20 and 40 runs. Perhaps
the most obvious and consistent improvement is in the average-
cut, where for all circuits except t2 there are significant improve-
ments. This means that for a particular run, DEEP-PROP’s final
result has less dependency on the initial random partition com-
pared to PROP. For small to medium size circuits, DEEP-PROP is
about 2 times (or less) slower than PROP. Large-size circuits such
as avq large and avq small have many nets with large net-
degrees which increase the computational time significantly dur-
ing the updating procedures. Over all circuits, DEEP-PROP shows
mincut improvements of 13.2% over PROP 20-runs and 9% over
PROP 40-runs, and it is about 3.8 times slower than PROP (with
20 runs), which is quite fast. Comparisons between PROP and
VAR-PROP are also shown in the same table, where it is more
appropriate to compare VAR-PROP to PROP with 20 runs than
40 runs, since VAR-PROP is comparable in speed with PROP 20-
runs (see last 2 rows of Table 1). Similar to DEEP-PROP, im-
provement in mincut are most noticeable in larger circuits such
as golem3, avq large and avq small—these improvements
are by 11.5%, 27% and 20%, respectively over both PROP 20 and
40 runs. Again, improvements in the average-cut are very no-
ticeable for all the circuits except t2. Even though the results
of DEEP-PROP are slightly superior to VAR-PROP, the speed of
VAR-PROP makes it a very attractive partitioner. VAR-PROP runs
almost as fast as PROP because it has no extra data structures, and
its additional time complexity is constant with respect to problem
size. Over all circuits, VAR-PROP improves over PROP in both
mincut and average-cut by 11.9%, while being only 1.14 times
slower than PROP. However, if a very high-quality mincut result
is desired, DEEP-PROP should be the partitioner of choice, espe-
cially for large circuits.

7. Conclusions
We introduced the concept of stochastic second-order structural

information, in terms of the expected benefits of removing con-
nected (level-1) nets from the cutset, in the cell gain function. In
order to use this information in a focused manner, we also de-
veloped a refined net weight amplification technique for nets on
which a cell has been moved for the first time. These concepts re-
sulted in two new stochastic-gain based partitioners DEEP-PROP
and VAR-PROP. Both partitioners yield much better mincut re-
sults than PROP [5], which uses only first-order structural infor-
mation and uniform non-amplified net weights in its (stochastic)
gain function. On the suite of ACM/SIGDA benchmark circuits,
DEEP-PROP yields mincut improvements of as much as 39% for
large circuits and an average improvement of 20% over all circuits
in the above suite; it is about 3.8 times slower than PROP, which
is very fast. VAR-PROP, which has a much lower computational
complexity than DEEP-PROP, yields maximum and average min-
cut improvements over PROP of 27% and 12%, respectively, while
being only about 1.14 times slower.

Some of the current state-of-the-art partioners are mostly of

Test Case Characteristics PROP 20-runs PROP 40-runs DEEP-PROP 20-runs VAR-PROP 20-runs
Name # Cells # Nets # Pins Min Avg Time Min Avg Time Min Avg Time Min Avg Time
balu 801 735 2697 27 33.2 0.75 27 33.9 0.70 27 30.9 1.18 27 29.9 0.69
p1 833 902 2908 47 60.6 0.86 47 61.0 0.88 47 58.4 1.48 47 56.9 0.97

bm1 882 903 2910 47 59.8 0.97 47 60.2 1.00 47 58.1 1.55 47 57.5 1.00
t4 1515 1658 5975 56 70.2 2.12 51 68.8 2.08 50 59.5 6.00 49 61.4 2.46
t3 1607 1618 5807 58 72.6 2.47 58 72.2 2.35 57 67.4 5.20 58 66.0 2.26
t2 1663 1720 6134 91 100.2 2.99 89 99.5 2.82 88 101.0 5.59 88 99.3 2.89
t6 1752 1641 6638 68 85.9 3.64 68 88.2 3.48 60 74.0 6.50 64 75.5 3.76

struct 1952 1920 5471 36 49.1 1.90 33 46.1 1.85 33 40.3 2.28 33 42.7 1.70
t5 2595 2750 10076 83 98.7 4.71 76 98.2 4.75 75 92.0 11.53 72 86.6 4.85

19ks 2844 3282 10547 107 140.6 4.49 107 138.7 4.70 106 121.3 12.16 107 121.7 4.31
p2 3014 3029 11219 145 189.0 6.43 145 191.1 6.96 141 186.4 14.43 143 186.3 8.42

s9234 5866 5844 14065 45 62.1 6.80 45 69.4 7.04 47 59.0 8.56 45 63.2 6.04
biomed 6514 5742 21040 84 116.5 15.56 84 112.3 15.95 83 107.0 24.39 84 101.2 14.36
s13207 8772 8651 20606 74 111.2 10.98 74 109.7 11.06 71 91.4 18.17 71 101.5 11.16
s15850 10470 10383 24712 66 99.2 17.80 50 100.8 18.05 62 90.7 21.31 72 96.3 16.73

industry2 12637 13419 48404 223 321.2 45.56 200 304.1 48.91 201 285.1 147.25 183 270.4 66.76
industry3 15406 21924 68290 278 360.1 45.95 260 359.4 48.97 243 305.6 141.46 243 320.2 65.56
s35932 18148 17828 48145 73 80.9 30.70 73 82.5 30.28 73 73.7 51.76 73 77.3 27.25
s38584 20995 20717 55203 74 103.5 63.71 62 101.3 59.78 63 99.3 74.37 52 110.5 59.95

avq small 21918 22124 76231 208 416.1 45.09 208 415.7 46.63 177 304.8 469.74 167 305.4 53.79
s38417 23949 23843 57613 95 129.2 50.21 73 125.9 51.06 59 104.2 61.79 75 114.2 51.81

avq large 25178 25384 82751 337 441.4 54.87 337 461.6 52.54 205 368.6 514.22 245 377.2 70.22
2322 3201.3 418.56 2214 3200.6 421.84 2015 2778.7 1600.92 2045 2821.2 476.94

