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Abstract—Dynamic power management schemes (also called
policies) reduce the power consumption of complex electronic sys-
tems by trading off performance for power in a controlled fash-
ion, taking system workload into account. In a power-managed
system it is possible to set components into different states, each
characterized by performance and power consumption levels. The
main function of a power management policy is to decide when
to perform component state transitions and which transition
should be performed, depending on system history, workload,
and performance constraints.

In the past, power management policies have been formulated
heuristically. The main contribution of this paper is to introduce
a finite-state, abstract system model for power-managed systems
based on Markov decision processes. Under this model, the
problem of finding policies that optimally tradeoff performance
for power can be cast as a stochastic optimization problem and
solved exactly and efficiently. The applicability and generality
of the approach are assessed by formulating Markov model and
optimizing power management policies for several systems.

Index Terms—Energy conservation, energy management, opti-
mization methods.

I. INTRODUCTION

BATTERY-OPERATED portable appliances impose tight
constraints on the power dissipation of their components.

Such constraints are becoming tighter as complexity and
performance requirements are pushed forward by user demand.
Reducing power dissipation is a design objective also for
stationary equipment, because excessive power dissipation
implies increased cost and noise for complex cooling systems.
Numerous computer-aided design techniques for low power
have been proposed [1]–[3] targeting digital very large scale
integration (VLSI) circuits, i.e., chip-level designs.

Almost every portable electronic appliance is far more
complex than a single chip. Portable devices such as cellular
telephones and laptop computers contain tens or even hundreds
of components. To further complicate the picture, in most
electronic products, digital components are responsible for
only a fraction of the total power consumed. Analog, electro-
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mechanical, and optical components are often responsible for
the largest contributions to the power budget. For example,
the power breakdown for a well-known laptop computer [4]
shows that, on average, 36% of the total power is consumed by
the display, 18% by the hard drive, 18% by the wireless LAN
interface, 7% by noncritical components (keyboard, mouse,
etc.), and only 21% by digital VLSI circuitry (mainly memory
and CPU). Reducing the power in the digital logic portion of
this laptop by10X would reduce the overall power consump-
tion by less than 19%. Laptop computers are not an isolated
case. Many others electronic appliances are complex and het-
erogeneous systems containing a wide variety of devices that
do not fall within the scope of the available computer-aided
power optimization techniques. Designers have reacted to the
new challenges posed by power-constrained design by mixing
technological innovation and power-conscious architectural
design and optimization.

One of the most successful techniques employed by design-
ers at the system level isdynamic power management[8],
[9]. This technique reduces power dissipation by selectively
turning off (or reducing the performance of) system compo-
nents when they are idle (or partially unexploited). Building
a complex system that supports dynamic power management
is a difficult and error-prone process. Long trial-and-error
iterations cannot be tolerated when fast time to market is the
main factor deciding the success of a product.

To shorten the design cycle of complex power-managed
systems, several hardware and software vendors [10], [11]
are pursuing a long-term strategy to simplify the task of
designing large and complex power-managed systems. The
strategy is based on a standardization initiative known as the
advanced configuration and power interface(ACPI). ACPI
specifies an abstract and flexible interface between power-
manageable hardware components (VLSI chips, disk drivers,
display drivers, etc.) and thepower manager(the system
component that controls when and how to turn on and off func-
tional resources). The ACPI interface specification simplifies
the task of controlling the operating conditions of the system
resources, but it does not provide insight on how and when
to power manage them. We callpower management policy
(policy for brevity) a procedure that takes decisions upon the
state of operation of system components and on the state of
the system itself.

The most aggressive policy (that we calleager policy)
turns off every system component as soon as it becomes idle.
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Whenever the functionality of a component is required to carry
out a system task, the component must be turned on and
restored to its fully functional state. The transition between
the inactive and the functional state requires time and power.
As a result, the eager policy is often unacceptable because it
degrades performance and may not decrease power dissipation.

For instance, consider a device that dissipates 2 W in
fully operational state and no power when set into inactive
state. The transition from operational to inactive state is
almost instantaneous (hence, it does not consume sizable
power). However, the opposite transition takes 2 s. During
the transition, the power consumption is 4 W. This device
is a highly simplified model of a hard-disk drive (a more
detailed model will be introduced later in this paper). Clearly,
the eager policy does not produce any power savings if the
device remains idle for less than 4 s. Moreover, even if the
idle time is longer than 4 s, transitioning the device to inactive
state degrades performance. If the eager policy is chosen, the
user will experience a 2-s delayevery timea request for the
device is issued after an idle interval.

The choice of the policy that minimizes power under
performance constraints (or maximizes performance under
power constraint) is a constrained optimization problem which
is of great relevance for low-power electronic systems. We call
this problempolicy optimization(PO). Several heuristic power
management policies have been investigated in the past [12],
[14], [15] but no strong optimality result has been proven.

In this paper we propose a stochastic model based on
Markov decision processes [22] for the formulation of policy
optimization and we describe a procedure for itsexactsolution.
The solution of PO is computed in polynomial time by solving
a linear optimization problem. We first describe the details and
the fundamental properties of the stochastic model, then we
show how to formulate and solve policy optimization. The
global optimality of the solutions obtained is also proved.
The procedure can be employed to explore the power versus
performance tradeoff curve.

The class of the optimal policies is then studied in detail. We
assess the sensitivity of policies to several system parameters.
Our results provide insights for system architects designing
power managed systems. Our model and optimization pro-
cedures can be used to help designers in difficult high-level
decisions on how to choose or design components that can be
power managed effectively.

Our analysis and our optimality result critically depends
on our modeling assumptions. We assess the soundness of our
assumptions by constructing the stochastic model for a real-life
device (a disk drive) under a realistic workload. We then apply
our optimization algorithm and compute optimal policies. The
performance and power dissipation of the policies are then
validated against simulation. Moreover, the optimal policies
are compared with heuristic solutions.

