IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 6, JUNE 1999 813

Policy Optimization for Dynamic
Power Management

Luca Benini,Member, IEEE Alessandro BoglioloMember, IEEE Giuseppe A. Paleolog&tudent Member, IEEE,
and Giovanni De MichelifFellow, IEEE

Abstract—Dynamic power management schemes (also called mechanical, and optical components are often responsible for
policies) reduce the power consumption of complex electronic sys-the |largest contributions to the power budget. For example,
tems by trading off performance for power in a controlled fash- the power breakdown for a well-known laptop computer [4]

ion, taking system workload into account. In a power-managed o .
system it is possible to set components into different states, eachSNOWS that, on average, 36% of the total power is consumed by

characterized by performance and power consumption levels. The the display, 18% by the hard drive, 18% by the wireless LAN
main function of a power management policy is to decide when interface, 7% by noncritical components (keyboard, mouse,
to perform component state transitions and which transition etc.), and only 21% by digital VLSI circuitry (mainly memory

zzgu:)der?:rnﬁ)ggge”z%i’sggﬁgd'ng on system history, workload, and CPU). Reducing the power in the digital logic portion of

In the past, power management policies have been formulated this laptop byl0Xwould reduce the overall power consump-
heuristically. The main contribution of this paper is to introduce  tion by less than 19%. Laptop computers are not an isolated
a finite-state, abstract system model for power-managed systemscase. Many others electronic appliances are complex and het-
based on Markov decision processes. Under this model, the o o0ane6us systems containing a wide variety of devices that
problem of finding policies that optimally tradeoff performance 7 . .
for power can be cast as a stochastic optimization problem and d0 not fall within the scope of the available computer-aided

solved exactly and efficiently. The applicability and generality power optimization techniques. Designers have reacted to the
of the approach are assessed by formulating Markov model and new challenges posed by power-constrained design by mixing

optimizing power management policies for several systems. technological innovation and power-conscious architectural
Index Terms—Energy conservation, energy management, opti- design and optimization.
mization methods. One of the most successful techniques employed by design-
ers at the system level idynamic power managemefg],
|. INTRODUCTION [9]. This technique reduces power dissipation by selectively

. . . turning off (or reducing the performance of) system compo-
ATTERY-OPERATED portable appliances impose tigh ents when they are idle (or partially unexploited). Building

constraints on the power dissipation of their components. -
. X . ) a ‘complex system that supports dynamic power management
Such constraints are becoming tighter as complexity and - .
. IS a difficult and error-prone process. Long trial-and-error

performance requirements are pushed forward by user demapd. .. . .
lterations cannot be tolerated when fast time to market is the

Reducing power dissipation is a design objective also for in factor deciding the success of a oroduct
stationary equipment, because excessive power dissipatrirc]ﬁr horten th dg . le of pI j q
implies increased cost and noise for complex cooling systems. 0 shorten ne design cycle of complex power-manage

Numerous computer-aided design techniques for low pov@fs’tems’ several hardware and software vendors [10], [11]

have been proposed [1]-[3] targeting digital very large scafe® pursuing a long-term strategy to simplify the task of

integration (VLSI) circuits, i.e., chip-level designs. designing large and complex power-managed systems. The
Almost every portable electronic appliance is far morsirategy is based on a standardization initiative known as the

complex than a single chip. Portable devices such as cellugvanced configuration and power interfa¢aCpPl). ACPI

telephones and laptop computers contain tens or even hund@RfCifies an abstract and flexible interface between power-
of components. To further complicate the picture, in mog@anageaple hardware components (VLSI chips, disk drivers,
electronic products, digital components are responsible feplay drivers, etc.) and thepower manager(the system
only a fraction of the total power consumed. Analog, electréOmponent that controls when and how to turn on and off func-
tional resources). The ACPI interface specification simplifies
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Whenever the functionality of a component is required to carry described. We implemented a tool for automatic power
out a system task, the component must be turned on amgtimization. In Section V, we describe the tool implemen-
restored to its fully functional state. The transition betweetion. Section VI is dedicated to the application of policy
the inactive and the functional state requires time and poweptimization to realistic case studies and to the analysis
As a result, the eager policy is often unacceptable becausefitthe sensitivity of optimal policies to system parameters.
degrades performance and may not decrease power dissipatgattion VIl presents a discussion on modeling issues, where
For instance, consider a device that dissipates 2 W ve clarify the basic assumptions and the domain of applicabil-
fully operational state and no power when set into inactivigy of our model. Finally, in Section VIII, we summarize our
state. The transition from operational to inactive state fsdings and outline future directions of research.
almost instantaneous (hence, it does not consume sizable
power). However, the opposite transition takes 2 s. During
the transition, the power consumption is 4 W. This device Il. RELATED WORK
is a highly simplified model of a hard-disk drive (a more The fundamental premise for the applicability of power
detailed model will be introduced later in this paper). Clearlynanagement schemes is that systems, or system components,
the eager policy does not produce any power savings if tBgperience nonuniform workloads during normal operation
device remains idle for less than 4 s. Moreover, even if thgne. Nonuniform workloads are common in communication
idle time is longer than 4 s, transitioning the device to inactigetworks and in almost any thinkable interactive system. In the
state degrades performance. If the eager policy is chosen, i€ent past, several researchers have realized the importance
user will experience a 2-s delavery timea request for the of power management for large classes of applications. Chip-
device is issued after an idle interval. level power management features have been implemented in
The choice of the policy that minimizes power undemainstream commercial microprocessors [5]-[7]. Micropro-
performance constraints (or maximizes performance undgissor power management has two main flavors. First, the
power constraint) is a constrained optimization problem whigdntire chip can be shut down in several sleep states through
is of great relevance for low-power electronic systems. We calkternal signals or software control. Second, chip units can be
this problempolicy optimization(PO). Several heuristic powershut down by stopping their local clock distribution. This is
management policies have been investigated in the past [I#ine automatically by dedicated on-chip control logic, without
[14], [15] but no strong optimality result has been proven. user control. Techniques for the automatic synthesis of chip-
In this paper we propose a stochastic model based lewvel power management logic are surveyed in [8].
Markov decision processes [22] for the formulation of policy At a higher level of abstraction, energy-conscious commu-
optimization and we describe a procedure foeitactsolution. nication protocols based on power management have been
The solution of PO is computed in polynomial time by solvingtudied [16]-[20]. The main purpose of these protocols is to
a linear optimization problem. We first describe the details amdgulate the access of several communication devices to a
the fundamental properties of the stochastic model, then wieared medium trying to obtain maximum power efficiency
show how to formulate and solve policy optimization. Théor a given throughput requirement. Power efficiency is a
global optimality of the solutions obtained is also provedstringent constraint for mobile communication devices. Pagers
The procedure can be employed to explore the power versue probably the first example of mobile device for personal
performance tradeoff curve. communication. In [20], communication protocols for pagers
The class of the optimal policies is then studied in detail. Ware surveyed. These protocols have been designed for maxi-
assess the sensitivity of policies to several system parametetam power efficiency. Protocol power efficiency is achieved
Our results provide insights for system architects designiig increasing the fraction of time in which a single pager is
power managed systems. Our model and optimization ptidie and can operate in a low-power sleep state without the
cedures can be used to help designers in difficult high-lewédk of loosing messages.
decisions on how to choose or design components that can b®Vith the widespread diffusion of advanced communication
power managed effectively. devices (cellular phones, portable wireless terminals, etc.) the
Our analysis and our optimality result critically dependbandwidth requirements for communication protocols have
on our modeling assumptions. We assess the soundness oftmoome much more stringent. More complex and higher-
assumptions by constructing the stochastic model for a real-lgerformance protocols are needed for controlling such ad-
device (a disk drive) under a realistic workload. We then applanced devices. In [16], atar communication network is
our optimization algorithm and compute optimal policies. Thstudied, where several power-constrained devices communi-
performance and power dissipation of the policies are theate with each other through a base station that regulates
validated against simulation. Moreover, the optimal policiasaffic. The contribution of [16] is the formulation of a slot
are compared with heuristic solutions. reservation strategy for the communicating devices and a
The paper is organized as follows. In Section Il, we reviescheduling algorithm for the base station that reduces power
related work in the field of dynamic power management. lconsumption while meeting service quality specifications.
Section Ill, we describe our stochastic model, starting from The approaches presented in [18] and [19] are primar-
a qualitative description, then moving to a more rigorouy focused on how to maximize the efficiency of a single
mathematical formulation. The policy optimization problenpower-constrained communication device operating in a noisy
is formulated in Section IV and a procedure for its solutioenvironment. Traditionally, communication devices have been
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designed to respond to increased noise levels by increasindh common feature of all previous works in the area of
transmission power and by repeating transmission. This strpbwer management is that policies are formulated heuristi-
egy is highly energy-inefficient and can be counterproductivally, then tested with simulations or measurements to assess
even throughput-wise if decreased transmission quality tiseir effectiveness. Another interesting commonality is that
caused by interference from other transmitters operating withe highly abstract models used to represent the target systems
the same protocol. Both [18] and [19] assume that the worstcessarily imply some uncertainty. Uncertainty is caused by
menace to service quality is mutual interference and propasastraction (for instance system response time is uncertain
retransmission protocols that tend to reduce mutual interfdrecause detailed functionality is abstracted away), and by non-
ences by reducing the average transmission power and dsterminism (for instance, request arrival times are uncertain
increasing silence time when error rate is high. because they are not controlled by the system).

Power management schemes have also been studied in [12Rrobabilistic techniques and models are employed by all
[14], and [15]. The system, or a component, is modeled agpeevious approaches to deal with uncertainty. Similarly to
reactivesystem that receives requests from the external enpirevious approaches, we will formulate a probabilistic system
ronment and performs some computational task in respomsedel, but differently from previously published results, we
to a request. The arrival rate of incoming requests is noill rigorously formulate the policy optimization problem
uniform over time, nor it is so high to impose full utilization.within the framework provided by our model, and we will
Hence, power can be saved by transitioning the system tsleow that it can be solved exactly and in polynomial time in
sleep state when it is not in use. The power-down stratetfie size of the system model. To obtain this result, we leverage
impacts performance both in terms of latency and throughputgll-known stochastic optimization techniques based on the
because of transition delays. The approaches presented in [If®ory of Markov processes. A vast literature is available on
[14], and [15] explore several shutdown policies that minimizdis topic, and the interested reader is referred one of the
power at the cost of a marginal performance reduction.  numerous textbooks for detailed information (see, for instance,

Disk driver subsystems are studied in [12] and [13]. Thi21]-[23]).
work presents an extensive study of the performance of various
disk spin-down policies. The problem of deciding when to Ill. STocHAsTIC MODEL
spin down a hard disk to reduce its power dissipation is In this section we first informally describe a system model,
presented as a variation of the general problem of predictitigen we provide definitions and we analyze the properties of
idleness for a system or a system component. This problehe model. We consider a system embedded in an environment
has been extensively studied in the past by computer architegisdeled as a single source of requests. Requests issued by
and operating system designers (the paper by Goldihgthe event source are serviced by the system. The system itself
al. [13] contains numerous references on the topic), becausmsists of two components: a resource that processes requests
idleness prediction can be exploited to optimize performang¢e service providey, and apower manager
(for instance by exploiting long idle period to perform work The resource has several states of operation. Each state is
that will probably be useful in the future). When low powetharacterized by a service rate, which is, roughly speaking,
dissipation is the target, idleness prediction is employed pooportional to the average number of requests serviced in
decide when it is convenient to spin down a disk to sawetime unit. Some states may have zero service rate. Such
power (if a long idle period is predicted), and to decide whestates are callesleep statesyhile states with nonnull service
to turn it on (if the predictor estimates that the end of the idiate are calledctive statesBoth request arrivals and services
period is approaching). are stochastic processes, in other words, service times and

