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Abstract

A probability-based partitioning algorithm, PROP, was intro-
duced in [5] that achieved large improvements over traditional
“ deterministic” iterative-improvement techniqueslike FM [ 7] and
LA [10]. While PROP’s gain function has a greater futuris-
tic component than FM or LA, it incorporates spatially local
information—only information on the removal probabilities of ad-
jacent nets of a cell is used in its gain computation. This pre-
vents a higher-level view of non-local structures. Also, giving uni-
form weights to all nets, results in an inability to differentiate be-
tween the futuristi c benefit of removing one net fromanother. Inthis
paper, we present a more sophisticated partitioner DEEP-PROP
that incorporates more non-local (second-order) structural infor-
mation than PROP. The second-order information is incorporated
into cell gains as well as variable net weights—the latter helpsto
focus future cell movesin a cluster around the currently moved cell
and thus better utilizes the information that led to its selection. A
lower-complexity version, VAR-PROP, that also uses dynamically
assigned variable net weights, but based on first-order information,
has also been developed. Both versions yield significant improve-
ments over PROP on the ACM/S GDA benchmark suite. DEEP-
PROP yields mincut improvements of as much as 39% for large
circuits and an average improvement of 20% over all circuits; itis
about 3.8 times slower than PROP, which is very fast. VAR-PROP,
which has a much lower computational complexity than DEEP-
PROP, yields maximum and average mincut improvements over
PROP of 27% and 12%, respectively, while being only about 1.14
times slower.

1. Introduction

VLS| circuit partitioning is an important processing step for
many applicationsin VLS| design such as testing, placement and
multiple-FPGA implementation. While many different partition-
ing methods have been proposed in the past, iterative-improvement
based approaches are widely used due to their efficiency and flex-
ibility in adapting to different optimization objectives. The clas-
sical iterative-improvement methods include those of Kernighan-
Lin (KL) [9] and Fidducia-Mattheyses (FM) [7]; the latter is a
lower-complexity version of the KL algorithm that considers sin-
gle cell moves instead of cell-pair swaps. The techniques work
well for small to medium-sized circuits with up to ten thousand
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cells, but rapidly break down in terms of solution quality for larger
circuits due to their “greedy” gain functions. More recently, a
number of more powerful iterative-improvement based partition-
ers like PANZA [12], GMetis [2], STRAWMAN [8], PROP [5],
CLIP/CDIP [6], hMetis [11], ML. [1] and LSR/MFFS [3] have
been developed, that yield very good results. However, there still
are conceptual issues that warrant further study in order to yield
more insights and improvements in partitioning algorithms, thus
enabling them to deal more effectively with high-complexity cir-
cuits. This paper studies one such issue, the computation and use
of stochastic and non-local information in cell gain functions that
drive iterative-improvement partitioners.

Our main goal in thiswork isnot necessarily to produce the next
best partitioning program, but to delve into the concepts of stochas-
tic and non-local structural information, and their focused use, and
to demonstrate that by using powerful gain functions, even flat par-
titioners can obtain results comparable to multilevel ones. DEEP-
PROP s results are within 8% of the current best partitioners, and
can very likely beimproved further by using orthogona paradigms
like multilevel partitioning. However, flat partitioners are impor-
tant, especialy in complex placement systems (e.g., timing-driven
placement in the presence of multiple constraints), whereit may be
detrimental to “hide” useful information about the circuit by clus-
tering subcircuitsinto large “nodes’, asisdone in multilevel parti-
tioners.

The rest of the paper is organized as follows. In Sec. 2., we
recap the gain functions of other relevant methods, FM, LA and
PROP. Section 3. introduces the notion of second-order informa-
tion based on remova probabilities of level-2 nets, and the ad-
vantages of incorporating this information. In Sec. 4., we present
techniques for incorporating second-order information as well as
schemes for net weight determination based on this information.
Section 5. formally presents the algorithm and derives time com-
plexities. Sec. 6. presents our experimental results, and we con-
cludein Sec. 7..