The paper is organized as follows. In Section II, we review
related work in the field of dynamic power management. In
Section III, we describe our stochastic model, starting from
a qualitative description, then moving to a more rigorous
mathematical formulation. The policy optimization problem
is formulated in Section IV and a procedure for its solution

is described. We implemented a tool for automatic power
optimization. In Section V, we describe the tool implemen-
tation. Section VI is dedicated to the application of policy
optimization to realistic case studies and to the analysis
of the sensitivity of optimal policies to system parameters.
Section VII presents a discussion on modeling issues, where
we clarify the basic assumptions and the domain of applicabil-
ity of our model. Finally, in Section VIII, we summarize our
findings and outline future directions of research.

II. RELATED WORK

The fundamental premise for the applicability of power
management schemes is that systems, or system components,
experience nonuniform workloads during normal operation
time. Nonuniform workloads are common in communication
networks and in almost any thinkable interactive system. In the
recent past, several researchers have realized the importance
of power management for large classes of applications. Chip-
level power management features have been implemented in
mainstream commercial microprocessors [5]–[7]. Micropro-
cessor power management has two main flavors. First, the
entire chip can be shut down in several sleep states through
external signals or software control. Second, chip units can be
shut down by stopping their local clock distribution. This is
done automatically by dedicated on-chip control logic, without
user control. Techniques for the automatic synthesis of chip-
level power management logic are surveyed in [8].

At a higher level of abstraction, energy-conscious commu-
nication protocols based on power management have been
studied [16]–[20]. The main purpose of these protocols is to
regulate the access of several communication devices to a
shared medium trying to obtain maximum power efficiency
for a given throughput requirement. Power efficiency is a
stringent constraint for mobile communication devices. Pagers
are probably the first example of mobile device for personal
communication. In [20], communication protocols for pagers
are surveyed. These protocols have been designed for maxi-
mum power efficiency. Protocol power efficiency is achieved
by increasing the fraction of time in which a single pager is
idle and can operate in a low-power sleep state without the
risk of loosing messages.

With the widespread diffusion of advanced communication
devices (cellular phones, portable wireless terminals, etc.) the
bandwidth requirements for communication protocols have
become much more stringent. More complex and higher-
performance protocols are needed for controlling such ad-
vanced devices. In [16], astar communication network is
studied, where several power-constrained devices communi-
cate with each other through a base station that regulates
traffic. The contribution of [16] is the formulation of a slot
reservation strategy for the communicating devices and a
scheduling algorithm for the base station that reduces power
consumption while meeting service quality specifications.

The approaches presented in [18] and [19] are primar-
ily focused on how to maximize the efficiency of a single
power-constrained communication device operating in a noisy
environment. Traditionally, communication devices have been
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designed to respond to increased noise levels by increasing
transmission power and by repeating transmission. This strat-
egy is highly energy-inefficient and can be counterproductive
even throughput-wise if decreased transmission quality is
caused by interference from other transmitters operating with
the same protocol. Both [18] and [19] assume that the worst
menace to service quality is mutual interference and propose
retransmission protocols that tend to reduce mutual interfer-
ences by reducing the average transmission power and by
increasing silence time when error rate is high.

Power management schemes have also been studied in [12],
[14], and [15]. The system, or a component, is modeled as a
reactivesystem that receives requests from the external envi-
ronment and performs some computational task in response
to a request. The arrival rate of incoming requests is not
uniform over time, nor it is so high to impose full utilization.
Hence, power can be saved by transitioning the system to a
sleep state when it is not in use. The power-down strategy
impacts performance both in terms of latency and throughput,
because of transition delays. The approaches presented in [12],
[14], and [15] explore several shutdown policies that minimize
power at the cost of a marginal performance reduction.

Disk driver subsystems are studied in [12] and [13]. This
work presents an extensive study of the performance of various
disk spin-down policies. The problem of deciding when to
spin down a hard disk to reduce its power dissipation is
presented as a variation of the general problem of predicting
idleness for a system or a system component. This problem
has been extensively studied in the past by computer architects
and operating system designers (the paper by Goldinget
al. [13] contains numerous references on the topic), because
idleness prediction can be exploited to optimize performance
(for instance by exploiting long idle period to perform work
that will probably be useful in the future). When low power
dissipation is the target, idleness prediction is employed to
decide when it is convenient to spin down a disk to save
power (if a long idle period is predicted), and to decide when
to turn it on (if the predictor estimates that the end of the idle
period is approaching).

The studies presented in [14] and [15] target interactive
devices. A common assumption in these works is that future
workloads can be predicted by examining the past history.
The prediction results can then be used to decide when and
how transitioning the system to a sleep state. In [14], the
distribution of idle and busy periods for an interactive terminal
is represented as a time series, and approximated with a least-
squares regression model. The regression model is used for
predicting the duration of future idle periods. A simplified
power management policy is also introduced, that predicts the
duration of an idle period based on the duration of the last
activity period. The authors of [14] claim that the simple policy
performs almost as well as the complex regression model, and
it is much easier to implement. In [15], an improvement over
the prediction algorithm of [14] is presented, where idleness
prediction is based on a weighted sum of the duration of past
idle periods, with geometrically decaying weights. The policy
is augmented by a technique that reduces the likelihood of
multiple mispredictions.

A common feature of all previous works in the area of
power management is that policies are formulated heuristi-
cally, then tested with simulations or measurements to assess
their effectiveness. Another interesting commonality is that
the highly abstract models used to represent the target systems
necessarily imply some uncertainty. Uncertainty is caused by
abstraction (for instance system response time is uncertain
because detailed functionality is abstracted away), and by non-
determinism (for instance, request arrival times are uncertain
because they are not controlled by the system).