The studies presented in [14] and [15] target interactivaterarrival times between requests are nondeterministic. As
devices. A common assumption in these works is that futuggplained in Section Il, nondeterminism models incomplete
workloads can be predicted by examining the past histoiiyformation and/or uncertainty caused by the high level of
The prediction results can then be used to decide when aatsstraction of the model.
how transitioning the system to a sleep state. In [14], theThe system may contain gueuewhich stores requests
distribution of idle and busy periods for an interactive terminahat cannot be immediately serviced upon arrival because the
is represented as a time series, and approximated with a leastvice provider is either busy servicing other requests or it has
squares regression model. The regression model is usedZero service rate. We assume that requests are indistinguish-
predicting the duration of future idle periods. A simplifiecable, hence, service priorities are immaterial. Moreover we
power management policy is also introduced, that predicts thesume that the traffic-management component has finite ca-
duration of an idle period based on the duration of the lagacity. Whenever the number of enqueued requests exceeds the
activity period. The authors of [14] claim that the simple policgapacity, requests are lost. Request loss does not model actual
performs almost as well as the complex regression model, dadk of service in the system. In our abstract model, request
it is much easier to implement. In [15], an improvement ovédoss represents an undesirable condition that is verified when
the prediction algorithm of [14] is presented, where idlene$so many requests are waiting to be serviced. Real-life systems
prediction is based on a weighted sum of the duration of pagtnerally implement congestion-control mechanisms based on
idle periods, with geometrically decaying weights. The policgynchronization primitives that prevent overflowing of internal
is augmented by a technique that reduces the likelihood auieues. We do not accurately model such mechanisms because
multiple mispredictions. we focus on average-case operating conditions. However we
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> scsPs;,s = 1. A Markov chain can also be described by
Power Manuger its state-transition diagrama directed graph whose nodes are
states, and whose edges are labeled with conditional transition

probabilities. State transition times in Markov chains have
State observations Commands geometric diStI’ibution

Prob(ts,, s, = nT’) = ps,, Sjp;:jii' 1)
service requester |:> |:> A stationary controllable Markov chain M(«) is a Markov
_ . chain whose transition probabilities,, ,, are functions of

queue R controlling variablea. When the independent variablecan
take values in a finite seti, the transition probabilities are
Ps;,s;(a): A — [0, 1], and the controllable Markov chain can
be represented by a set of matrices, one for each value of the
model overflow of normal system capacity because it isdependent variable € A.
undesirable and should be avoided as much as possible. ~ We first define acommand set4d = {a;, st. i =

The power manager is a controller that observes the histdry2, - - -, A}. The elements ofA are commands issued by the
of the service provider and of the queue and issues commarisver manager for controlling the operation of the system.
There is a finite number of commands, and their purpose isDefinition 3.1: A service provider(SP) is described by a
to cause the transition of the service provider from one stdtiple (Mgp(a), b(s, a), c(s, a)) where: i) Mgp(a) is a
to another. The service provider responds to commands irstationary, controlled Markov process with state Set {s;
nondeterministic fashion. In other words, there is no guarante¢ ¢ = 1, 2, ---, S}, control set.4 and stochastic matrix
that the service provider changes state as soon as a commnt(a); ii) b(s, a) is a functionb: S x A — [0, 1]; and iii)
is issued, but there is a probability that the transition will be(s, a) is a functione: § x 4 — R.
performed in the future. Nondeterminism represents the delaylhe SP model is a discrete-time controllable Markov chain
of the system in responding to commands and the uncertaiatyd matrix P5C(a) is its conditional probability matrix. A
on the actual value of such delay caused by the high abstracti@mvice rateb(s, a) is associated with each statec S and
level of the model. The criterion used for choosing whatommanda € A, it represents the probability of completing
command to issue and when is callpdlicy. the service of a request in a time slice, given that SP is in state

The overall system architecture is depicted in Fig. 1. Ourand that command has been issued at the beginning of the
goal is to search the space of all possible policies to firine slice. Apower consumptiomeasure:(s, a) is associated
the one that minimizes a cost metric. We define two costth each states ¢ S and command: € A. It represents
metrics: power and performance Policy optimization targets the power consumption of the SP in a time slice, given that
the optimization of one cost metric while using the secomtbmmanda has been issued and the SP is in stati each
as a constraint. In Sections llI-A and IlI-B, we formulate dime slice, the service provider can be in only one state. The
stochastic system model based on Markov chains. Within tiigwer manager causes state transitions by issuing commands.
model, policy optimization can be rigorously formulated antlowever, the response to a command is nondeterministic: the
solved. However, we do not discuss how and when the mod&® may or may not transition to a new state. Clearly, it is
is a valid abstraction of a real-life system. This important issymssible to model deterministic transitions by specifying a

Fig. 1. Components of the system model.

is analyzed in detail in Sections VI and VII. conditional probability value equal to one. In the general case,
a command needs to be asserted over several time steps to
A. System Components induce the desired transition. If we assume that the asserted

E:ommand does not change, the probability that the SP performs

We assume that the reader is familiar with basic probabili o . . X
e transition increases geometrically with the number of time
theory at the level of [25] and [26]. We use uppercase bos ices. Thus, the transition timeg, ,.(a) has expected value

letters (e.g.,M) to denote matrices, lowercase bold letters ' ' i 8 P

(e.g., v) to denote vectors, calligraphic letters (e.g) to
denote sets, uppercase italicized letters (e5).,to denote
scalar constants and lowercase italicized letters (e)gto
denote scalar variables. We will consider a discrete-time (i.e., =<5
slotted time) settingt,, = 7', whereT is the time resolution, pils, (a)
n € INt. We will write z,, in place ofz,,. We calltime slice The value oft,, ,.(a) is the average time for transitioning
the time interval between two consecutive values,of from states; to states;, given that the command is issued

A stationary Markov chain M is a stochastic process overat everyt,, until the transition is performed.
a finite state sef = {s;,s.t.i =1, 2, ---, S} whose behavior  Each pair(s, a) is characterized by a performanéés, a)
is such that, at any time,, the state probability distribution and a power consumptiod(s, a). Performance is expressed
depends only on the state at timg_,. Prol(z,, = s;|z,_1 = in terms of service rate, which is the probability of completing
5i) = ps;,s; IS calledone-step transition probabilityThe one- a request in a time slice, hence, the valuéaf 0 < & < 1.
step transition probabilities are conveniently specified in tt#ero service rate means that no requests can be serviced and
form of atransition probability matrixP, 0 < p,, ., < 1and the SP is not active. Service raie= 1 means that a request

Faro, (@) =T Y k(1 —p, (a)* VpS, (a)
k=1

Q @)
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s_on: 0.0
s off: 0.2 s_on: 0.97
s_off: 1.0

s_off: 0.8 s_on: 0.03
s_off: 0.0 Fig. 3. Markov chain model of the service requester.

Fig. 2. Markov chain model of the service provider.

PSE. The functionz(r) represents the number of requests
is certainly serviced in each time slice. Functiois a general issued per time slice by the service requester when it is in
real-valued function that expresses the power consumptionsiiater. Intuitively, SR states represent traffic conditions, and
arbitrary units (say Watts). The definitions bfand ¢ are the the value z(r) gives a quantitative measure of the traffic
basis for the computation of the cost metrics employed generated in each condition. For instancez(if) = 0, state

evaluate the quality of a policy. 7 represents an environmental condition where no requests
Example 3.1:Consider a SP with two statesS = are generated. The Markov process of request generation is
{on, off}. Assume that two commands are defingd = completely autonomous and it does not depend on the behavior

{s_on, s_off}, with the intuitive meaning of $witch ori and of the system: it represents the external environment over
“switch off” respectively. When a command is issued, the SPhich the system has no control. Interarrival times have a
will move to a new state in the next period with a probabilitgeometric, memoryless distribution.

dependent only on the commandand on the departure and Example 3.2:Consider a SR with two statesy and ry,

arrival states. The stochastic mati%"(a) can be representedwhere functionz(r) is defined as followsz(rg) = 0, z(ry) =
by two matrices, one for each command. For example 1. Since there is a one-to-one correspondence between values

on off of » and SR states, we will use the values~-oés names for
the statess( will be called 0, andr; will be called 1). At
Psp(s_on) _on < 1 0 ) any timet, only two possibilities are given: either a single
off \ 0.1 0.9 request or no request is received. An example of a stochastic
on off matrix of SR is
0 1
PSP (s off) = " <0'8 02). psr _ 0 (0.95 0.05
of \ 0 1 1 <0.15 0.85>'

The Markov chain model of the SP is pictorially representethe Markov chain of the SR is shown in Fig. 3. The SR

in F|g 2. Note that the transition time from off to on when th%ode's a “bursty” workload. There is a h|gh probabmty (085)

s-on command has been issued is a geometric random variakfigeceiving a request during period+ 1 if a request was

with average equal to 1/0.% 10 periods. received during period, and the mean duration of a stream
Service rateéh(s, a) and power consumptio(s, a) can be of requests is equal to 1/0.15 6.67 periods.

represented by two-dimensional tables with one entry for eachRemember that, although we have discussed examples of

state-command pair. For instance two-state SR models, the number of states of the model can be
s.on s_off larger than two, and function(r) can take arbitrary integer
values.
bla, s) = on < 0.8 0 ) Definition 3.3: A service queués described by a stationary
off 0 0 controllable Markov chaimfMgq(a, s, r) with state setQ =
s.on s_off {g:st.i=0,1,---,(Q — 1)}, control set4 x S x R and
3 4 stochastic matrixP>(a, s, r).
cla, s) = on < ) When service requests arrive during one period, they are
off 4 0 buffered in a queue of lengtfi} — 1). The queue is in state

In this example, the SP is active only when it is in the og; wheni requests are waiting to be serviced. The queue is

state and it is not being switched off. Power dissipation is nidbunded: if new requests arrive when its staigjs, the state

in the off state, but switching the resource on or off has does not change (in this case we say that requestestyeWe

sizable power cost: the power consumption of the SP duriggll ¢q;,_; the queue fullstate, andy, the queue empttate.

the switching times (i.e., when the state is on and the commanile conditional probabilities of the SEF?, = are completely

is s_off, or when the state is off and the commandsien) is determined by the other system components. The SP controls

higher than that of the active state. how fast the queue is emptied, while the SR controls how fast
Definition 3.2: A service requeste(SR) is described by a the queue is filled. Given the triplg, s, r) we knowb(a, s)

pair (Mgr, z(r)) where: i) Mgg is a Markov process with (the service rate) and the number of request arrivats. The

state setR = {r; s.t.i =0,1,---, (R — 1)} and stochastic probability of servicing an enqueued request (or an incoming

matrix PSR and ii) z(r) is a functionz: R — IN. one) isb(a, s), while the probability that no requests are ser-
The service requester models the system’s environment adced is1 —b(a, s). Statesyy (queue empty) andg,_1 (qQueue

Markov chain withR states and transition probability matrixfull) are corner cases. if = go andz(r) = 0 (i.e., no arrivals),
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then the state will remaig, with probability 1. If the queue is Notice that the SP is actively servicing requests with rate 0.8
full, its state will change with probability(a, s) if z(+) =0, only when its state is on and the command issuedas (this

while it will remain g¢_; with probability 1 if z(r) > 0. One situation corresponds to the two top matrices). In all other
last corner case is verified when the number of arrigéls is combinations of command and state the service rate is zero.
large enough to exceed the maximum queue length, i.e., if théhen there are no requests the queue states does not change,
queue state ig; andi +z(r) > Q. In this case the new queuei.€., PS? is the identity matrix. If there are incoming requests,
state will begg_; (queue full) with probability 1. Whenever the queue can only be filled. For instance, consider the matrix
an incoming request cannot be enqueued because the gUeustate (s-on, off, 1): the SP is off, the command is.on

is full, we say that we have sequest loss The transition and a request arrives. If the queue was empty, it is filled with

probabilities outside corner cases can be expressed as follof@Pability one. If the queue was already full, it remains full
1—b(a,s), if j =i+ (), and and we have a request loss.