2. Relevant Past M ethods

The mincut bi-partitioning problem can be formally stated as
follows. A circuit is represented by a hypergraph G = (V, E),
where V' = {v1, v2, ..., v, } isthe set of nodes that represent cells
or modules in the circuit, and E = {ni,ns, ..., n.} isthe set of
hyperedges which represent netsin the circuit; n and e are the to-
tal numbers of cells and netsin G, respectively. Each net n; will
be represented as a subset of the cells that it connects, and E(u)
is the set of nets connected to cell u. The area of each cell is de-
noted asa(v;). In abi-partitioning problem, V' is partitioned into
two subsets, V; and V>, such that each v; belongs to either 17 or
V. We denote the set of netswith incident cellsin both V; and Vs
by E..:, and thetotal sizeof V1, V3 by V1|, |V2| respectively, i.e,
|V]| = ZU{EV]‘ a(v;) forj=1,2

There are one or more objectives and constraints that any parti-



tioner must achieve and comply with, respectively. One of the most
common objective isto minimize the cutsize of the cutset whichis
defined as cutsize = Zni cp.,, ¢(n:). wherec(n;) isthe cost or
weight of net associated with n;. Based on this objective, every
cell u in the circuit can be assigned a gain gain(u), which isan
estimate of the improvement of the objective engendered by mov-
ing u to the other subset. The gain function is the most important
determinant of the efficacy of an iterative-improvement algorithm,
and can range from simplistic to complex. Thegain functionis de-
fined differently for different partitionerslike FM, LA, and PROP.
Both FM and LA define acell’s gain (LA has a gain vector) as a

deterministic one:
Z e(ni) — Z c(nj), k=1tol

n; €E (v) nj €l (u)

gain(u)[k] =

where E (u) is the set of nets that have exactly & cells (includ-
ing u) in u's subset, and I (u) is the set of nets that have exactly
k — 1 cellsin the other subset [10], [7]; [ is the degree of “look-
ahead”, and is 1 for FM which lacks of any look-ahead informa-
tion. PROP’sgain function captures more accurate futuristicinfor-
mation (thus yielding much better results [5]) as follows.

PROP[5] definesaprobabilistic gain for every cell w anditsad-
jacent netsbased onthecells' initially estimated approximate prob-
abilities. A cell u’sprobability p(u) isthen computed fromitsgain
using a monotonically increasing function f(g(u)) (usudly alin-
ear function). The probabilistic gain of cell u, assumingu € Vi, is
given by

gain(u) =Y gn,(u) (D)

n; EE(u)
where each gain component g5, (u) for net n; isformulated as

gn; (1) = c(n;)[(Prob. of moving n; to V given u's move)—

(Probability of moving n; to V1 given that u is not moved)]

The rationale for the negative term in the above expression is that
moving u precludes the event of moving n; to V4 from occurring,
and thus eliminates the possibility of removing n; from the cutset
inthat manner. Using conditional probabilities, thisleadsto the ex-
pression

Uy€ENg 2

wheren; ; = n; NV;, for j = 1, 2. Notethat the above expression
also appliesto netsn; that arenot inthe cutset, but lieentirely inthe
subset that « isin, viz., V; for the above expressions. In this case,
the probability of moving n; to V1 (i.e., the second termin Eqgn. 2)
is 1, and thus g, (u) isapendty (i.e, it is negative) equal to the
probability of not being able to move n; out of the cutset after itis
introduced in it by moving « from V; to V5.

To begin the partitioning process, PROP refines the cells’ prob-
abilistic gains and probabilities with one or two iterations of prob-
ability assignment and gain calculation. After moving the cur-
rent best cell u at each step (assuming no constraints are violated),
PROP records the immediate gain of « and at the end of each pass
computesthe maximum prefix of immediate gains. Whilew’sprob-
abilistic gain isan indication of future immediate gains from mov-
ing other nodes, and isthus agood node selection function, theim-
mediate gain needs to be recorded for each move to compute the
maximum improvement point.

Asreflected in PROP's cell gain function expressed in Egn. 1
and Egn. 2, PROP captures information on the advantage of mov-
ing a cell based only on the removal probabilities of its incident
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Figure 1: Base cell selection which shows the advantage of using
the second-order information.

nets—these are called level-1 nets, and information based on them
isreferred to asfirst-order information. Besides 1st-order informa-
tion, DEEP-PROP also incorporates in the cell gain function, the
futuristic benefit of removing each incident net n; from the cutset
in termsof the subsequent (after n; isremoved) removal probabili-
tiesof nets adjacent to n;; anet n; issaid to be adjacent to another
net n; if thereisat least one common cell v between them. Nets ad-
jacent to level-1 nets of a cell « that are themselves not its level-1
nets, are called level-2 nets with respect to w. The removal proba-
bilities of level-2 nets, called second-order information, represents
non-local structures around each cell u, and is incorporated in its
gain function.