Probabilistic techniques and models are employed by all
previous approaches to deal with uncertainty. Similarly to
previous approaches, we will formulate a probabilistic system
model, but differently from previously published results, we
will rigorously formulate the policy optimization problem
within the framework provided by our model, and we will
show that it can be solved exactly and in polynomial time in
the size of the system model. To obtain this result, we leverage
well-known stochastic optimization techniques based on the
theory of Markov processes. A vast literature is available on
this topic, and the interested reader is referred one of the
numerous textbooks for detailed information (see, for instance,
[21]–[23]).

III. STOCHASTIC MODEL

In this section we first informally describe a system model,
then we provide definitions and we analyze the properties of
the model. We consider a system embedded in an environment
modeled as a single source of requests. Requests issued by
the event source are serviced by the system. The system itself
consists of two components: a resource that processes requests
(the service provider), and apower manager.

The resource has several states of operation. Each state is
characterized by a service rate, which is, roughly speaking,
proportional to the average number of requests serviced in
a time unit. Some states may have zero service rate. Such
states are calledsleep states,while states with nonnull service
rate are calledactive states. Both request arrivals and services
are stochastic processes, in other words, service times and
interarrival times between requests are nondeterministic. As
explained in Section II, nondeterminism models incomplete
information and/or uncertainty caused by the high level of
abstraction of the model.

The system may contain aqueue which stores requests
that cannot be immediately serviced upon arrival because the
service provider is either busy servicing other requests or it has
zero service rate. We assume that requests are indistinguish-
able, hence, service priorities are immaterial. Moreover we
assume that the traffic-management component has finite ca-
pacity. Whenever the number of enqueued requests exceeds the
capacity, requests are lost. Request loss does not model actual
lack of service in the system. In our abstract model, request
loss represents an undesirable condition that is verified when
too many requests are waiting to be serviced. Real-life systems
generally implement congestion-control mechanisms based on
synchronization primitives that prevent overflowing of internal
queues. We do not accurately model such mechanisms because
we focus on average-case operating conditions. However we
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Fig. 1. Components of the system model.

model overflow of normal system capacity because it is
undesirable and should be avoided as much as possible.

The power manager is a controller that observes the history
of the service provider and of the queue and issues commands.
There is a finite number of commands, and their purpose is
to cause the transition of the service provider from one state
to another. The service provider responds to commands in a
nondeterministic fashion. In other words, there is no guarantee
that the service provider changes state as soon as a command
is issued, but there is a probability that the transition will be
performed in the future. Nondeterminism represents the delay
of the system in responding to commands and the uncertainty
on the actual value of such delay caused by the high abstraction
level of the model. The criterion used for choosing what
command to issue and when is calledpolicy.

The overall system architecture is depicted in Fig. 1. Our
goal is to search the space of all possible policies to find
the one that minimizes a cost metric. We define two cost
metrics:power and performance. Policy optimization targets
the optimization of one cost metric while using the second
as a constraint. In Sections III-A and III-B, we formulate a
stochastic system model based on Markov chains. Within this
model, policy optimization can be rigorously formulated and
solved. However, we do not discuss how and when the model
is a valid abstraction of a real-life system. This important issue
is analyzed in detail in Sections VI and VII.

A. System Components

We assume that the reader is familiar with basic probability
theory at the level of [25] and [26]. We use uppercase bold
letters (e.g., ) to denote matrices, lowercase bold letters
(e.g., ) to denote vectors, calligraphic letters (e.g.,) to
denote sets, uppercase italicized letters (e.g.,) to denote
scalar constants and lowercase italicized letters (e.g.,) to
denote scalar variables. We will consider a discrete-time (i.e.,
slotted time) setting, , where is the time resolution,

IN . We will write in place of . We call time slice
the time interval between two consecutive values of.

A stationary Markov chain is a stochastic process over
a finite state set , s.t. whose behavior
is such that, at any time , the state probability distribution
depends only on the state at time . Prob

is calledone-step transition probability. The one-
step transition probabilities are conveniently specified in the
form of a transition probability matrix , and

. A Markov chain can also be described by
its state-transition diagram,a directed graph whose nodes are
states, and whose edges are labeled with conditional transition
probabilities. State transition times in Markov chains have
geometric distribution

Prob (1)

A stationary controllable Markov chain is a Markov
chain whose transition probabilities are functions of
controlling variable . When the independent variablecan
take values in a finite set , the transition probabilities are

: , and the controllable Markov chain can
be represented by a set of matrices, one for each value of the
independent variable .

We first define acommand set , s.t.
. The elements of are commands issued by the

power manager for controlling the operation of the system.
Definition 3.1: A service provider(SP) is described by a

triple , , where: i) is a
stationary, controlled Markov process with state set
s.t. , control set and stochastic matrix

; ii) is a function : ; and iii)
is a function : .

The SP model is a discrete-time controllable Markov chain
and matrix is its conditional probability matrix. A
service rate is associated with each state and
command , it represents the probability of completing
the service of a request in a time slice, given that SP is in state

and that command has been issued at the beginning of the
time slice. Apower consumptionmeasure is associated
with each state and command . It represents
the power consumption of the SP in a time slice, given that
command has been issued and the SP is in state. In each
time slice, the service provider can be in only one state. The
power manager causes state transitions by issuing commands.
However, the response to a command is nondeterministic: the
SP may or may not transition to a new state. Clearly, it is
possible to model deterministic transitions by specifying a
conditional probability value equal to one. In the general case,
a command needs to be asserted over several time steps to
induce the desired transition. If we assume that the asserted
command does not change, the probability that the SP performs
the transition increases geometrically with the number of time
slices. Thus, the transition time has expected value

(2)

The value of is the average time for transitioning
from state to state , given that the command is issued
at every until the transition is performed.