; ; Definition 3.4: A power manager(PM) is a control pro-
0<i+2(r) <@, ) :
5Q (a5, 7) = 4 bla, ) if j =i+ 2(r)— 1, and cedure that issues a commaade A to the SP every time
Pg; q;\% 5, 7) = >0 ‘6_ LT ’ 1 period¢,. The decision on which command to issue is based
< L_+ A(r) <@+ on the observation of the system histddy, up to¢,, where
0, otherwise. H, € (SxR x Q"
3) The flow of state information and command between the

Although the formal description of matrixd>?(a, s, 7) PM and the system is depicted in Fig. 1. To understand

may seem complex, its construction is intuitive, and cdhe implications of the PM definition, observe that the set

be best clarified through an example. H, = (S x R x Q)™ contains all possible sequences rof
Example 3.3: Consider the SP and SR models introduced #fiples (s, 7, ¢). A generic element,, € H,, represents the

the previous examples, and assume a maximum queue lerRjiire system history for. time slices (from time 1 to time

of one, thusQ = {go, ¢:}. The SR has two states, the SP ha): Hn = ((s1, 71, @1), (52, 72, q2), = (Sns Ty Gn))- IN

two states and two commands can be issued. Hehees x R~ Other words H,, contains all possible system trajectories from

contains eight triples. Matri®S(a, s, r) can be described by time #, to time #,,.

eight 2x 2 matrices, one for each value of the trigte s, r) Definition 3.4 fully characterizes a very general class of
0 1 decision procedures (policies) for the choice of the commands

to be issued during system operation. At each ttmegiven
0({10 0.0 H,, the power manager issues command .A. A policy can
be deterministicor randomized |f the policy is deterministic,
the knowledge of system history at a given timeuniquely
determines the command € A that must be issued, i.e.,

PSQ(s on, on, 1) = 0 <0-8 02) the policy is a function®, — A for all n. In contrast, if
1\00 1.0 the policy is randomized, the command than can be issued
0 1 for a given history isnot uniquely determined by the history.
Rather, 4,, uniquely determines @robability distribution of
P5Q(s_on, off, 0) = 0 <1-0 0-0> the commands. In other words, given histddy, at timet,,
1300 1.0 the probability of issuing commandis uniquely defined. The
0 1 actual command to be issued is obtained by randomly selecting
a command fromA with the given probability distribution. We
PSQ(s_on, off, 1) = 0 <0-0 1-0> will formalize these concepts in Section IV.
1100 1.0 Notice that the policy (deterministic or randomized) can be
0 1 arbitrarily complex, since at each step it takes into account the
entire system history. In the next subsection we will introduce
PSQ(S_Off’ on, 0) = 0 <1'0 00) several classes of policies and cost metrics to evaluate them.
1300 1.0 We assume that the implementation of the power manager con-
0 1 sumes negligible power (compared to the power consumption
of the SP).
PSQ(S_ofL on 1) = 0 <0'0 1'()) Example 3.4:In the previous examples we have assumed
1100 10 that A = {s.on, soff}. Hence, the power manager can,
0 1 at any timet,, issue either command_on or command
s_off, depending on the policy adopted. A trivial example
P5Q(s_off, off, 0) = 0 <1'0 0'0> of deterministic policy is theconstant policywhere always
1100 10 the same command is issued. A more realistic deterministic
0 1 policy observes the status of the queue. If there is at least
0/{00 1.0 a request waiting, it issues theon command, otherwise it
P5Q(s_off, off, 1) = < ) issues the_off command. We call this policyeager’, because
100 10 it attempts to turn off the SP as soon as it is idle. Finally, an



BENINI et al: POLICY OPTIMIZATION FOR DYNAMIC POWER MANAGEMENT 819
example of randomized policy is the following: at any given
time £, n > 0, the last three system states are observed. If @
the system has been in state (on, 0, 0) for the last three time

s_on: 0.0

s_oft: 0.0 s_on: 0.0

. % ().
s_oft: 0.2 * 0.95 (off. 0, 0)

slices, then the commandoff is issued with probability 0.6.
s_on: 1¥0.05*0.8

a formal definition for the system as a single entity. The system
can be seen as the composition of the Markov chains of service
provider, service requester, and queue. Thus, it is a controlled
Markov chain whose state is the concatenation of the states
of SP, SR, and SQ, i.e., a triple = (s, r, g). The state
setisX = & x R x Q with cardinality X = S - R- Q.

The system’s stochastic matrix B(a), a X x X matrix of
functions of command € A, that can be represented by a set

of A stochastic matrices, one for each command. The generic

elementp,, ., (a) of matrix P(a) has the form

Having defined all system components, we can now provide
s_otf: 0.0

Fig. 4. Fragment of the Markov chain of the entire system. Only three state
Dz;, z; (a) transitions are shown.

= Prola; = (s, ', ¢)|wi = (s, 7, @), @)
:pjf’s, .pffi, -p?%, request given that no requests were issued in the previous

sp SR oy ) time slice, b(on, s.on) = 0.8 is the service rate of the SP
B p;}f'(a) 'p’s’}:' b, @) ff C=atA =L enitis o(n and tfies_on command has been issued, and
=P (@) P - (L=b(s, a), if ¢ =q+2(r) Pih on(s-on) = 1 is the probability for the SP to remain on if

0, otherwise. the s.on command has been issued.

(4) Notice again that the transition time (with fixed command)

, . . .between any pair of states;, =, is a random variable
The first case represents transitions occurring when there is at o
with, geometric distribution and average valiigp,., . (a).

least an enqueued request and the SP services it. The se%)gd

case represents transitions occurring when the SR does Fcluding this subsection, we want to stress the key property
P 9 gf) he Markov model: at every time,, the future evolution

complete a service request. Finally, some state transitio
P g y (S}Sthe system depends only on the current statand the

are simply n_ot possible, hence, they have zero prpbab'“%mmand issued. Our approach to the exact and efficient
This expression does not account for corner cases (i.e., when

the queue is empty and when the queue is full). Forms?lution of the policy optimization problem relies upon this
. : . .. Tundamental property.

expressions fop,, .;(a) in corner cases are obtained with

similar reasoning as for the state of the queue. We do tCost Metrics

analyze corner cases in detail because they do not add much'to

the understanding of the following material. The construction In Section IlI-A, we defined a very general class of PM

of the system’s Markov chain can be clarified through apolicies (Definition 3.4). The purpose of policy optimization

example. is to search the space of all policies and to find optimal
Example 3.5: Consider the system with two SR states, twenes. We will show that the optimal policy lies within a

SP states (with bursty behavior), two commands and quesRecific class whose representation is very compact and whose

length two. The Markov chain of the system has eight statégplementation is straightforward. We now define some im-

and can be represented by two® stochastic matrices, oneportant concepts that will be useful in formulating the policy

for each command. We represent the values of the transiti@ptimization problem and its solution.

probabilities in Fig. 4 on the corresponding edges of the stateDefinition 3.5: A decision§(H,,) = {p.(H,) st.a € A}

graph of the Markov chain. Each edge is labeled with twat time ¢, is a set of functiong,: H, — [0, 1] with the

transition probabilities, one for each command. Only a fefroperty»_ s pa(Hn) = 1.

edges are shown for the sake of illustration. In simple terms, given a system histo#y,, a decision
Consider the transition between state= (on, 0, 0) (i.e., ¢(H,) is a discrete probability distribution that associates a

active SP, no requests, empty queue) and state (on, 1, 0) probability valuep, (H,,) with each command € A. At the

(i.e., one request comes and it is serviced right away). Beginning of time slicen, the power manager observes the

the command issued by the PM isoff the transition has history H,, of the system and controls the SP by issuing a

null conditional probability because the SP cannot servié@mmanda with probability p,(H,,).

requests when the_off command has been issued [service In the following, we use the shorthand notati6fi” =

rateb(on, s_off) = 0]. If the command is_on, the conditional (). A deterministic decisiorconsists of taking a single

probability of the transition is action with probability 1 on the basis of the history of the
system [only onep,(H,) is equal to one, all others are
P(on, 0,0), (on, 1,0) = Pon. on(5-0N) + 55 - b(0ON, 5_0N) zero]. Deterministic decisions are just a limiting case for the

more generakandomized decisiongescribed by Definition
Wherepﬁf‘1 = 0.05 is the probability of an incoming service3.5. Notice that even if the same randomized decision is taken
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in different periods, the actual commands issued could Bsue when in state. We call A the class of deterministic

different. Markovian stationary policies. Notice that, while there are
Remember that the transition matrix of the systBifa) is infinite randomized policies, the cardinality & is finite and

a function of the command. Given a (randomized) decisionequal to S+,

8", we use the notatioR 4., to denote the transition matrix  The importance of these two classes of policies stems from

of the system given decisioff™ two facts: first, they areasy to store and implemersgecond,
we will show that for our system modegptimum policies
Psoo = Y paPla). (5) belong to these classes
DPa€SC™) Example 3.7:Consider the example system introduced in

the previous section. We defined two commands and the

Pé(’g li;’l.tt.he Weighted dSLtjmthOf thd(a) V(\jIEi%htfﬁ v(\j/ith_t_he system has eight states. Thus a generic randomized Markov
probabiiitiesp, assigned 1o the commands by the eCISIon'stationary policy can be represented by & 8 matrix, such

Example 3.6:In our example system, we_d_efmed twoas the following:
commands:s_on and s_off. Assume that a decisioA™” =

{Ds_on, Ps_ot} at t,, is given, with p; ,, = 0.8 and s.on s_off
ps_oft = 0.2. This means that there is 80% probability z1 /04 06
of issuing commands_on and 20% probability of issuing z2| 02 08
commands_off. The transition matrixP s, of the system, z3| 05 05
given decisioné™ is M. - Pa| L0 00
T xs| 04 06

Py =0.8-P(s.on) + 0.2 - P(s_off). 26| 08 02

Consider an infinite sequence of time slices [1,-2). z7 | 0.8 0.2

The decisions taken by the PM are a discrete sequence zg \ 1.0 0.0

[61), 83, ---). The sequence completely describes the PMecisions,,, the first row of matrixM,. specifies that when
policy = which is (tlh)e u(g)known' of our optimization problemqe system is in state;, the PM will issue as_on command
If a policy = = [6 ’_5 s ---) is adopted, we defin®’ = it probability 0.4 or as_off command with probability 0.6.
Py Py, -+, Psen; this is simply the transition matrix s geterministic Markov stationary policy can be represented

from period O to period: under policyx. Among all policies by an eight-dimensional vector such as the following:
some classes are patrticularly relevant, as defined next.