Another difference between PROP and DEEP-PROPisthat the
former treatsall netsinthecircuit uniformly intermsof their signif-
icance, whereas DEEP-PROP gives nets different weights (or pri-
ority factors). The priority factor for anet n; is based on much its
removal from the cutset increases or decreases the probabilities of
either removing nets adjacent to it from the cutset or maintaining
them as internal nets on a particular subset. Higher priority fac-
tors trandate to higher cell gains for those cells that promote the
removal of corresponding nets from the cutset, and lower cell gains
for those that inhibit this removal (e.g., by locking anet in the cut-
set). This enables DEEP-PROP to better identify nets and their
connected cells that yield higher benefits by being removed from
the cutset.

3. Using Second-Order Information
3.1. Advantages of Second-order Information

Figure 1 illustrates the benefit of using second-order informa-
tion. For simplicity, we assume that al cells shown in the figure
have the same move probabilities, and al nets in the cutset have
the same probabilities of being removed fromit by cell movesfrom
V1 to V; (thisisalso called the going probability to V2). Asfar as
PROP is concerned, the difference between the gains of cells1 and
2 are only due to the components corresponding to net n, and ns,
respectively. Hence, PROP will compute a larger gain for cell 1.
However, closer scrutiny revealsthat cell 2 isamuch better candi-
date to move because the move of cell 2 engenders the removal of
level-1 net ns (among other level-1 nets), which in turn engenders
the removal of level-2 nets ny and ng. The removal of the corre-
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Figure 2: Example circuit used for determining the benefit of re-
moving net n; based on information provided by its neighboring
netsni, na, n3 ng and ns.

sponding net n, by moving cell 1, ontheother hand, doesnot facili-
tatetheremoval of any level-2 netsfrom the cutset; on the contrary,
itleadsto theintroduction of level-2 netsng and n1o into the cutset.
Since PROP does not take second-order information into account,
it cannot distinguish between the benefits of removing net n; ver-
sus removing net n, —these benefits are not reflected on the gains
of their incident cells 2 and 1, respectively. Thusit is clear that by
considering level-2 nets, the gain function can be made more accu-
rate.

In order to incorporate 2nd-order information in our new tech-
niques, the benefit factor (BF) of each net will be computed—it in-
dicates the benefit of removing it from the cutset in terms of the
subsequent removal probabilities of adjacent cut-nets (nets in the
cutset), which contributes positively to the BF, and the cutset in-
sertion probabilities of adjacent internal nets (nets not in the cut-
set), which contributes negatively to the BF. Hence, for the circuit
shown in Fig. 1, net n; will be given a much lower benefit factor
than net ns.

3.2. Formulation

We denote by C;(n.,ny) the set of cells in partition subset
s that the two nets n, and n, have in common, and Cs(nz,ny)
is its counterpart for the other subset s of the partition. Hence,
Ci(ni,n1) = {u1} and Ca(n;,n1) = @ for the circuit in Fig. 2.
Further, we denote N, (n,) to be the set of neighboring nets n,
of n, for which Cs(ns,n,) # 0. For the circuit in Fig. 2,
Ny (m) = {nl, na, ’ng} and Nz(m) = {nz, ng, n5}. Notethat,
N;(nz) U Ng(n.) = N(n.), the set al nets adjacent to n.,, and
Cs(nz,ny) U Cs(ng,ny) = C(ng,ny), the set of all common
cells between n,, and n,,. We introduce a new term G(n;) which
is the 2nd-order benefit factor of net n;. For nets that are in the
cutset, there are two components of G(n;), namely G (n$™%) and
G(ni7%). G(ni7°) isthe expected benefit, given n; is removed
from the cutset by moving al its incident cells from subset s to
subset 3, whereas G (nf ~*) is the expected benefit for moving n;
from s to s. Hence, for nets that are not in the cutset, thereis only
one component of G(n;), G(ni™°) or G(nf~*), depending on
whether n; is internal to subset s or subset 5, respectively. The
vaue of G(n;) isdetermined by the neighboring nets of n; asfol-
lows.