Each pair is characterized by a performance
and a power consumption . Performance is expressed
in terms of service rate, which is the probability of completing
a request in a time slice, hence, the value ofis .
Zero service rate means that no requests can be serviced and
the SP is not active. Service rate means that a request
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Fig. 2. Markov chain model of the service provider.

is certainly serviced in each time slice. Functionis a general
real-valued function that expresses the power consumption in
arbitrary units (say Watts). The definitions ofand are the
basis for the computation of the cost metrics employed to
evaluate the quality of a policy.

Example 3.1:Consider a SP with two states,
on off . Assume that two commands are defined

on off , with the intuitive meaning of “switch on” and
“switch off,” respectively. When a command is issued, the SP
will move to a new state in the next period with a probability
dependent only on the command, and on the departure and
arrival states. The stochastic matrix can be represented
by two matrices, one for each command. For example

on

on off

on

off

off

on off

on

off

The Markov chain model of the SP is pictorially represented
in Fig. 2. Note that the transition time from off to on when the

on command has been issued is a geometric random variable
with average equal to 1/0.1 10 periods.

Service rate and power consumption can be
represented by two-dimensional tables with one entry for each
state-command pair. For instance

on off

on

off

on off

on

off

In this example, the SP is active only when it is in the on
state and it is not being switched off. Power dissipation is null
in the off state, but switching the resource on or off has a
sizable power cost: the power consumption of the SP during
the switching times (i.e., when the state is on and the command
is off, or when the state is off and the command ison) is
higher than that of the active state.

Definition 3.2: A service requester(SR) is described by a
pair where: i) is a Markov process with
state set s.t. and stochastic
matrix and ii) is a function : IN.

The service requester models the system’s environment as a
Markov chain with states and transition probability matrix

Fig. 3. Markov chain model of the service requester.

. The function represents the number of requests
issued per time slice by the service requester when it is in
state . Intuitively, SR states represent traffic conditions, and
the value gives a quantitative measure of the traffic
generated in each condition. For instance, if , state

represents an environmental condition where no requests
are generated. The Markov process of request generation is
completely autonomous and it does not depend on the behavior
of the system: it represents the external environment over
which the system has no control. Interarrival times have a
geometric, memoryless distribution.

Example 3.2:Consider a SR with two states, and ,
where function is defined as follows: ,
. Since there is a one-to-one correspondence between values

of and SR states, we will use the values ofas names for
the states ( will be called 0, and will be called 1). At
any time only two possibilities are given: either a single
request or no request is received. An example of a stochastic
matrix of SR is

The Markov chain of the SR is shown in Fig. 3. The SR
models a “bursty” workload. There is a high probability (0.85)
of receiving a request during period if a request was
received during period , and the mean duration of a stream
of requests is equal to 1/0.15 6.67 periods.

Remember that, although we have discussed examples of
two-state SR models, the number of states of the model can be
larger than two, and function can take arbitrary integer
values.

Definition 3.3: A service queueis described by a stationary
controllable Markov chain with state set

s.t. , control set and
stochastic matrix .

When service requests arrive during one period, they are
buffered in a queue of length . The queue is in state

when requests are waiting to be serviced. The queue is
bounded: if new requests arrive when its state is , the state
does not change (in this case we say that requests arelost). We
call the queue fullstate, and the queue emptystate.
The conditional probabilities of the SQ are completely
determined by the other system components. The SP controls
how fast the queue is emptied, while the SR controls how fast
the queue is filled. Given the triple we know
(the service rate) and the number of request arrivals. The
probability of servicing an enqueued request (or an incoming
one) is , while the probability that no requests are ser-
viced is . States (queue empty) and (queue
full) are corner cases. If and (i.e., no arrivals),
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then the state will remain with probability 1. If the queue is
full, its state will change with probability if ,
while it will remain with probability 1 if . One
last corner case is verified when the number of arrivals is
large enough to exceed the maximum queue length, i.e., if the
queue state is and . In this case the new queue
state will be (queue full) with probability 1. Whenever
an incoming request cannot be enqueued because the queue
is full, we say that we have arequest loss. The transition
probabilities outside corner cases can be expressed as follows:

if , and
,

if , and

otherwise.
(3)

Although the formal description of matrix
may seem complex, its construction is intuitive, and can
be best clarified through an example.

Example 3.3:Consider the SP and SR models introduced in
the previous examples, and assume a maximum queue length
of one, thus . The SR has two states, the SP has
two states and two commands can be issued. Hence
contains eight triples. Matrix can be described by
eight 2 2 matrices, one for each value of the triple

on on

on on

on off

on off

off on

off on

off off

off off

Notice that the SP is actively servicing requests with rate 0.8
only when its state is on and the command issued ison (this
situation corresponds to the two top matrices). In all other
combinations of command and state the service rate is zero.
When there are no requests the queue states does not change,
i.e., is the identity matrix. If there are incoming requests,
the queue can only be filled. For instance, consider the matrix
for state on off : the SP is off, the command is on
and a request arrives. If the queue was empty, it is filled with
probability one. If the queue was already full, it remains full
and we have a request loss.

Definition 3.4: A power manager(PM) is a control pro-
cedure that issues a command to the SP every time
period . The decision on which command to issue is based
on the observation of the system history up to , where

.
The flow of state information and command between the

PM and the system is depicted in Fig. 1. To understand
the implications of the PM definition, observe that the set

contains all possible sequences of
triples . A generic element represents the
entire system history for time slices (from time 1 to time

): , , , . In
other words, contains all possible system trajectories from
time to time .