Definition 3.6: Stationary policies are policies where the

same decisiod™ = § is taken at every time;, i =1, 2, - - -, z, [ s.off
ie,m =166 ). z2 | s_0n

For stationary policies, decisions are denotedsbyvhich z3 | s.0n
is a function of the system state Thus, stationarity means x4 | s.on
that thefunctional dependenayf § on = does not change over Mz = z5 | s_off
time. Whenz changes, however, can change. Furthermore, zg | s-on
notice that even a constant decisiodlmes notmean that x7 | s.on
the same commands issued at every period. A decision is zg \ s.0Nn

a probability distribution that assigns a probability to each ] ) .
commanda € A. Thus, the actual command that is issued i&he first element of the vector, for instance, is the command
obtained by randomly selecting fropt with the probabilities that is issued by the PM when the system is in siate _
specified bys. It is now possible to define the metrics of relevance in
Definition 3.7: Markov stationary policies are policiesth® policy optimization problem. In their most general form,
where decisiong do not depend on the entire histaly,, but they are function both of the state and of ¢, 1., the
only on the state of the system= (s, r, ¢) at time,. decision we take when we are in state The first cost
Markov stationary policies have a compact representatidRetric is theexpected power consumption levglr, 6..) =
Randomizedviarkov stationary policies can be represented &, cs, Pac(5; @), Wherec(s, a) is the power consumed by
a set of X decisions (one for each stat&), z € X, which is the SP when it is in state and command: is issued. The
equivalent to a5 x A matrix M.. An elementm,, , of M, second cost metric of interest is tperformance penaltper
is the probability of issuing command given that the state Unit time d(z) which relates to the waiting time and the
of the system isc. Notice that for stationary Markov policieshumber of jobs in the queue. The simplest way to define
the dependency of from the time indexn is lost, and it is function d(z) is to set it equal to the number of requests in

Deterministic Markov stationary policies can still be rep-the consumption and performance penalty vectors
resented by matrices where only one element for each row &1, 6n,) d(z1)

has value one and all other elements are zero. Moreover, they
have an even more compact representation.gslamensional

Cs = ds = :
vector m,, with the zth element being the command to e(zx, bux) d(zx)
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IV. PoLicy OPTIMIZATION

As seen in the previous section, the complete system is
described by a controlled Markov chain with stochastic matrix ,~
P(a). Given a policynr and the X-dimensional row vector /
pD, representing the state probability distribution (henceforth
called simply probability distribution) of the system at thk\e
initial time ¢, it is possible to compute the probability\
distribution of the system at future timg according to the
formulap(™ = pP7~1. Based on this information, we can
compute the expected value of the performance penalty and
of the consumption at time. They are given by

Eﬂ[dé(m] Ip(l)PZ_ldé(m
E [Csm] =p(1)PZ—166<n>. (6) sound, and must allow effective computability of the solution.

) In the following, we model the system session duration as
These values are the best estimates of future performagge) s- at the beginning of every period, the session will

penalties and costs on the basis of our present informatigfiinue with probabilityd < 3 < 1 (3 is called discount
about _the system. Since we are interested in the Iong-ra_r}ggtor), or will close the session with probability — 3,
behavior of the system, we compute the average over timgyenendently from the state of the system. After a session has
of the performance metrics, and minimize W'th respect ¥oen closed, both consumption and performance penalty are
such averages. We can formulate two constrained optimizatigl ; ad to be zero. We notice that this assumption can result
problems: performance optimization under power constrainig 5 gjight error in the estimation of the performance metrics,
and power optimization under performance constraiftt the .. ause after the closing of a session some time might be
following, we describe the first problem in detail. The SeCO'Wecessary to serve the pending requests and to shut down the

problem is treated in exactly the same way. system. Yet, this error is small because it occurs only once and
Our objective function is thaverage expectegerformance a session is generally much longer than the time resoldtion

penalty, and we constrain the maximum average expecteGrpe ingroduction of the time window is equivalent to
consumption with an upper bound valgé assuming that the system’s Markov chain has one additional

~

Fig. 5. Markov chain model of a system with trap state

1 XN trap statery, as shown in Fig. 5. All transition probabilities of
min lim N Z Erldsen] the original Markov chain are multiplied b§, and each state
n=1 z € X has a new transition with probability— 3 toward z.
1 X Once inxg, the system cannot change state. Moreover, both
st lim > Exfesm] < C. (7)  performance penalty and power in statg are zero. Based
n=l1 on the above modelyV is a geometrically distributed random

Remember that the unknown of this problem is the poticy variable with expected value eguEI[N] =(1-p""

Yet, we observe that, as it is, the optimization is carried over As the expected stopping tinf€ is finite, thetotal expected

an infinite time horizon Such formulation has a drawback: itperformance penalty and consumption are finite with probabil-

equally weights costs relative to the near future and to tlitg one. Instead of considering average expected values of

far future. This is usually not the case. In a great variety aind ¢, it makes now sense to optimize their total expected

applications, optimization over time “discounts” the futureyalues over the periofD, N]. It is easy to see that, at time

so that immediate rewards (or penalties) are weighted mailece », the probability distribution of the system is given by

than rewards in the far future. This is the case for ogr™ = p®(sP)" " = g7~1pWP7r~1. The expected values

application, where the time span of interest for the optimizatiaf d and ¢ are redefined as

is the finite time window of the desired time between battery el ()1

recharges. For instance, for typical laptop computers the Erldseo] =" p P dstn

desired time between recharges ranges between 8 and 12 h, or Er[esm] =" pIPI e (8)

for aggressive applications, a few days. The behavior of the

system for much longer time scales (say 10 yr) is absolutew

of no interest for power optimization. o
This intuition can be made rigorous according to the follow- PO1: min Z Erldson]

ing reasoning. We assume that the system is not operating over " on=l

an infinite horizon, but only over nite time horizonV which g .

is finite and random We call N a stopping time The time St Z Exlesen] < C. ©)

period|0, N] corresponds to the time window of interest (also n=l

called asessiol, and randomization takes into account the urNotice that the discounted formulation it equivalentto

certainty on its exact duration. An important modeling issue ike formulation of (7). First, in (7)Ex[ds] IS an expected

then to define the probability distribution of the stopping timesalue, while in (9) it is a discounted expected value. Second,

and its relevant parameters: the distribution/éfhas to be the summation of (9) taken over infinite time slices represents

e optimization problem we set out to solve is then
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the cumulative discounted expected cost, while the limitin (7) 4
represents an average cost. Convergence of (9) is guaranteed
because? < 1 andpY P71 is bounded. In formulation (9),
the contribution to the cost function and constraints of terms
far in the future is smoothed out by the discount factor. Hence, 3
the discounted formulation expresses the practical problem
we want to solve, i.e., policy optimization over a finite time 2
window. 2
In the PO1 problem, power is a constraint and perforg 2
mance is the objective. The performance-constrained povvér

Request loss < 0.1337
——— Request loss < 0.2
Request loss < 0.25

minimization problem (PO2) can be expressed in the sants \;T\ ______________
form | )
PO2: min Z E [€sm]
n=1
s.t. E [dsw] < D. 10 0 - . :
T; (o] = (10) 0.0 0.2 04 0.6 0.8 1.0

. . Average queue length
Since the two problems have the same mathematical formula-

tion, we will focus on the first. All conclusions we derive carf'd- 8- Pareto curve for the example system.
be applied to the second.

PO1 and PO2 are stochastic optimization problems, whérnerease in the available resource. In other terms, price of a
the expected valuef a cost function has to be minimized.resource is a nonincreasing function of available quantity of
The solution of PO1 and PO2 is based on classical resuisit resource.
of stochastic optimization and it is described in detail in Example 4.1:Pareto curves for the example system are
Appendix A. The key result can be summarized as followshown in Fig. 6. The curves are obtained by repeatedly solving
Policy optimization can be formulated as a linear programmirige LP with different performance constraints. Thexis of
(LP) optimization problem, hence, it can be sohesdictlyand the plot reports average queue length (i.e., the performance

in polynomial time(in A - X). constraint), while they-axis reports the expected optimum
power consumption. Notice the presence of an infeasible
A. The Space of Optimal Policies region. Even if the resource is never put to sleep, the workload

generated by the SR is such that it is impossible to achieve

average queue smaller than 0.175.
The three Pareto curves illustrate the results of policy opti-
fulfilling the constraint on consumption (or vice versa). Thiszation With th_ree different _constraint settings. When request
0ss constraint is not very tight (lowest curve), performance

relation can compactly be expressed in functional fofin:= . : S .
onstraint dominates and request loss constraint is never active.

g(C). If the linear program is infeasible (i.e., the constrain% h hen th | o iahti
cannot be met), we defing(C) = o. We call the set n the contrary, when the request loss constraint is very tight it

G = {(C, D) st. D > ¢(C), C > 0} the set of feasible always dominates over performance constraints. The resource

allocationsand the set = {(C, D)|D = ¢(C), C > 0} the is never allowed to turn off, because this would increase
set of efficient aIIocationsPairé(C, D)yeg éorre_spond to request loss, and power consumption is maximum (topmost

Pareto points of the power-performance tradeoff curve, i_(g‘urve). The middle curve shows an interesting intermediate

they represent solutions of PO that cannot be improved up&huat'on' In the flat region, optimization is dominated by

in both directions (power and performance). The followin e request loss constraint, that makes the optimal solution
result holds (see [24]): sensitive to the performance constraint. Between 0.6 and

Theorem 4.1:G"P is a convex set 0.4 both constraints are active, while under 0.4 performance
Proof: Lét.fl £, be thes - A-di.mensional state-action constraints become dominating and request-loss constraints

vectors corresponding to the maximum consumptidhsand Inactive.