G )= > Gu;(ni7) 3)
n;ENs(n;)
Gi™*) = > Gu,(ni) @

nj EN<(n;)

where for anet n; in the cutset,
Gy, (nf7%) = ¢(n;)[Probability of removing n; from the cutset

given that n; is moved from s to 5]

Thus
Gy (7 =cny) - ps ™) [ pw) )

u€ls(ni,nj)

wherep(n HS) isthe probability of net n; being removed fromthe
cutset by moving al the adjacent cellsfrom s to's (also called the
going probability of n; from s), and using the derivation in [5]

S‘}S H p
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For anet n; internal to subset s,
G, (n{7%) = —c(n;)[Prob. that n; will remain in the cutset

given that it is introduced in it by moving n; from s to 3]
Thus

Gy (n87%) = —c(ny) - (1 =p(;7%))/ ][]

u€ls(ni,nj)

p(u) (6)

A similar set of equations holds for moves from s to s. Note that
G(nf~%) and G(ni~*) can be either positive or negative.

Using this second-order information given by Egns. 3 to 6,
DEEP-PROP uses the following gain functions gy, (u) for a cell
u € V1. For anet n; inthe cutset

gn; (u) = [(Expected 1st & 2nd order benefit of moving n;

from Vi to Va) x
(Probability of moving n; to V> given that u has been moved)] —
[(Expected 1st & 2nd order benefit of moving n; from V3 to V1) X
(Probability of moving n; to Vi given that u is not moved)]

Similar to PROP’ sgain function, the rationalefor the negative term
in the above expression is that moving « precludes the event of
moving n; to V1 from occurring, and thus eliminates the corre-
sponding expected benefits of n;. Also note that the 1st-order ben-
efit of removing n; from the cutset is simply ¢(n;), and isused in
PROP’s gain function (Egn. 2). We thus obtain

gni (w) = [G(ni %) + e(ni)lp(ni ) /p ()~

[(G(ni™h) + e(ni)lp(ni ™) )
Substituting for p(n}~2) and p(n? 1),
goiw) =[ Y Gy (i) el [ plua))/p(w)]-
n;EN(n;) Uz €EN4 1
LY G +em)]l J[ pw)] @
njENa(n;) uy €N 2

For net n; internal to V1, the above formulation of gy, (u) still
holds, except that in this case G(n? 1) = 0. Hence

gni () = —(c(ni) = [G(n; %) + e(n)]lp(ns ) /p(w)]) (9)

or

gni () = =(c(na) = Y Gy (ni7?) + cfni)] x

n;EN1(n;)

[T pew) /o) (10

Ug €ENG 1
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Figure 3: The focus on removing level-1 nets n1, n2, ng and na,
and level-2 nets ng and n7 should be maintained after moving u;
by giving more weight to the level-1 nets.

4. Variable Net Weights
4.1. Determining Net Weights

Based on DEEP-PROP's gain function, let w: be the highest-
gain cell moved; u, is selected because it will engender the move-
ment of the most number of “removable”’ (netsthat can be removed
from the cutset with high probability) level-1 and level-2 nets. This
initial effort should not be stopped after the move of cell w;. Other-
wise, the information regarding removable level-1 and level-2 nets
contained in g(u1) will bewasted, especialy if the next best cell(s)
w moved areinthe oppositedirectionto «;’smove. Inother words,
the focus of the partitioner in removing u1’s level-1 and level-2
nets shifts to removing w’s level-1 and level-2 nets, and may shift
again in the next moves. Thus there is a potentia problem of the
partitioner moving from one promising cluster to another without
pulling an entire cluster out of the cutset; thiscan and doesresultin
many removabl e clustersbeing locked inthe cutset. Theproblemis
illustrated in Fig. 3. In the current situation, cell «; isthe best cell
to move and cell uq4 isthe second best. Moving cell u; isanini-
tial effort towards removing level-1 nets ny, na, n3, ny aswell as
level-2 netsng and n7 by cell movesfrom Vi to V. However, since
thereis no direct connection between cells«; and 4, the move of
u1 Will not alter the gain of the next-best cell u4. Hence cell ug will
be moved next, and this reduces the gain of cell u», thus reducing
the probability of removing nets n; and ng from V; to V5.