Definition 3.4 fully characterizes a very general class of
decision procedures (policies) for the choice of the commands
to be issued during system operation. At each time, given

, the power manager issues command . A policy can
be deterministicor randomized. If the policy is deterministic,
the knowledge of system history at a given timeuniquely
determines the command that must be issued, i.e.,
the policy is a function for all . In contrast, if
the policy is randomized, the command than can be issued
for a given history isnot uniquely determined by the history.
Rather, uniquely determines aprobability distributionof
the commands. In other words, given history at time ,
the probability of issuing commandis uniquely defined. The
actual command to be issued is obtained by randomly selecting
a command from with the given probability distribution. We
will formalize these concepts in Section IV.

Notice that the policy (deterministic or randomized) can be
arbitrarily complex, since at each step it takes into account the
entire system history. In the next subsection we will introduce
several classes of policies and cost metrics to evaluate them.
We assume that the implementation of the power manager con-
sumes negligible power (compared to the power consumption
of the SP).

Example 3.4: In the previous examples we have assumed
that on off . Hence, the power manager can,
at any time , issue either command on or command

off, depending on the policy adopted. A trivial example
of deterministic policy is theconstant policywhere always
the same command is issued. A more realistic deterministic
policy observes the status of the queue. If there is at least
a request waiting, it issues theon command, otherwise it
issues the off command. We call this policy “eager,” because
it attempts to turn off the SP as soon as it is idle. Finally, an
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example of randomized policy is the following: at any given
time , , the last three system states are observed. If
the system has been in state (on, 0, 0) for the last three time
slices, then the commandoff is issued with probability 0.6.

Having defined all system components, we can now provide
a formal definition for the system as a single entity. The system
can be seen as the composition of the Markov chains of service
provider, service requester, and queue. Thus, it is a controlled
Markov chain whose state is the concatenation of the states
of SP, SR, and SQ, i.e., a triple . The state
set is with cardinality .
The system’s stochastic matrix is , a matrix of
functions of command , that can be represented by a set
of stochastic matrices, one for each command. The generic
element of matrix has the form

Prob

if

if

otherwise.
(4)

The first case represents transitions occurring when there is at
least an enqueued request and the SP services it. The second
case represents transitions occurring when the SR does not
complete a service request. Finally, some state transitions
are simply not possible, hence, they have zero probability.
This expression does not account for corner cases (i.e., when
the queue is empty and when the queue is full). Formal
expressions for in corner cases are obtained with
similar reasoning as for the state of the queue. We do not
analyze corner cases in detail because they do not add much to
the understanding of the following material. The construction
of the system’s Markov chain can be clarified through an
example.

Example 3.5:Consider the system with two SR states, two
SP states (with bursty behavior), two commands and queue
length two. The Markov chain of the system has eight states
and can be represented by two 88 stochastic matrices, one
for each command. We represent the values of the transition
probabilities in Fig. 4 on the corresponding edges of the state
graph of the Markov chain. Each edge is labeled with two
transition probabilities, one for each command. Only a few
edges are shown for the sake of illustration.

Consider the transition between state on (i.e.,
active SP, no requests, empty queue) and state on
(i.e., one request comes and it is serviced right away). If
the command issued by the PM isoff the transition has
null conditional probability because the SP cannot service
requests when thes_off command has been issued [service
rate on off ]. If the command iss_on, the conditional
probability of the transition is

on on on

where is the probability of an incoming service

Fig. 4. Fragment of the Markov chain of the entire system. Only three state
transitions are shown.

request given that no requests were issued in the previous
time slice, on on is the service rate of the SP
when it is on and the on command has been issued, and

is the probability for the SP to remain on if
the on command has been issued.

Notice again that the transition time (with fixed command)
between any pair of states , is a random variable
with geometric distribution and average value .
Concluding this subsection, we want to stress the key property
of the Markov model: at every time , the future evolution
of the system depends only on the current stateand the
command issued. Our approach to the exact and efficient
solution of the policy optimization problem relies upon this
fundamental property.

B. Cost Metrics

In Section III-A, we defined a very general class of PM
policies (Definition 3.4). The purpose of policy optimization
is to search the space of all policies and to find optimal
ones. We will show that the optimal policy lies within a
specific class whose representation is very compact and whose
implementation is straightforward. We now define some im-
portant concepts that will be useful in formulating the policy
optimization problem and its solution.

Definition 3.5: A decision s.t.
at time is a set of functions : with the
property .

In simple terms, given a system history , a decision
is a discrete probability distribution that associates a

probability value with each command . At the
beginning of time slice , the power manager observes the
history of the system and controls the SP by issuing a
command with probability .

In the following, we use the shorthand notation
. A deterministic decisionconsists of taking a single

action with probability 1 on the basis of the history of the
system [only one is equal to one, all others are
zero]. Deterministic decisions are just a limiting case for the
more generalrandomized decisionsdescribed by Definition
3.5. Notice that even if the same randomized decision is taken
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in different periods, the actual commands issued could be
different.

Remember that the transition matrix of the system is
a function of the command. Given a (randomized) decision

, we use the notation to denote the transition matrix
of the system given decision

(5)

is the weighted sum of the weighted with the
probabilities assigned to the commands by the decision.

Example 3.6: In our example system, we defined two
commands: on and off. Assume that a decision

at , is given, with and
. This means that there is 80% probability

of issuing command on and 20% probability of issuing
command off. The transition matrix of the system,
given decision is

on off

Consider an infinite sequence of time slices [1, 2,).
The decisions taken by the PM are a discrete sequence

. The sequence completely describes the PM
policy which is the unknown of our optimization problem.
If a policy is adopted, we define

; this is simply the transition matrix
from period 0 to period under policy . Among all policies
some classes are particularly relevant, as defined next.

Definition 3.6: Stationary policies are policies where the
same decision is taken at every time , ,
i.e., .