C», respectively. The vectoAf; + (1 — A)f; is a feasible

solution for LP3, with power consumption constrai; + V. PoLiCY OPTIMIZATION TooL

(1—X)Cs, and minimum performancig(C1)+(1—A)g(Cs). We implemented a policy optimization tool for the for-

The optimal solution will be smaller or equal than this valuenulation described in the previous section and Appendix A.

so thatg(AC: + (1 — M) < Ag(Cr) + (1 — A)g(C»), and  The tool is built around®Cx, an advanced LP solver based

G"P is convex. on an interior point algorithm [27]. Interior point algorithms,
The theorem has an intuitive interpretation: if we keepugmented with presolvers, can efficiently solve very large

reducing the availability of an existing resource (the consumpP instances with thousands of unknowns. The robustness of

tion C), the “price” for that resource will keep increasing. Byinterior point-based LP solvers has greatly improved in the

price we mean the increase in the objective function for a utétst few years, and state-of-the-art implementations such as

The solution of the LP provides a relation between
prespecified maximum average expected consumptipand
the least performance penalfy that can be attained while
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Power,
Markov Composer|[ ] PCx ] Policy Extractor = Performance,
Policy table

\
]

Informal
system description

- Power,

Specification check Markov Simulator Performance

l
y

Timestamped ___ .| " .. Power,
request frace SR extractor Trace simulator Performance

Fig. 7. Block diagram of the policy optimization tool.

PCx are competitive with the best simplex-based traditionéthe arrival of service requests is poorly modeled by a Markov
LP solvers.PCx is just the computational core of a complexprocess, the performance and power values returned by this
tool whose block diagram is shown in Fig. 7. simulation do not match the expected performance and power
The tool requires two inputs: a request trace consisting cdbmputed by the optimizer.
time-stamped request records (obtained from measurementEhe procedure implemented BR extractorfor extracting
on a real system), and a system description. The request triee Markov model for the SR from a time-stamped request
is automatically analyzed by th8R extractorthat builds a trace is relatively straightforward. Given a time resolution
Markov chain model for the service requester. The systef) the arrival times of requests are discretized. The trace
description is an informal specification of the informatios converted into a binary stream that has value one in
needed to formulate the SP model, various system parapositionk if a request is received between tim& and time
eters (time horizon, queue length), cost functions (powér + 1)T, zero otherwise. Then, a memory is chosen for
and performance), constraints and optimization target. Ttiee SR model. Then-memory Markov model hag8™ states,
translation of the informal specification into the stochastizne for each possible sequencemafconsecutive bits. The
model described in the previous sections is done manualtpnditional transition probabilities are computed by counting
This step is represented by the shaded blocks in Fig. 7 (shatlegl occurrences of state transitions, and dividing the count by
blocks represent manual steps, while white boxes are futlye total number of times the start state of the transition is
automated steps). The system, specified as a set of transititsited.
probability matrices, tabular representations of cost functions,Example 5.1: Consider the following time-stamped request
constraints and optimization directives, is checked for syntactiace, represented as an array of request arrival times (in ms):
correctness and passed to filarkov composethat builds a [2, 5, 6, 7, 12]. Initial time is zero. Assume that= 1 ms,
monolithic Markov model by merging the Markov chains ofhus, the discretized trace becomes [0, 0, 1, 0, O, 1, 1, 1, O,
the system components. 0, 0, 0, 1]. Consider an = 1 SR model. The model has
The model, cost functions, constraints, and optimizatidwo states, marked by values zero and one. The conditional
targets are then translated iR&x input format and passed totransition probability for thé — 1 transition is computed by
the LP solver for computing the optimum policy. The outputounting the number of 01-sequences in the discretized trace,
of the LP solver is the set of state-action frequencies, tlaad dividing it by the number of zeros in the trace. For our
expected performance and power. State-action frequenciestamee, there are three 01-sequences, and eight occurrences of
translated into command probabilities by thelicy extractor zero. Hence, the conditional probability of the— 1 transition
and the policy matrix is obtained. The optimization tool cain the Markov model of the SR is 3/8. The other transition
call the LP solver iteratively, to explore the entire powerprobabilities can be computed in a similar fashion.
performance tradeoff curve. In this case, a set of policiesNotice that given a value df' andm, the model extraction
and their corresponding expected performance and povpgocedure always produces a Markov model for the SR.
values are computed. This type of design space exploratidowever, there is no guarantee that the model is representative
is efficiently supported byCx. of the statistical properties of the actual trace. The validity of
The optimal policies computed by the optimizer can bidie SR model should always be checked by simulating the
verified by a flexible simulation engine, that takes as inpiehavior of the optimal policies when the system is driven by
the system specification, the SR model and the optimal polidhe actual trace.
then simulates the Markov chain models for computing power
and performance. The simulated power and performance val-
ues can then be compared against those obtained by the
optimizer to check consistency. A second simulation mode isWe now focus on how to apply policy optimization. In
available, where the request trace can be used to directly drarder to demonstrate the flexibility of the Markov model,
the simulation. This type of simulation is employed to checke have considered three case studies belonging to different
the quality of the Markov model of the service provider. Itlasses of systems. For each example, we will outline its

VI. CASE STUDIES
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TABLE |
STATE, TRANSITION TIME TO ACTIVE AND
PowER DISSIPATION FOR A HARD Disk DRIVER

0 Active
State AT Power L ldie
2 going LPidle
active NA 25W 3 LPidle
idle 1.0 ms 10W
LPidle 40 ms 08 W 4 going Stby
standby 22s 0.3W 5 Stby
sleep 6.0s 0.1s 6 going Sleep
7 Sleep
distinguishing features and present the results obtained by @
policy optimization. 3
In Appendix B, we will also show how the Markov model
and policy optimization can be employed as analysis tools for
exploring power-efficient system architectures and implemen- AB
tations.
g2
A. Disk Drive 2
£ v
The first case study is a commercially-available hard dis@ v
drive! This is an example of a system with a single resourc& v Bv
with queueing and a complex state transition structure. Th§ .
hard disk can operate in five different states, as shown [§ I Computed optimum
X . O Simulation results
Table I. In four qf the five states, thel dew_ce cannot perform A Greedy heuristics
data reads or writes, hence, they areiéictive states. ¥ Timcout heuristics
More in detail, in thadle state the disk is spinning, but some O Randomized heuristics
of the electronic components of the drive are turned off. The
transition fromidle to activeis extremely fast. The low-power g

idle LPidle state is similar to thélle state, but it has decreased ~ 0-0 0.5 Lo L5 20
power dissipation (and increased transition time toabtve Avg. queue length
state). In thestandbyand sleepstate, the disk is spun down, (b)

hence, the transition to thective state is not only slow, but Fig. 8. (a) Simplified state transition graph of the disk drive. (b) Power
it causes additional power consumption (the additional curregepsumption versus performance for optimal and heuristic policies.
absorbed by the motor to accelerate the disk). It is important

to mention that the transition times of Table | are explicitlyat cannot be interrupted. When in transient states, the SP has
declared agypicalin the data sheets. In other words, they capyrq service rate but its power consumption is high: 2.5 W.
be interpreted as expected values of random variables. Transitions between inactive states have been omitted for
Time resolution]” has been chosen based on the expectgeh sake of readability. The figure shows only the transitions
transition times of the SP. We set time resolution based g3y and to theactive state. which have a major impact on
the fastest possible transition performed by the disk drive. Wg\yer and performance. All transition probabilities of the SP
are not interested in increasing time resolution beydne 1 \arkov model are set up so that the expected transition times
ms, because the system cannot perform faster state transﬂ@gﬁon assertion of a command from the PM) are equal to
With this choice for time resolution, the transition betweefhe experimental transition times reported on the data sheets
active andidle takes a single time step, while the trans't'O'ETable ).
times for aII.r'emaining transitions are scaled accordi_ngly. If a file read or write request is received when the SP is
~ The transition graph of the SP that models the disk driyg, five, the request cannot be serviced right away. In our case
is shown in Fig. 8(a). In general, conditional probabilitiegy,qy pending requests are enqueued in a queue of length 2.
associated with the edges of the state transition graph of {3gguests arriving when the queue is full are lost. Request loss
SP depend on the command issued by the PM. This is the Wagiractly represents the undesirable condition of too many
the PM controls the resource. The active state is denoted bXn"coming requests. The workload was modeled by a two-
while the four inactive states are denoted by 2, 4, 7, and 1@t Markov process as described in Example 3.2. Transition
States 3, 5, 6, 8, 9, and 11 are transient states. Transitigagyapilities were extracted from time-stamped traces of disk

from transient states have constant conditional probabilitigg agses (we used the traces prowijledeasured on real
that cannot be controlled by commands. Thus, when in trafechines.

sient states, the behavior of the SP is insensitive to the PM.
Transient states are used to model nonunitary-time transitions

1Hard Drive IBM Travelstar VP 2.5-inch, http://www.storage. ibm.com/ 2Auspex File System Traces, http://now.cs.berkeley. edu/Xfs/Auspex
storage/oem/data/travvp.htm, 1996. Traces/auspex.html, 1993.
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The complete model of the system has = 66 states, our case study the policy is represented by ax<@bmatrix
obtained as the product of the 11 SP states, of the twdth 330 entries). Moreover, even if it is possible to produce
SR states, and of the three SQ states. At any time, theuristic policies that produce “reasonable” results, there is no
PM can issue a command to the SP. In our case study thay for the designer to estimate if the results can be improved.
manager can choose among five commagdsactive go_idle,
go_LPidle, go_standby go_sleep The final product of the B. Web Server

policy optimization is a matrix with five columns (one for each In the second case study, we modeled a web server with

co;phmand) and 66 rows (pnz 1;or egch state of the Sdetem)‘cwo processors for a high-traffic web site, which is an example
€ system was optimized for minimum power under pegy 5 system with multiple service providers. Time resolution
formance constraints. The power cost metric is obtained from _ ="« 114 time horizon is set to one day, i.e:2 - 10*

the data sheet; of the disk drive (summarized in Ta*?'e ). T fne slices. The two processors are not identical. The second
user can specify t,WO types of performance Coqstralnts. FIrStocessor has higher performance (1.5 times) and higher power
a latency constraint can be enforced by specifying a val

, . ! ; . times) than the first one. We model the system as a
for maximum expected waiting time,... for an iNCOMING  gp \yith four states, one for each possible combination of
request. Second, a constraint on requestiosan be enforced i\ e/sleeping processors. Three of the four states are active,
by specifying the maximum probabilitl.. for an incoming i, he sense that the system is able to process workload.

request to find the queue fu_II. o The power manager can independently activate or put to
The results of_our ex_penrpents are §hown_ in Fig. 8(b§1eep the two processors (by issuing one of four different
They refer to a time horizonV of one million time steps

. ) 6 . ' commands), trying to achieve a given average performance
corresponding to a discount factGr= 10—°. The continuou

e S level, representing system throughput, with minimum power
line is the power-performance tradeoff curve spanned by t@@nsumption.