After moving the best cell 4, the goal should thus be to follow
through with cell moves that engender the removal of high-benefit
level-1 and level-2 nets that contributed to the selection of u;. The
level-1 cut-nets of u; are ni, na, and ng for the circuit in Fig. 3.
The level-2 nets will be automatically removed either fully or par-
tially once the level-1 nets are removed. The partitioner’sfocus on
these nets can beretained by simply amplifying the weight of level-
1 nets of the moved cell by a constant factor. Thiswill amplify ei-
ther positively or negatively the gains of free cells which are con-
nected to these level-1 nets (i.e., neighboring cellsof w.). Thiswill
promote those neighboring cells which are on the same (original)
subset as w1, and will demote those on the other subset. Therefore,
cellsus and ug will have positive amplification while cells us, ug
and u7 will have negative amplification from their corresponding
nets. The move of u; will then be followed by cells u» and u3 ei-
ther immediately after or in near-future moves. It can thus be en-
sured that netsthat are intended to be removed (stemming from the
decision to move cell 1) do indeed get removed, and that the par-

titioner retains focus on a particular subset of nets before it shifts
its effort to others.

However, the constant factor amplification will not alwayswork
well, since different nets have different benefit factors—a more re-
fined method is needed. If all level-1 nets of a moved node are
given auniformly high weight, then even those nets and neighbors
that have very low probabilities of being moved will accumulate
high gainsthat are misleading. Thiswill cause the partitioner tofo-
custoo heavily on removing such nets with negative consequences
(e.g., those with low or negative expected benefits—meaning that
they cause other nets to get introduced or locked in the cutset),
and at the expense of diverting attention from other more promis-
ing nets. Rather than giving a constant weight to every net, they
are given different priority factors ®(n;)’s according to their de-
gree of “goodness’ of being removed from the cutset. The good-
ness of anet n; can be measured in two ways. one isbased on the
expected benefit G'(n}~?) (used by DEEP-PROP), and the other
one is based on the going probability of n; from a subset, say V1
(p(n;™?)). Theversion which usesthe second variable net-weight
schemeiscalled VAR-PROP. Assigning net weightsin this manner
allows the partitioner to properly reward or penalize nets and their
connected cells. This serves the purposes of focusing on nets to
be removed aswell as prioritizing these nets according to their ex-
pected benefits (nets whose removal will likely lead to the removal
of other adjacent nets should be focused on first) or their removal
probabilities (nets that are easier to remove should be focused on
first).

4.2. Formulation

The priority factor ®(n;) on anet n; isnormalized with alin-
early increasing function given by

Pras when A(n;) > Tup
(I>(’I'L) — (bmin + ((bmaz - (bmin)x when
‘ (A(nl) - Tlow)/(Tup - Tlow) Tiow < A(nl) < Tup
Dorin when A(nl) < Tiow

where A(n;) is the metric of goodness being used (G (n~°) for
DEEP-PROP, and p(n; %) for VAR-PROP), ® a0z, ®rmin, Tups
and T},,, limit the upper and lower bounds of ®(n;) and A(n;).
Hence the higher is G(n{ %) or p(nf~®), the higher isits ®(n;).
Let 1 be the current best cell being moved from V; to Vz; when
cell u; ismoved for thefirsttimeon anet n;, for al unlocked neigh-
borsw of uy ONn;, gn, (u) = ®(n:)gi??(u), where giP? (u) isthe
gn; (u) after norma PROP-type updatlon of nelghbors of u; after
it is moved—see algorithm DEEP-PROPin Fig. 4 for details. Fur-
ther, gn;(u) > 0 foral u € n; 1 whereas gn; (u) < 0 for al
u € n;o;recdl that n; s = n; N Vs, s = 1,2. This means that
all neighbors of w; in V1 will have positive magnification from the
corresponding nets; in contrast, al the neighbors in V> will have
negative magnification.

To illustrate this further, let us consider the example circuit of
Fig. 3, and apply the variable net-weight method used by DEEP-
PROP after cell w; is moved from Vi to V>, The following
conditions hold after the move: E(u1) = {ni,n2,ns,na},
G(ni7?) =1,Gni7?) =0,G(ns~?) = 0,andG(ni %) = 1.
Thusthe gain of cellsus and us dueto netsn; and n4 will be pos-
itively magnified, while the gains of cells us, ue, and u; due to
netsn; and ny will be negatively magnified. A similar process ap-
pliesto VAR-PROPwhich uses p(ni ~?), p(n3—?), p(n3~?), and
p(ni™?) to determine the ®(n;) values.