For stationary policies, decisions are denoted by, which
is a function of the system state. Thus, stationarity means
that thefunctional dependencyof on does not change over
time. When changes, however, can change. Furthermore,
notice that even a constant decisiondoes not mean that
the same commandis issued at every period. A decision is
a probability distribution that assigns a probability to each
command . Thus, the actual command that is issued is
obtained by randomly selecting from with the probabilities
specified by .

Definition 3.7: Markov stationary policies are policies
where decisions do not depend on the entire history , but
only on the state of the system at time .

Markov stationary policies have a compact representation.
RandomizedMarkov stationary policies can be represented as
a set of decisions (one for each state), , which is
equivalent to a matrix . An element of
is the probability of issuing command given that the state
of the system is . Notice that for stationary Markov policies
the dependency of from the time index is lost, and it is
replaced by a dependency from the system state.

DeterministicMarkov stationary policies can still be rep-
resented by matrices where only one element for each row
has value one and all other elements are zero. Moreover, they
have an even more compact representation as a-dimensional
vector , with the th element being the command to

issue when in state . We call the class of deterministic
Markovian stationary policies. Notice that, while there are
infinite randomized policies, the cardinality of is finite and
equal to .

The importance of these two classes of policies stems from
two facts: first, they areeasy to store and implement,second,
we will show that for our system model,optimum policies
belong to these classes.

Example 3.7:Consider the example system introduced in
the previous section. We defined two commands and the
system has eight states. Thus a generic randomized Markov
stationary policy can be represented by a 82 matrix, such
as the following:

on off

Decision , the first row of matrix specifies that when
the system is in state , the PM will issue a on command
with probability 0.4 or a off command with probability 0.6.
A deterministic Markov stationary policy can be represented
by an eight-dimensional vector such as the following:

off
on
on
on
off
on
on
on

The first element of the vector, for instance, is the command
that is issued by the PM when the system is in state.

It is now possible to define the metrics of relevance in
the policy optimization problem. In their most general form,
they are function both of the state and of , i.e., the
decision we take when we are in state. The first cost
metric is theexpected power consumption level

, where is the power consumed by
the SP when it is in state and command is issued. The
second cost metric of interest is theperformance penaltyper
unit time which relates to the waiting time and the
number of jobs in the queue. The simplest way to define
function is to set it equal to the number of requests in
the queue: . For notational convenience, we define
the consumption and performance penalty vectors

...
...
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IV. POLICY OPTIMIZATION

As seen in the previous section, the complete system is
described by a controlled Markov chain with stochastic matrix

. Given a policy and the -dimensional row vector
, representing the state probability distribution (henceforth

called simply probability distribution) of the system at the
initial time , it is possible to compute the probability
distribution of the system at future time according to the
formula . Based on this information, we can
compute the expected value of the performance penalty and
of the consumption at time. They are given by

(6)

These values are the best estimates of future performance
penalties and costs on the basis of our present information
about the system. Since we are interested in the long-range
behavior of the system, we compute the average over time
of the performance metrics, and minimize with respect to
such averages. We can formulate two constrained optimization
problems:performance optimization under power constraint
and power optimization under performance constraint. In the
following, we describe the first problem in detail. The second
problem is treated in exactly the same way.

Our objective function is theaverage expectedperformance
penalty, and we constrain the maximum average expected
consumption with an upper bound value

s.t. (7)

Remember that the unknown of this problem is the policy.
Yet, we observe that, as it is, the optimization is carried over
an infinite time horizon. Such formulation has a drawback: it
equally weights costs relative to the near future and to the
far future. This is usually not the case. In a great variety of
applications, optimization over time “discounts” the future,
so that immediate rewards (or penalties) are weighted more
than rewards in the far future. This is the case for our
application, where the time span of interest for the optimization
is the finite time window of the desired time between battery
recharges. For instance, for typical laptop computers the
desired time between recharges ranges between 8 and 12 h, or
for aggressive applications, a few days. The behavior of the
system for much longer time scales (say 10 yr) is absolutely
of no interest for power optimization.

This intuition can be made rigorous according to the follow-
ing reasoning. We assume that the system is not operating over
an infinite horizon, but only over afinite time horizon which
is finite and random. We call a stopping time. The time
period corresponds to the time window of interest (also
called asession), and randomization takes into account the un-
certainty on its exact duration. An important modeling issue is
then to define the probability distribution of the stopping time,
and its relevant parameters: the distribution ofhas to be

Fig. 5. Markov chain model of a system with trap statex0.

sound, and must allow effective computability of the solution.
In the following, we model the system session duration as
follows: at the beginning of every period, the session will
continue with probability ( is called discount
factor), or will close the session with probability ,
independently from the state of the system. After a session has
been closed, both consumption and performance penalty are
assumed to be zero. We notice that this assumption can result
is a slight error in the estimation of the performance metrics,
because after the closing of a session some time might be
necessary to serve the pending requests and to shut down the
system. Yet, this error is small because it occurs only once and
a session is generally much longer than the time resolution.

The introduction of the time window is equivalent to
assuming that the system’s Markov chain has one additional
trap state , as shown in Fig. 5. All transition probabilities of
the original Markov chain are multiplied by, and each state

has a new transition with probability toward .
Once in , the system cannot change state. Moreover, both
performance penalty and power in state are zero. Based
on the above model, is a geometrically distributed random
variable with expected value equal .

As the expected stopping time is finite, thetotal expected
performance penalty and consumption are finite with probabil-
ity one. Instead of considering average expected values of
and , it makes now sense to optimize their total expected
values over the period . It is easy to see that, at time
slice , the probability distribution of the system is given by

. The expected values
of and are redefined as

(8)

The optimization problem we set out to solve is then

s.t. (9)

Notice that the discounted formulation isnot equivalentto
the formulation of (7). First, in (7), is an expected
value, while in (9) it is a discounted expected value. Second,
the summation of (9) taken over infinite time slices represents
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the cumulative discounted expected cost, while the limit in (7)
represents an average cost. Convergence of (9) is guaranteed
because and is bounded. In formulation (9),
the contribution to the cost function and constraints of terms
far in the future is smoothed out by the discount factor. Hence,
the discounted formulation expresses the practical problem
we want to solve, i.e., policy optimization over a finite time
window.