optimal policies C(_)mputed by the optimizer. Its computation Throughput is maximum (1) when the two processors are
toqk less than 1 min on a Sl_JN UlraSPARC Works'Fan_n. Eagihyih active, the remaining SP states have reduced throughput
point on the curve is a solution of a PO problem with dlfferer‘(g.e_ 0.4 when only processor 1 is active, 0.6 when only
performance constraints. The expected performance and poWr%fcessor 2 is active and zero when both processors are in

values returne_d by the optimizer for the various solutions Weéﬂaep state). Performance is constrained by imposing a given
checked by simulation. _ _ minimum expected throughput. Processor power in the active
The circles in Fig. 8(b) represent the results of simulatiofyaie s 1 W for the first processor, 2 W for the second. Turn-
R e e
(10" time steps) of the policies computed by the optimizesy, yransition power is an additional 0.5 W over the processor’s
with the actual trace from which the Markov model of the,q(ie nower. Shut-down transition power is 0.5 W less than
workload was extracted. The distance of the circles from theii e power. Expected turn-on time i€'2while expected
curve is a measure of the inaccuracies of the modeling procegst-down time is T.
It is visually obvious that in this case the model is quite The SR model was extracted from real-life traces obtained
accurate, and_that the simulated points lie almost perfecgy monitoring a busy web servéiVe constructed a two-state
on the theoretical tradeoff curve. o _ Markov model for the workload. The total number of states for
Triangles and boxes in Fig. 8(b) represent heuristic solutiofjss sp and SR model &= 2 - 4. Policy optimization results
to the PO problem. The upwards triangles represent determyyinimum power under performance constraints) are reported
istic _greedy policies explpltlng dlfferent inactive states. _Thﬁl Fig. 9(a). The continuous-line curve shows the theoretical
policies shut down the disk (making a transition to a givepyretg curve, while the circles represent the results obtained
inactive state) as soon as there are no pending requests Orbt)h%imulating the model of the system with the computed
queue end no new requests coming from the user. A walkgsimum policy driven by the actual workload trace.
up command is issued Whenever_ a new request arrives. Th?\nalyzing the policies computed by the optimizer, we
downwards triangles represent timeout heuristics. TimeoWsticed that the processor with higher performance was never
based policies are widely used for disk power managemeeq alone. Intuitively, this is due to the fact that the power
[12]. They shut down the disk when the user has been inactignsumption of the faster processor is twice as large as the

for atime longer than the timeout peri@d,. The choice ofi,  power of the slower one, but its performance is less than two
is based on simulations and on designer’s experience. Boxgses higher.

represent randomized policies where the timeout value and the
inactive state are chosen randomly with a given probability ~p

distribution. The randomized policies are the heuristic version ) ) ) )
of the optimal policies computed by our tool. The third type of system considered is a typical CPU

Although we cannot claim that our heuristic policies are th&ith sleep mode operation. We built our model based on
best that any experienced designer can formulate, some of Blff ARM SA-1100 processor [29]. The actual processor has
policies provide power-performance points not far from thi'€€ Power statesactive, idle,and sleep We do not model
Pareto curve. We remark, however, that heuristic solutions i idle state because the transitions betweetive andidle

not allow the designer to automatically take constraints inf§€ Very fast and have small cost. Hence we can assume

account. On the other hand, trial and error approaches may'B@t they are performed greedily, independently of the power

highly expensive due to the large number of parameters (irfinternet Traffic Archive, http:/ita.ee.lbl.gov/.
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3 monitoring package described in [28]. The discretization time
step is7 = 100 ms. Incoming requests are not enqueued.
Computed optimum Request arrival when the CPU is sleeping is regarded as an

O Simulation results

undesirable condition whose occurrence probability has to be
constrained. To this purpose, a performance penalty function is
defined taking value one when SR active and SP= sleep,
zero otherwise.

The constrained power optimization problem consists of
deciding when to issue thehutdown command, in order
to minimize power while keeping performance penalty under
a given threshold. Optimum policies depend on a single
parameter, that is the probability of issuing tebutdown
command when in state SR activeand SP= sleep Notice
that this degree of freedom is the same that could be exploited
0.0 0.2 0.4 0.6 0.8 by a traditional shut-down mechanism. Hence, we can use

Throughput this case study to make a fair comparison between optimum
(@ stochastic control and timer-based heuristics.

Comparative results are reported in Fig. 9(b). The solid line
is the Pareto curve of optimum stochastic control (obtained by
— Optimum policy varying the performance penalty constraint). The dashed line
——~ Time-out is obtained by varying timeout values for a timeout heuristic.
We remark that optimum stochastic control performs better
than a timeout heuristic even in this case, where the power
manager can only control shutdown. The difference in power
savings is due to the fact that timeout-based policies waste
power while waiting for a timeout to expire.

[3e]

Power consumption

0.3

0.2

Power consumption

VII. M ODELING ASSUMPTIONS A CRITIQUE

The key feature of our policy optimization algorithm is that
1 \ it allows us to compute a globally optimum policy in polyno-
0.00 0.02 0.04 0.06 0.08 0.10 mial time in the number of states of the system. However, such
Performance penalty a strong result is based on several fundamental assumption
(b) on the system model. These assumption should be clearly
Fig. 9. Power-performance tradeoff curves. (a) Two-processor http sert#iderstood in order to assess the domain of applicability of

with real-world workload taken from the Internet Traffic Archive: solid lineg;r technique. The basic hypotheses for the validity of our
and circles represent optimization and simulation results, respectively.(j@? k del foll .
Two-state CPU model with Markovian workload: solid and dashed lined/@rkOV model are as follows:

represent the tradeoff achievable by means of optimum stochastic controk The arrival of service requests can be modeled @*a
and time-outs, respectively. state Markov chain.

« The state transition delays in the service provider can be
management, and we use a single macro state (that we call modeled as random variables with a geometric distribu-
active to represent both the active and idle states of the actual tion.
processor. As a result, the SP model has only two stat¢ise ¢ Model parameters and cost functions are available and
(with power consumption of 0.3 W and full performance) and ~ accurately measured before optimization.
sleep (with null power consumption and null performance). It is possible to envision systems in which one or more of
Shut-down and turn-on transitions (froattive to sleepand these hypotheses is not verified. For instance, request arrival
vice versa) take approximatively 100 ms and have powgmes can be nonstationary and their distribution can widely
consumption of 0.3 and 0.9 W, respectively. change over time.

The CPU is designed to react to service requests (i.e.Example 7.1:We applied a highly nonstationary and non-
interrupt signals) independently of the power manager. Markovian workload to the case study of Section VI-C. The
our model, whenever there are incoming requests the @®rkload was obtained by merging two real-world traces with
is insensitive to PM commands, and a turn-on transition i@mpletely different statistics, representing to usage of the
performed unconditionally if a new request arrives when th@PU of a laptop computer with a single user editing a text file
SP is in sleep state. In practice, only when the SP is active amtd compiling C code [28]. The first trace presents alternating
the SR is idle the PM can control the evolution of the systeidle and active periods, while the second one has a long activity
by issuing ashutdown command. burst.

The SR model is a two-stateadtive and idle) Markov A simple two-state Markov model was characterized for the
chain characterized on a CPU workload trace provided by tkatire trace and used as SR for policy optimization. Optimum
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0.3 - Even if the basic assumptions on the probabilistic model are
valid, we can envision systems with a more complex structure
\ — Optimum pelicy than the one described in the previous sections. For instance,
\ T Timeout we may need to model multiple SR’s and/or multiple SP’s.
Furthermore, the distinction between SP and SR may blur if we
assume that a SP can pass requests to other SP’s for additional
service. A general system model is a network of interacting
service providers, multiple service requesters and queues. Even
though it is in principle possible to compute a monolithic
Markov model for an arbitrary complex network of SP’s and
SR’s, the size of the state space grows exponentially with
the number of system components. Again, designer insights
are required to formulate decomposition strategies that reduce
the state space to a manageable size, without completely
compromising the quality of the optimization.

With a correct understanding of the basic model assumption,
Bur policy optimization approach can be effectively employed
to reduce power consumption in a number of real-life systems.
Promising domains of application are power management for
policies were then simulated against the original trace. Slm@ptop Computers, for their Components and for portab|e elec-
lation results are reported in Flg 10 together with the I’esutﬁ)nic app"ances as well as energy conservation for desktop
obtained by a timeout-based shut-down mechanism. In sogimputers. The two key advantages of our approach over
cases, timeout-based shutdown outperforms stochastic contiielristic techniques are the capability of exploring the power-
This is a situation where one of our modeling assumptiopgrformance tradeoff curve and the high degree of confidence
is not valid (namely, stationary Markovian workload), hencen the quality of the achieved results.

Markovian policies may be good but are not provably globally

optimum. VIIl. CONCLUSION

Similarly, assuming a geometric distribution of SP transition ) o ] o
times may be in many cases an inaccurate model of actuall Ne identification of optimal power management policies for

system state transitions. For instance, transition times can!8¥-POWer systems is a critical issue that has been addressed
deterministic, or have a bell-shaped distribution around an &&ing common sense and heuristic solutions. In this work we
pected value. Finally, power and performance measures baBEY/ided a mathematical framework for the formulation and
solely on the SP state may be inaccurate and it may be difficglution of thepolicy ppt|m|zat|0nproblem. Our approa<_:h IS

to obtain data on some system parameters (such as transiﬁaﬁed on a stochastic model OT powe_r—r_nangged devices and
probabilities for the SR). For instance, a designer may not rkloads. The cpnstramed pphcy optimization .proble.m can
able to collect in advance a time-stamped request trace wh solved exactl)_/ in our modeling frame.work. Policy optimiza-
is representative of actual workloads, and only approximatfgn can be cast into a linear programming problem and solved

information on the request arrival process is available. In polynomial time by efficient interior point algorithms.
It is possible to improve the accuracy of the model folyloreover, tradeoff curves of power versus performance can

nonstationary workloads, nongeometric transition times azg c(j:omputed. TtTetioundn?ssl.?f ofur modeling assumptlonts
complex cost functions by increasing the number of stat gnd consequently the practicality ot our power managemen

in the Markov chain representing the system. Unfortunatel olicies) has been tested on realistic case studies. Our experi-

the size of the state space can easily become unmanaged tal results show that our stochastic model is robust and the

even for powerful advanced LP solvers. Consider for examp&g imal policies are flexible and power-efficient. We believe
S - at our work opens the way to several new research problems.
the case of a deterministic transition del&y from a sleep _.~ " " . - . .
. First, it is possible to envision extensions to the basic model to

state to the active state. It is possible to model a determimsgc . o . .
eal with systems consisting of multiple interacting resources

delay by a chain of states in a Markov model. There are ;
as well as with systems where one or more components can be

(D —1)/T states with the same performan_c_e as the SIeﬁpodeled by stochastic processes other than stationary Markov
state. The last state of the chain has a transition to the act|c\ﬁe

" - . ains. Another interesting direction of investigation is the
state. All transitions have probability 1. Clearly,fif is much . sting 9e L
. . study of adaptive algorithms that can compute optimal policies
larger thanT’, a huge number of SP states is required g . ;
) i . n systems where workloads are highly nonstationary and the
model just one transition. In practice, we need to tolerate °. . .
. C ._Service provider model changes over time.
model inaccuracies if we want to be able to solve policy

optimization with exact LP-based solution. The price to be
paid for is in reduced optimality of the power management
policies. Good engineering intuition is required to match the
approximations made in the model to the desired level of We first introduce a simplified, unconstrained version
accuracy for constrained policy optimization. of PO1 that can be solved in polynomial time Hipear

0.2

Power consumption

0.1 ‘
0.00 0.02 0.04 0.06 0.08 0.10
Performance penalty

Fig. 10. Power-performance tradeoff for the CPU model of Fig. 9(b) with
nonstationary/non-Markovian workload.