In the actual implementation, al cell gains areinitially shrunk
by afactor o, 0 < o < 1, toyieldtheinitia cell gains, i.e., initialy,
g(u) = o - g(u). However, the un-shrunk gains and al their com-
ponentsvaluesarestored. All the update procedures after theinitial



Procedure DEEP- PROP(G)
[* G isthe hypergraph to be partitioned */
Repeat

1. Assign each cell an uniform initial probability p;,;: of, say, 0.5.
2. Compute theinitial expected benefits of all nets, and the gains of all

cells according to Egn. 3 to Eqgn. 10.
. Recompute cell probabilities p(u)’s using a monotonic function
f(g(u)) of g(u)'s. o
. Sort all the cells based on their gain separately for V7, and Va.
Shrink all the cell gains by acommon factor o < 1 (g(u) = og(u)).
Repeat Steps 7 to 9 until al cells are moved.
Choose the base cell u based on the cell’s updated gain and the bal-
ance criterion. Move the cell, update its neighbors.
For eachn; € E(u) update Gy, (nj) foral n; € N(n;).
. For each unlocked neighboring cells w on each net n; € E(u), do

Steps (a) to (b).

(@ Update gy, (w) with un-shrunk gain components and compute
the ®(n;) for netsn;.
() gn;(w) = 2(n;) - gn; (w).
10. Find the point in the move sequence which corresponds to the mini-
mum cutsize, and reverse al the moves after this point.

Until(the min. cutsize obtained in this pass [Steps 1-10] does not represent
any improvement over the previous pass)
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Figure 4: The second-order probability-based partitioning algo-
rithm DEEP-PROP

move use the un-shrunk values and the calculated ®(n;)’s. Thisre-
sultsin giving net n; aweight factor of ®(n;) /o after anode con-
nected to it has been moved for the first time. The next section for-
mally presentsal gorithm DEEP-PROP, which incorporates second-
order information and variable net weightsinto aprobabilistic gain
function.

5. Algorithm Description and Complexities

Figure 4 formally describes the partitioning algorithm DEEP-
PRORP. The flow of the partitioning processis essentially the same
asPROP except for someadditional stepsduringtheinitial cell gain
calculation and updation. Aninitial probability isassigned to every
cell at the start. Based on the cell probabilities and nets’ expected
benefits, the cell probabilistic gains are computed using Egn. 3 to
Eqn. 10. All cell gains and their components are then shrunk by a
factor of o < 1; the cell ordering remains unchanged. The max-
gain cell is selected, moved to the other subset and locked. The ex-
pected benefits of all adjacent nets (level-1 nets) are first updated,
then gains of cells connected to them are updated with the corre-
sponding ®(n;) vaues. Notethat the updating process usesthe un-
shrunk gain components g»,; (u)s. Thenext best cell isthen chosen
and the process continues until all cells are locked.

Let pn, p., be the numbers of adjacent cells, nets (pins) on net
n and cell u respectively, and pZt,, pcll. be the maximum py,
pu over al nets and cells, respectively, in the circuit. The num-
ber of nets whose benefit factors G(n;) need to be updated for
each move is O(piet, pecl,). Hence in the worst case, the tim-
ing complexity of DEEP-PROP is O(pret, pecil ) per cell move,
or O(nplet, peell.) over the entire pass. The pret, pecl valueis
not constant throughout a pass; it decreases during a pass as cells
and nets are locked and their gains and benefit factors, respectively,
do not need to be updated. Thusthetime complexity ismuch lower
in practice.

6. Experimental Results

DEEP-PROP was implemented in C++ on top of PROP. Ex-
periments have been performed on the ACM/SIGDA benchmark
suite. The characteristics of these circuitsare givenin Table 1. All
experimental results presented in Table 1 (comparisons of DEEP-

PROP and VAR-PROP with PROP) were run on a SPARC-Station
20. Therelevant common parametersvaluesfor both DEEP-PROP
and VAR-PROP are: initial probability =0.3, 0 = 0.1, @10 = 2,
®pnin = 1. For DEEP-PROP, T, = 8, Tiow, = —8, and for VAR-
PROP Typ = 0.9, Tiow = 0.1.