In the PO1 problem, power is a constraint and perfor-
mance is the objective. The performance-constrained power
minimization problem (PO2) can be expressed in the same
form

s.t. (10)

Since the two problems have the same mathematical formula-
tion, we will focus on the first. All conclusions we derive can
be applied to the second.

PO1 and PO2 are stochastic optimization problems, where
the expected valueof a cost function has to be minimized.
The solution of PO1 and PO2 is based on classical results
of stochastic optimization and it is described in detail in
Appendix A. The key result can be summarized as follows:
Policy optimization can be formulated as a linear programming
(LP) optimization problem, hence, it can be solvedexactlyand
in polynomial time(in ).

A. The Space of Optimal Policies

The solution of the LP provides a relation between a
prespecified maximum average expected consumption,, and
the least performance penalty that can be attained while
fulfilling the constraint on consumption (or vice versa). This
relation can compactly be expressed in functional form:

. If the linear program is infeasible (i.e., the constraint
cannot be met), we define . We call the set

s.t. , the set of feasible
allocationsand the set the
set of efficient allocations. Pairs correspond to
Pareto points of the power-performance tradeoff curve, i.e.,
they represent solutions of PO that cannot be improved upon
in both directions (power and performance). The following
result holds (see [24]):

Theorem 4.1: is a convex set.
Proof: Let , be the -dimensional state-action

vectors corresponding to the maximum consumptionsand
, respectively. The vector is a feasible

solution for LP3, with power consumption constraint
, and minimum performance .

The optimal solution will be smaller or equal than this value,
so that , and

is convex.
The theorem has an intuitive interpretation: if we keep

reducing the availability of an existing resource (the consump-
tion ), the “price” for that resource will keep increasing. By
price we mean the increase in the objective function for a unit

Fig. 6. Pareto curve for the example system.

increase in the available resource. In other terms, price of a
resource is a nonincreasing function of available quantity of
that resource.

Example 4.1:Pareto curves for the example system are
shown in Fig. 6. The curves are obtained by repeatedly solving
the LP with different performance constraints. The-axis of
the plot reports average queue length (i.e., the performance
constraint), while the -axis reports the expected optimum
power consumption. Notice the presence of an infeasible
region. Even if the resource is never put to sleep, the workload
generated by the SR is such that it is impossible to achieve
average queue smaller than 0.175.

The three Pareto curves illustrate the results of policy opti-
mization with three different constraint settings. When request
loss constraint is not very tight (lowest curve), performance
constraint dominates and request loss constraint is never active.
On the contrary, when the request loss constraint is very tight it
always dominates over performance constraints. The resource
is never allowed to turn off, because this would increase
request loss, and power consumption is maximum (topmost
curve). The middle curve shows an interesting intermediate
situation. In the flat region, optimization is dominated by
the request loss constraint, that makes the optimal solution
insensitive to the performance constraint. Between 0.6 and
0.4 both constraints are active, while under 0.4 performance
constraints become dominating and request-loss constraints
inactive.

V. POLICY OPTIMIZATION TOOL

We implemented a policy optimization tool for the for-
mulation described in the previous section and Appendix A.
The tool is built aroundPCx, an advanced LP solver based
on an interior point algorithm [27]. Interior point algorithms,
augmented with presolvers, can efficiently solve very large
LP instances with thousands of unknowns. The robustness of
interior point-based LP solvers has greatly improved in the
last few years, and state-of-the-art implementations such as
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Fig. 7. Block diagram of the policy optimization tool.

PCx are competitive with the best simplex-based traditional
LP solvers.PCx is just the computational core of a complex
tool whose block diagram is shown in Fig. 7.

The tool requires two inputs: a request trace consisting of
time-stamped request records (obtained from measurements
on a real system), and a system description. The request trace
is automatically analyzed by theSR extractorthat builds a
Markov chain model for the service requester. The system
description is an informal specification of the information
needed to formulate the SP model, various system param-
eters (time horizon, queue length), cost functions (power
and performance), constraints and optimization target. The
translation of the informal specification into the stochastic
model described in the previous sections is done manually.
This step is represented by the shaded blocks in Fig. 7 (shaded
blocks represent manual steps, while white boxes are fully
automated steps). The system, specified as a set of transition
probability matrices, tabular representations of cost functions,
constraints and optimization directives, is checked for syntactic
correctness and passed to theMarkov composerthat builds a
monolithic Markov model by merging the Markov chains of
the system components.

The model, cost functions, constraints, and optimization
targets are then translated intoPCx input format and passed to
the LP solver for computing the optimum policy. The output
of the LP solver is the set of state-action frequencies, the
expected performance and power. State-action frequencies are
translated into command probabilities by thepolicy extractor
and the policy matrix is obtained. The optimization tool can
call the LP solver iteratively, to explore the entire power-
performance tradeoff curve. In this case, a set of policies
and their corresponding expected performance and power
values are computed. This type of design space exploration
is efficiently supported byPCx.

The optimal policies computed by the optimizer can be
verified by a flexible simulation engine, that takes as input
the system specification, the SR model and the optimal policy,
then simulates the Markov chain models for computing power
and performance. The simulated power and performance val-
ues can then be compared against those obtained by the
optimizer to check consistency. A second simulation mode is
available, where the request trace can be used to directly drive
the simulation. This type of simulation is employed to check
the quality of the Markov model of the service provider. If

the arrival of service requests is poorly modeled by a Markov
process, the performance and power values returned by this
simulation do not match the expected performance and power
computed by the optimizer.