APPENDIX A
SOLVING THE PoLIiCY OPTIMIZATION PROBLEM
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programming The solutions of the unconstrained version of (D

PO1 are deterministic stationary Markov policies. Then, we b

show that the introduction of constraints does not change the 2 £
complexity of the problem, that can still be solved by linear ZB P (@) f >
programming. However, the solutions become randomized xRy

stationary Markov policies. ,
If we remove the power constraint, unconstrained perford- 11
mance optimization (POU) can be formulated as

Balance equation interpretation of the first constraint in LP2.

oo then the maximum for the two vectors (taken component-
POU: min pMv, = min Z prlpWpr-lq,., (11) Wise), max{v, w}, satisfies the same set of inequalities. A
T et candidate for the optimal objective vector is th€or which

: ) i ~ the inequalities become tight. In other terms, it is thevhich
the unknown in POU is the policy, and the cost function gaiisfies the following linear program:

pUv,. to be minimized is an infinite sum, where each

summand is the product of th&-dimensional row vector LP1: min pVv sitv < ds + #Psv, forall 6 € A.

p® (the initial state probability vector) and the column (14)
vector vi) = gn—1P71dy.,. The zth component ofv) ~ Notice that the solutiov of LP1 is the same independently

represents the expected performance penalty attjmgiven rom the choice of the initial state distributiop(*). This is
that the initial state was;, and thexth component ofv, Decause Theorem A.1 guarantees that all componentsaoé
represents théotal expected performance penalty at timg minimized when7 is used.

given that the initial state was. If we find a policy that It is possible to show [22] thalL.Pl is equivalent to
minimizes each component of the column vector, such poli¢ye following linear program which has a more intuitive
will be the solution of POU, independently frop(}). The Interpretation:

following classical result [21] provides the key insight that .

leads tog the solution of P[OU] P Y s LP2: min Z Z Je,a d(x)

. . . X acA
Theorem A.1:There exists an optimal policyr that e e

minimizes each component of.. Such policy is stationary, S.t. Z Je,a =B Z Z Py, 2(@)fy,a = chl)v
deterministic and Markovian. The optimal value:, called acA YEX acA

v, does not depend on the time index and its components forall z € ¥

satisfy the optimality equationst, = min,e4{d(s, a) + fz,a 20, forallz € X, a € A (15)

B wcxp(@'|z, a)t,y ;. The optimality equations can be

written in vector form as The A - X unknowns in LP2,f, ,, called state-action fre-

guencieshave the following intuitive interpretation: they are
Vv = min{ds + SPsV}. (12) the expected number of times that the system is in state
oea and command: is issued. The objective function is, thus,
Proof for this theorem can be found in [21]. Remember thiie total expected penalty under the optimal policy. The first
A is the finite set of all possibl&“ stationary deterministic Set of constraints expresses the condition that the expected
policies. We focus here on the interpretation of the optimaliffumber of times stater is the current stateC, . 4 fz,q)
equations; for detailed accounts (in order of increasing gen&-equal to the expected initial population of p,S,,l), plus
ality and complexity), see [21]-[23]. The optimality equationthe expected number of times is reached from another
state an intuitive fact: by taking an optimal decisiénat state 3>,y > qc.4Py,=(@)fy,.). This “balance equation”
the beginning of timet;, the optimal penalty will be the is described pictorially in Fig. 11, that represents the “incom-
performance penalty relative to this time slice [ids,in (12)], ing flow” (transitions toward state) and “outgoing flow”
plus the expected cost from tinte onward; but, by virtue of (transitions from state:) for statex.
the Markovian structure of the system (i.e., conditioning only Once thef,_, have been found by solving LP2, the elements
on the previous slice), this is the discountg)l €xpected value m. . of the optimal stationary policM .- are simply given

(Ps) of the optimal penalty<). by

Many algorithms are available to efficiently solve the class
of optimization problems POU [21], the most well-known M. a :fm’a/z fo.ar- (16)
being policy improvement, successive approximationagd oA

linear programming We will use the last method, because ) . .
. . . . Example A.1:Consider the example system introduced
it allows to generalize our model to the constrained case i|n the Dprevious section. The svstem has eight states
a straightforward fashion. We note first that the optimal coll P ' y 9

> L . - 1, T2, -+, xg and two actionss.on and s_off. Thus,
vectorv satisfies the set of vector inequalities LP2 has16 = 8 x 2 unknowns, the state-action frequencies

v <ds 4 fP;sv, for all 6 € A. (13) fwl,s_oﬂa fwl,s_ona ) fws,S:On' We assume that the time
window of interest is [0, 19, hence, the discount factor is

The set of vector inequalities is equivalent - A scalar 3 = 1 — 107> = 0.99999. The performance cosf(x) has
inequalities. If two vectorsv, w satisfy inequalities (13), only two valuesd(x) = 0 for the four states where the queue
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is empty, andd(z) = 1 for the four states with queue full. Observe that linear programs LP3 and LP4 have the same
The initial probability distribution isp,, = 1.0, p, = 0.0 number of unknowns and of constraints. Moreover, the min-
for all x # x; (i.e., the service provider is initially on, noimum power consumption obtained by solving LP4 for a
requests are issued and the queue is empty). The transitipren performance constraid? is equal to the valu€ we
probabilitiesp, .(a) are those described in Example 3.5. should assign to the power constraint if we want to obtain
The linear program LP2 has eight equality constraints (omesolution of LP3 with minimum performance penalfy.
for each state) and 16 inequality constraints (one for eaklence, the solutions of LP3 and LP4 are equivalent both
fz,a)- The cost function is the sum of eight state-actiofrom the computational and numeric viewpoint. The choice
frequencies, those corresponding to states for whia) =1 of what problem to solve is based on how the constraints and
(i.e., states with full queue). The optimal policy minimizes theptimization targets are specified in practical instances.
sum of thef, , for these states. The command probabilities One key advantage of the linear programming formulation
m,, o are obtained from the state-action frequencies using (18).that it allows the specification of additional constraints.
The linear programming formulation (LP2) of the unconFor instance, it is possible to enforce a constraint on the
strained policy optimization problem has the advantage thatximum probability of aequest losgdefined in Section III).
it can be easily extended to the constrained case, becalise constraint is specified by adding to LP3 (or LP4) an
it is easy to express constraints on a second cost meiriequality requiring that the sum of all state-action frequencies
as a linear function of the state-action frequencies. In ogorresponding to states where SR issues a request and the
case, the total expected power consumption can be written @iseue is full is smaller than a given bouiid
Yowcx 2oaca fz,oc(x, a). Therefore, we can solve problem Example A.2:Consider linear program LP4 for our simple
PO1 by simply adding a power constraint in LP2, as followsxample system, with discount facter= 0.999 99. The initial
state is: no request from SR, queue empty and active SP. Thus,

LP3: min Z Z fo,a d(z) Y has only one element equal to one and all others equal
CX acA to zero. Performance cost functiof{z) is the same as in
St Y foa=B > > pya(@)fya=p, Example A.1. The power cost functiafia, =) is ¢(a, z) = 3
acA yCX aCA when SP is “on” and the commanddson; ¢(a, «) = 4 when
forall z € X (17) SP is “on” and the command isoff and when SP is “off”
Z Z foaclz, a) < C and the command is_on; c(a, ) = 0, otherwise. This cost
e acd function models a system where forcing SP state transitions
Jz,a 20, forall z € X, a € A. (18) is more power-consuming than leaving the SP on, hence, the

SR should be shut off only when there is high probability that
The following result [22] holds for the constrained optimizathe SP will not issue requests for a relatively long time in the
tion problem LP3, and shows that the s&tof stationary future.
deterministic policies does not contain all optimal solutions: The average queue length is constrained to be not larger

Theorem A.2:If  the constraint > . 3 ., than0.5. Thus, the performance constraint is sébte- 0.5 -

fz,ac(x, a) < C is inactive, the solution of LP3 is a(1— 3)~! = 50000. The probability of losing a request must
stationary, Markovian deterministic policy. If the constraine smaller than 20%. The request ldsconstraint is, thus,
(18) is active, and the feasible region is nonempty, the = 0.2 . (1 — 3)~! = 20000. LP4 is solved, and the 16
solution is a stationary, Markovian randomized policy. state-action frequencies are computed. Then, the elements of

Proof for this theorem can be found in [22]. The theorempolicy matrix M, are computed with (16). The matrix of the
states that the optimal policy is Markovian, stationary an@sulting optimal policy is

randomized whenever the expected power consumption of

the system is exactly’. In other words, the most aggres- son  soff
sive optimal policies that push power consumption up to its zy (0.774 0.226
maximum allowed value but achieve maximum performance, x2  1.000 0.000
are randomized. x3 | 1.000 0.000
Although we have discussed the solution of PO1 in detail, M. — T4 [ 1.000 0.000
the equivalent problem PO2 can be solved by a linear program " 5| 0.000 1.000
as well. The linear program for the solution of LP2 is the zg | 0.395 0.605
fo||owing: z7 | 0.000 1.000
xg \ 0.000 1.000
LP4: min ; (%;4 Jo,acl@; @) The minimum expected power value = 1.554 W. Notice
that the SP power in “on” state is 3 W. Thus, the optimal
st. Z fe.a= B Z Z Py,2(a)fy,a = szl)v policy reduces power consumption of almost a factor of two
acA ycx acA with respect to the trivial policy that never shuts down the
forall z € X SP. Consider the first row oM,. Statez; is the triple
> fead@) <D (on, 70, qo): the SP is on, the SR is not issuing any request,
TEX aEA and the queue is empty. The decision prescribes that_tifé

fr,a 20, forallz € X, a € A (19) command can be issued with probability 0.226 and 4han
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command can be issued with probability 0.774. In other words, 3.0
the SP is put to sleep with probability 0.226, otherwise it stays Pert. > -0.1
active, even if there are no incoming requests. Obviously, the @\ o

optimum policy is not equivalent to the eager one, that would ;5
shut down the SP as soon as it becomes idle.