Table 1 showsthat most of theimprovementsyielded by DEEP-
PROP are for large-size circuits (near the bottom of the table). For
the largest circuit gol en8B the improvement is 15.6% and 26.8%
in mincut and average-cut, respectively, over both PROP with 20
and 40 runs. Also, there is an improvement of 39% in mincut for
avq-l ar ge over both runsof PROP. Circuit s38417 improvesin
mincut by 38% and 19% over PROP 20 and 40 runs, respectively.
Mincut improvement is also obtained for avg_smal | which is
as much as 15% over both PROP with 20 and 40 runs. Perhaps
the most obvious and consistent improvement is in the average-
cut, where for all circuits except t 2 there are significant improve-
ments. This means that for a particular run, DEEP-PROP's final
result has less dependency on the initia random partition com-
pared to PROP. For small to medium size circuits, DEEP-PROPis
about 2 times (or less) ower than PROP. Large-size circuits such
asavq-l arge and avg_smal | have many nets with large net-
degrees which increase the computational time significantly dur-
ing the updating procedures. Over al circuits, DEEP-PROP shows
mincut improvements of 13.2% over PROP 20-runs and 9% over
PROP 40-runs, and it is about 3.8 times slower than PROP (with
20 runs), which is quite fast. Comparisons between PROP and
VAR-PROP are aso shown in the same table, where it is more
appropriate to compare VAR-PROP to PROP with 20 runs than
40 runs, since VAR-PROP is comparable in speed with PROP 20-
runs (see last 2 rows of Table 1). Similar to DEEP-PROP, im-
provement in mincut are most noticeable in larger circuits such
asgol enB,avq.l ar ge and avg_snal | —these improvements
are by 11.5%, 27% and 20%, respectively over both PROP 20 and
40 runs. Again, improvements in the average-cut are very no-
ticeable for all the circuits except t 2. Even though the results
of DEEP-PROP are slightly superior to VAR-PROP, the speed of
VAR-PROP makesit avery attractive partitioner. VAR-PROPruns
amost as fast as PROP because it has no extra data structures, and
its additional time complexity is constant with respect to problem
size. Over al circuits, VAR-PROP improves over PROP in both
mincut and average-cut by 11.9%, while being only 1.14 times
slower than PROP. However, if avery high-quality mincut result
is desired, DEEP-PROP should be the partitioner of choice, espe-
cialy for large circuits.

7. Conclusions

Weintroduced the concept of stochastic second-order structural
information, in terms of the expected benefits of removing con-
nected (level-1) nets from the cutset, in the cell gain function. In
order to use this information in a focused manner, we also de-
veloped a refined net weight amplification technique for nets on
which a cell has been moved for the first time. These concepts re-
sulted in two new stochastic-gain based partitioners DEEP-PROP
and VAR-PROP. Both partitioners yield much better mincut re-
sults than PROP [5], which uses only first-order structural infor-
mation and uniform non-amplified net weights in its (stochastic)
gain function. On the suite of ACM/SIGDA benchmark circuits,
DEEP-PROP yields mincut improvements of as much as 39% for
large circuits and an average improvement of 20% over al circuits
in the above suite; it is about 3.8 times slower than PROP, which
isvery fast. VAR-PROP, which has a much lower computational
complexity than DEEP-PRORP, yields maximum and average min-
cut improvements over PROP of 27% and 12%, respectively, while
being only about 1.14 times slower.

Some of the current state-of-the-art partioners are mostly of



Il Test Case Characteristics Il PROP 20-runs Il PROP 40-runs Il DEEP-PROP 20-runs Il VAR-PROP 20-runs Il
[ Name [ #Cdls | #Nefs | #Pins || Min | Avg [ Time || Min | Avg | Time || Min [ Avg [ Time [[ Min [ Avg [ Time ||
balu 801 735 2697 27 33.2 0.75 27 33.9 0.70 27 30.9 1.18 27 29.9 0.69
pl 833 902 2908 47 60.6 0.86 47 61.0 0.88 a7 58.4 1.48 a7 56.9 0.97
bm1 882 903 2910 a7 59.8 0.97 a7 60.2 1.00 a7 58.1 155 a7 575 1.00