Total x20 = x40 = x20 = x20 =
8371.2 16873.6 32018.4 9538.8

% Improvement over PROP 20-runs - - - 4.65 0.02 -101.57 13.22 13.20 -282.48 11.93 11.87 -13.95
1681 2232.3 340.27 1681 2266.1 347.58 1419 1634.5 1352.23 1487 2040.6 871.30

golem3 103048 144949 338419 x20 = x40 = x20 = x20 =
6805.4 13903.2 27044.6 17426

% Improvement for golem3 - - - 0 -1.52 -104.31 15.59 26.79 -297.41 11.54 8.6 -156.08

Table 1: Benchmark circuit characteristics and comparisons of cutsizes for the 45 � 55% balance criterion produced by PROP-20 runs,
PROP-40 runs, and DEEP-PROP and VAR-PROP, each with 20 runs. The Min column is the best result from all the runs, the Avg column
shows the average cutsize over those runs, and the Time column is the CPU time (in seconds) per run.

the iterative-improvement variety, and include CLIP/CDIP [6],
PANZA [12], STRAWMAN [8], hMetis [11], MLC [1], and
LSR/MFFS [3]. We do not explicitly compare our results to these
techniques, except to note that DEEP-PROP’s results are within 8%
of the best of these, and that its results can most likely be improved
further by using orthogonal paradigms like multilevel partitioning
used in many of the above partitioners. However, our goal here
was not necessarily to produce the next best partitioning program,
but to delve into the concepts of stochastic and non-local structural
information and their focused use, and to demonstrate that by us-
ing powerful gain functions, even flat partitioners can obtain re-
sults comparable to multilevel ones. From a bigger picture stand-
point than just obtaining the best mincut results, flat partitioners are
important, especially in complex placement systems (e.g., timing-
driven placement in the presence of multiple constraints), where it
may be detrimental to “hide” useful information about the circuit
by clustering subcircuits into large “nodes”, as is done in multilevel
partitioners.

References
[1] C.J. Alpert, J-H. Huang and A.B. Kahng, “Multilevel circuit parti-

tioning”, Proc. Design Automation Conf., June 1997, pp. 530-533.

[2] C.J. Alpert and A.B. Kahng, “A hybrid multilevel/genetic approach
for circuit partitioning”, Physical Design Workshop, 1996, pp. 100-
105.

[3] J. Cong, et al., “Large scale circuit partitioning with loose/stable net
removal and signal flow based clustering”, Proc. IEEE/ACM Int’l
Conf. on Computer-Aided Design, Nov. 1997, pp. 441-446.

[4] S. Dutt and H. Theny, “Partitioning Around Roadblocks: Tackling
Constraints with Intermediate Relaxations”, Proc. IEEE/ACM Int’l
Conf. on Computer-Aided Design, IEEE/ACM ICCAD, Nov., 1997,
pp. 349-355.

[5] S. Dutt and W. Deng, “A probability-based approach to VLSI circuit
partitioning”, Proc. Design Automation Conf., June 1996, pp. 100-
105.

[6] S. Dutt and W. Deng, “VLSI Circuit Partitioning by
Cluster-Removal Using Iterative Improvement Techniques”, Proc.
IEEE/ACM Int’l Conf. on Computer-Aided Design, Nov. 1996, pp.
92-99.

[7] C.M. Fidducia and R.M. Mattheyses, “A linear-time heuristic for im-
proving network partitions”, Proc. Nineteenth Design Automation
Conf., 1982, pp. 175-181.

[8] S. Hauck and G. Borriello, “An Evaluation of Bipartitioning Tech-
niques”, IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, Vol. 16, No. 8, pp. 849-866, August
1997.

[9] B.W. Kernighan and S. Lin, “An efficient heuristic procedure for par-
titioning graphs”, Bell System Tech. Journal, vol. 49, February 1970,
pp. 291-307.

[10] B. Krishnamurthy, “An improved mincut algorithm for partitioning
VLSI networks”, IEEE Trans. on Computers, vol. C-33, no. 5, May
1984, pp. 438-446.

[11] G. Karypis, et al., “Multilevel hypergraph partitioning: Application
in VLSI domain”, Proc. Design Automation Conf., June 1997, pp.
526-529.

[12] J. Li, J. Lillis and C-K. Cheng, “Linear decomposition algorithm
for VLSI design applications”, Proc. IEEE/ACM Int’l Conf. on
Computer-Aided Design, 1995, pp. 223-228.

	Main Page
	ISPD98
	Front Matter
	Table of Contents
	Session Index
	Author Index