5
% ~ <+ <+
? 0 Q 5 G 5 - o %
1= S i i { by
APPENDIX B = ST SR R R
— o %]
SENSITIVITY TO MODEL PARAMETERS % \ 3 §
\ °e} o o
In Section IV we assumed a Markov system model, and s N P——
we showed how to compute globally-optimum policies. In N \@77767_7%”7@//
this subsection we study how system structure and parameters pert - 05
. . . . crl. > 0.2
impact the result of the optimization process. In other words, .
we exploit our powerful optimization engine to gain deep 10 1 ) 3 4 5 6 9
insights on how to design and tune systems that can be Provider’s features
effectively power managed. (a)

To perform this study, we start from a baseline system
implementation, we introduce changes in its structure and pa- ™
rameters and we perform policy optimization on the modified
system targeting minimum power consumption with a fixed
performance constraint (i.e., we solve LP4). We then compare 2°
the expected power consumption obtained by the optimizers
for the modified system with the optimum expected powerg
consumption achieved by the baseline system. Our baseling 2.0 -
implementation is the following. SP has two statestiveand %
sleepl Power consumption is high in active state (3 W) and®
lower in sleep state (2 W). When the SP is performing a state 15
transition, the power consumption is 4 W. Transitions from
active tosleeplrequire only one time slice. The SR model
has two states as well. In one state a request is issued, while ,

Pow_sleep=0

C—©OLoss<0.1
G- —-© Performance > -0.1

0 ‘
no request is issued in the other state. The transition probability ~ 1e-05 le-04 le-03 le-02 le-01 le+00
from one state to another and vice versa is 0.01. The queue Transition probability

has maximum length equal 2. (b)

Our first set of experiments, illustrated in Fig. 12, focusasy. 12. (a) Power consumption versus available sleep states of the SP. (b)
on the sensitivity to the structure of the service provider. Tinfwer consumption versus SP state transition cost.
horizon is N = 10%. In the first experiment, we analyze the
impact of multiple sleep states. Sleep state 1 is the baseliimgy additional states does not help much. Notice also that the
and the power for the baseline system is represented by gregformance constraint influences the amount of incremental
leftmost point in the graphs. States 2—4 are deeper sleep stgtesver savings. When the constraint is tight, it is more difficult
ordered for decreasing power and increasing transition delayuse deep sleep states, hence, they are less effective in
for returning to active. Statgleepzhas power 1 and transitionreducing power. Furthermore, we can improve power even
probability 0.1 (i.e., in average 10 clock cycles are requiragithout increasing the number of states. For instance, the
to transition from sleep to active), stadkeep3has power 0.5 system with only the active an tisteep4state performs better
and transition probability 0.01 and stagkeep4has power 0.0 than the baseline system (that uses sleep stagp).
and transition probability 0.001. Fig. 12(a) shows two sets of In Fig. 12(b) we study the impact of the transition time
data points, representing the minimum power achievable witketween active and sleep and vice versa. We assume that the
a given SP structure. The continuous line joins power valusgstem has a single sleep state and that the power dissipated
obtained with a tight performance constraint, while the dashddring transition is 4 W (which is higher than the 3 W active
line joins power values obtained with a loose performangmwer consumption). Time horizon i§¥ = 10°. Four sets of
constraint. Points on the same abscissa have been obtait&id-point are shown in the figure. The topmost two sets cor-
with the same SP structure. We considered six alternative &Bpond to SP models where the power dissipated in the sleep
structures with multiple sleep states (the number and type sthtes is 2 W, while the other two sets are obtained by assuming
sleep states for each alternative SP is reported in the figur@ero sleep state power. The data sets joined by continuous

The impact of the number and type of sleep states is quitees are obtained by optimizing power with a constraint on
clear. Having more than one sleep state improves power, beguest loss, while a performance constraint is enforced for
many multiple sleep states are not always useful. For thee sets joined by dashed lines. The abscissa reports the value
workload condition specified for the experiment, introducingf the transition probability for exiting the sleep state (which
statesleep2brings a sizable power reduction, while introducis inversely proportional to the average transition time).



BENINI et al: POLICY OPTIMIZATION FOR DYNAMIC POWER MANAGEMENT 831

3.0 2.6

Perf. > -0.1

2.4
5 2.5 5
2 EP) Loss < 0.05 A,//e/@
& 2,
g IS e
E 3
E E
=] 2 2.0
© 20 O

Perf. > -0.5

1.8
Loss < 0.2

1.5 - 1.6 e e
le-05 le-04 le-03 le-02 le-01 le+00 1e-06 le-05 le-04 le-03 le-02
State transition probability Battery-off probability
@ @
3 2.6
N — 3-statc provider
T~ . Perf. >-0.1

- ——— 2-state provider Loss < 0.01
~— E\H\

\\\\\\\ 2.4 \B\ﬂ

g \\/ P\f\\\o;\\\\\\ § G Loss-driven optimization
2 o Perl. > -0 > 2.2 O Performance-driven optimization
2. 2
E
=]
E
j=% 2.0 Loss < 0.1 ///O
. o G o
. ——— =B
¥ - P
1.8 7
Loss < ();2/, /GY//‘
o
1 1.6
1 2 3 1 2 3 4
Requestor’s memory Queue length

(b) (b)

Fig. 13. (a) Power consumption versus SR burstiness. (b) Power consurijg- 14. (a) Power consumption versus time horizon. (b) Power consumption
tion versus SR memory. versus queue length.

From the plot we can infer the following observations’€duest is issued to the state where no requests are issued and

Since transitions have high power consumption, the optimdf€ Versa. Points to the left correspond to bursty SR. The
power value is strongly sensitive to transition speed (fastéf€rpretation of these results is immediate. The more bursty
transition times corresponds to points on the right side of the the receiver the more effective is power management. It is
plot). For very slow transition times, performance constraintdPortant to notice that increased burstiness does not imply
inhibit the exploitation of sleep states (the two points ofeduced workload. In fact, the probability of issuing a request
the upper left corner). Even when constraints are not actilfethe same (0.5) for all data points in the plot.
(the two uppermost points of the two top curves), if the In Fig. 13(b) we study the dependency of the optimization
average transition times are comparable with the time horizéd! SR memory. A Markov model with memory 1 has two
sleep states are not used. Notice also that high-power, Btates (this is the baseline SR model). The number of states
fast-transition sleep states may become more convenient thiaghe SR is2™, wherem is the memory. Intuitively, longer
low-power, slow-transition sleep states (the two top-moBiemory means more complex correlations between past and
curves for faster transition times are more power-efficient thgdrrent history. From an optimization point of view, a more
the two lower curves for slow transition times). complex SR model gives the optimizer more possibilities
The experiments summarized by the plots of Fig. 13 assé@fsexploiting past history to predict request issues and take
the impact of SR characteristics. The plot of Fig. 13(a) focuseptimal decisions. Clearly, this increased knowledge about
on SR burstiness. For all data points we used the same tBP past is paid for by increased system complexity (the
model (with four sleep states). Time horizon # = 10°. number of states is exponential in). We optimized power
Maximum expected request loss was set to 0.01. Two setswith three different performance constraints (time horizon
points are shown for two performance constraints. The abscigsaV = 10%). We also considered two different SP: the
reports the probability of a transition from the state where lmaseline one, and a SP with two sleep states. Clearly, increased
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memory improves optimization quality, because the optimizgri] Microsoft, “OnNow: The evolution of the PC platform,” [Online].
iati i Available www: http://www.microsoft.com/hwdev/onnow.htm, 1997.
can better d|st|ngU|§h Iong rgqueSt. bursts from Short Onzf2] R. Golding, P. Bosch, and J. Wilkes “Idleness is not sloth,'Pioc.
Also, the power savings are higher if there are multiple sle€p” winter USENIX Tech. Conf1995, pp. 201-212.
states to chose from, because the optimal policy matches th& , “ldleness is not sloth” HP Laboratories, Tech. Rep. HPL-96-140,
; ; ; 1996.
Iength of idle pe”OdS Wlt_h the bes_t sleep state. . . [24] M. Srivastava, A. Chandrakasan, and R. Brodersen, “Predictive system
In the last set of experiments (Fig. 14), we studied optimal ~ shutdown and other architectural techniques for energy efficient pro-
power as a function of time horizon and queue length. In %Aranggge computation,[EEE Trans. VLSI Systvol. 4, pp. 42-55,
Fig. 14(a) we plOt optimum power values for the_ SP with fou[ﬁSkC.-H. Hwang and A. Wu, “A predictive system shutdown method
sleep states, performance better than 0.5, baseline two-state SRfor energy saving of event-driven computation,” Rroc. Int. Conf.
and queue length two. Two sets of points are shown, for two Computer Aided Desigr,997, pp. 28-32. .
| traints. The abscissa reports the rObabilit)ng} K. M. Sivalingam, M. Srivastava, P. Agrawal and J. C. Chen, “Low-
requesF_OSS constraints. i - p ] p power access protocols based on scheduling for wireless and mobile
a transition to the trap state, i.e., longer time horizons are to the ATM networks,” in Proc. Int. Conf. Universal Personal Communica-
i i i i tions, 1997, pp. 429-433.
left of the p|0t. T.he mterlpretatlon of the p|0t IS Stra.lghtforwars\;ﬂlj G. Hadjiyiannis, A. Chandrakasan, and S. Devadas, “A low power, low
The. longer the time horlzo'n t.he better are the a(_:h|evab|e POWET bandwidth protocol for remote wireless terminals, Airoc. IEEE Global
savings, because the optimizer has a longer time to amortize Telecommunications ConfL996, pp. 22-28.

il ; M. Zorzi and R. Rao, “Energy-constrained error control for wireless
wrong decisions, hence, more degrees of freedom in selectlh channels, 1EEE Personal Commurvol. 4, no. 6. pp. 27-33, Dec. 1997,

aggressive shutdown policies. [19] J. Rulnick and N. Bambos, “Mobile power management for wireless
The interpretation of Fig. 14(b) is a little more involved.  communication networks Wireless Networksyol. 3, no. 1, pp. 3-14,

' : S i . 1997.
Time horizon isN = 10°. The z-axis reports the maximum [20] B. Mangione-Smith, “Low power communications protocols: Paging and

gueue length. We have three sets of data points, for different’ beyond,” inProc. IEEE Symp. Low-Power Electronick995, pp. 8-11.

request loss constraints. Performance constraint is the sdf#é S- Ré’sslntmd“dio” to Stochastic Dynamic ProgrammingNew York:
Academic, 1983.

(performance penalty better than 0.5) for_a” plots. The SP2] M. Puterman Finite Markov Decision ProcessesNew York: Wiley,
has four sleep states, and the SR model is the baseline one. 1994.

; ; ] M. Y. Kitaev and V. V. Rykov,Controlled Queuing SystemsBoca
For the two sets of data points marked with squares, the Raton, FL: CRC, 1995,

constraint on request loss is very tight and dominates th&] p. Bertsimas and J. N. Tsitsikligntroduction to Linear Optimization.
optimization results. For the data points marked with circle[s, : Eelgﬁ_onta_C'f: ?tg_elrgaggfr;_tlftlp, 19_9t)g.R fabilty, Qe e

. . P . . lriveai, Probabllity atistcs wi eliaoility, Queuing an om-
the Performance constraint domlngtes. When op'F|m|zat|on ?35 puter Science Applications.Englewood Cliffs, NJ: Prentice-Hall, 1982.
dominated by request loss constraint, larger maximum quepe] S. Ross,ntroduction to Probability Modelsth ed. New York: Aca-

ili i demic, 1997.
Iength reduces the prqbab|l|ty of a request to find the queue f ]7] J. Czyzyk, S. Mehrotra, and S. Wright, “PCx user guide,” Optimization
even if the resource is aggressively shut down. Thus, power fechnol. Center, Tech. Rep. OTC 96/01, May 1996.
dissipation can be reduced more effectively. However, whé8] L. Benini, A. Bogliolo, S. Cavallucci, and B. Rio¢ “Monitoring system

optimization is dominated by performance consiraint, which 3% or O%-drected dyname pover enagenept e, IECE
is related to average waiting time, shorter queue lengths gige] intel Corporation,SA-1100 Microprocessoffech. Ref. Manual, Sept.
better results. This is because a high-capacity queue reduces 1998.

the probability of an arrival with queue full (i.e., a request

loss), but implies that enqueued requests wait a longer time

for service.
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