4 1515 1658 5975 56 70.2 2.12 51 68.8 2.08 50 59.5 6.00 49 61.4 2.46
3 1607 1618 5807 58 72.6 2.47 58 72.2 2.35 57 67.4 5.20 58 66.0 2.26
[ 1663 1720 6134 91 100.2 2.99 89 99.5 2.82 88 101.0 559 88 99.3 2.89
t6 1752 1641 6638 68 85.9 364 68 88.2 3.48 60 74.0 6.50 64 755 3.76
struct 1952 1920 5471 36 49.1 1.90 33 46.1 1.85 33 40.3 2.28 33 27 1.70
5 2595 2750 10076 83 98.7 471 76 98.2 475 75 92.0 1153 72 86.6 4.85
T9ks 2844 3282 10547 107 140.6 4.9 107 138.7 4770 106 1213 12.16 107 1217 431
p2 3014 3029 11219 145 189.0 6.43 145 1911 6.96 141 186.4 14.43 143 186.3 8.42
9234 5866 5844 14065 15 62.1 6.80 15 69.4 7.04 a7 59.0 8.56 15 63.2 6.04
biomed 6514 5742 21040 84 116.5 15.56 84 112.3 15.95 83 107.0 24.39 84 101.2 14.36
513207 8772 8651 20606 74 111.2 10.98 74 109.7 11.06 71 91.4 18.17 71 1015 11.16
515850 10470 10383 24712 66 99.2 17.80 50 100.8 18.05 62 90.7 21.31 2 96.3 16.73
industry2 12637 13419 48404 223 3212 4556 200 304.1 4891 201 285.1 147.25 183 2704 66.76
industry3 15406 21924 68290 278 360.1 45.95 260 359.4 48.97 243 305.6 141.46 243 320.2 65.56
35932 18148 17828 48145 73 80.9 30.70 73 825 30.28 73 73.7 51.76 73 773 27.25
s38584 20995 20717 55203 74 1035 63.71 62 101.3 59.78 63 99.3 74.37 52 110.5 59.95
avg-small 21918 22124 76231 208 416.1 45.09 208 4157 46.63 177 304.8 469.74 167 305.4 53.79
S38417 23949 23843 57613 95 129.2 50.21 73 1259 51.06 59 104.2 61.79 75 1142 51.81
avglarge 25178 25384 82751 337 4414 54.87 337 461.6 5254 205 368.6 514.22 245 377.2 70.22
2322 | 3201.3 | 41856 2214 | 3200.6 12184 2015 | 27787 | 1600.92 2045 | 28212 | 476.94
Total x20 = x40 = x20= x20=
8371.2 16873.6 32018.4 9538.8
% Improvement over PROP 20-runs - - - 4.65 0.02 -101.57 13.22 13.20 -282.48 11.93 11.87 -13.95
1681 | 2232.3 | 340.27 1681 | 2266.1 347.58 1419 | 16345 | 1352.23 1487 | 2040.6 | 871.30
golem3 103048 | 144949 | 338419 x20 = x40 = x20 = x20 =
6805.4 13903.2 27044.6 17426
% Improvement for golem - - - 0 -1.52 -104.31 15.59 26.79 -297.41 11.54 8.6 -156.08

Table 1: Benchmark circuit characteristics and comparisons of cutsizes for the 45 — 55% balance criterion produced by PROP-20 runs,
PROP-40 runs, and DEEP-PROP and VAR-PROP, each with 20 runs. The Min column is the best result from all the runs, the Avg column
shows the average cutsize over those runs, and the Time column is the CPU time (in seconds) per run.

the iterative-improvement variety, and include CLIP/CDIP [6],
PANZA [12], STRAWMAN [8], hMetis [11], ML¢ [1], and
LSR/MFFS[3]. We do not explicitly compare our results to these
techniques, except to note that DEEP-PROP sresultsare within 8%
of the best of these, and that its results can most likely be improved
further by using orthogonal paradigms like multilevel partitioning
used in many of the above partitioners. However, our goal here
was not hecessarily to produce the next best partitioning program,
but to delve into the concepts of stochastic and non-local structural
information and their focused use, and to demonstrate that by us-
ing powerful gain functions, even flat partitioners can obtain re-
sults comparable to multilevel ones. From a bigger picture stand-
point than just obtai ning the best mincut results, flat partitionersare
important, especially in complex placement systems (e.g., timing-
driven placement in the presence of multiple constraints), where it
may be detrimental to “hide” useful information about the circuit
by clustering subcircuitsinto large“nodes’, asisdonein multilevel
partitioners.
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