The procedure implemented inSR extractorfor extracting
the Markov model for the SR from a time-stamped request
trace is relatively straightforward. Given a time resolution

, the arrival times of requests are discretized. The trace
is converted into a binary stream that has value one in
position if a request is received between time and time

, zero otherwise. Then, a memory is chosen for
the SR model. The -memory Markov model has states,
one for each possible sequence of consecutive bits. The
conditional transition probabilities are computed by counting
the occurrences of state transitions, and dividing the count by
the total number of times the start state of the transition is
visited.

Example 5.1:Consider the following time-stamped request
trace, represented as an array of request arrival times (in ms):
[2, 5, 6, 7, 12]. Initial time is zero. Assume that ms,
thus, the discretized trace becomes [0, 0, 1, 0, 0, 1, 1, 1, 0,
0, 0, 0, 1]. Consider a SR model. The model has
two states, marked by values zero and one. The conditional
transition probability for the transition is computed by
counting the number of 01-sequences in the discretized trace,
and dividing it by the number of zeros in the trace. For our
trace, there are three 01-sequences, and eight occurrences of
zero. Hence, the conditional probability of the transition
in the Markov model of the SR is 3/8. The other transition
probabilities can be computed in a similar fashion.

Notice that given a value of and , the model extraction
procedure always produces a Markov model for the SR.
However, there is no guarantee that the model is representative
of the statistical properties of the actual trace. The validity of
the SR model should always be checked by simulating the
behavior of the optimal policies when the system is driven by
the actual trace.

VI. CASE STUDIES

We now focus on how to apply policy optimization. In
order to demonstrate the flexibility of the Markov model,
we have considered three case studies belonging to different
classes of systems. For each example, we will outline its
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TABLE I
STATE, TRANSITION TIME TO ACTIVE AND

POWER DISSIPATION FOR A HARD DISK DRIVER

State �T Power

active NA 2.5 W
idle 1.0 ms 1.0 W

LPidle 40 ms 0.8 W
standby 2.2 s 0.3 W
sleep 6.0 s 0.1 s

distinguishing features and present the results obtained by
policy optimization.

In Appendix B, we will also show how the Markov model
and policy optimization can be employed as analysis tools for
exploring power-efficient system architectures and implemen-
tations.

A. Disk Drive

The first case study is a commercially-available hard disk
drive.1 This is an example of a system with a single resource
with queueing and a complex state transition structure. The
hard disk can operate in five different states, as shown in
Table I. In four of the five states, the device cannot perform
data reads or writes, hence, they are allinactivestates.

More in detail, in theidle state the disk is spinning, but some
of the electronic components of the drive are turned off. The
transition fromidle to activeis extremely fast. The low-power
idle LPidle state is similar to theidle state, but it has decreased
power dissipation (and increased transition time to theactive
state). In thestandbyand sleepstate, the disk is spun down,
hence, the transition to theactive state is not only slow, but
it causes additional power consumption (the additional current
absorbed by the motor to accelerate the disk). It is important
to mention that the transition times of Table I are explicitly
declared astypical in the data sheets. In other words, they can
be interpreted as expected values of random variables.

Time resolution has been chosen based on the expected
transition times of the SP. We set time resolution based on
the fastest possible transition performed by the disk drive. We
are not interested in increasing time resolution beyond
ms, because the system cannot perform faster state transitions.
With this choice for time resolution, the transition between
active and idle takes a single time step, while the transition
times for all remaining transitions are scaled accordingly.

The transition graph of the SP that models the disk drive
is shown in Fig. 8(a). In general, conditional probabilities
associated with the edges of the state transition graph of the
SP depend on the command issued by the PM. This is the way
the PM controls the resource. The active state is denoted by 1,
while the four inactive states are denoted by 2, 4, 7, and 10.

States 3, 5, 6, 8, 9, and 11 are transient states. Transitions
from transient states have constant conditional probabilities
that cannot be controlled by commands. Thus, when in tran-
sient states, the behavior of the SP is insensitive to the PM.
Transient states are used to model nonunitary-time transitions

1Hard Drive IBM Travelstar VP 2.5-inch, http://www.storage. ibm.com/
storage/oem/data/travvp.htm, 1996.

(a)

(b)

Fig. 8. (a) Simplified state transition graph of the disk drive. (b) Power
consumption versus performance for optimal and heuristic policies.

that cannot be interrupted. When in transient states, the SP has
zero service rate but its power consumption is high: 2.5 W.

Transitions between inactive states have been omitted for
the sake of readability. The figure shows only the transitions
from and to theactive state, which have a major impact on
power and performance. All transition probabilities of the SP
Markov model are set up so that the expected transition times
(upon assertion of a command from the PM) are equal to
the experimental transition times reported on the data sheets
(Table I).

If a file read or write request is received when the SP is
inactive, the request cannot be serviced right away. In our case
study, pending requests are enqueued in a queue of length 2.
Requests arriving when the queue is full are lost. Request loss
abstractly represents the undesirable condition of too many
incoming requests. The workload was modeled by a two-
state Markov process as described in Example 3.2. Transition
probabilities were extracted from time-stamped traces of disk
accesses (we used the traces provided2) measured on real
machines.

2Auspex File System Traces, http://now.cs.berkeley. edu/Xfs/Auspex
Traces/auspex.html, 1993.
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The complete model of the system has states,
obtained as the product of the 11 SP states, of the two
SR states, and of the three SQ states. At any time, the
PM can issue a command to the SP. In our case study the
manager can choose among five commands:go active, go idle,
go LPidle, go standby, go sleep. The final product of the
policy optimization is a matrix with five columns (one for each
command) and 66 rows (one for each state of the system).

The system was optimized for minimum power under per-
formance constraints. The power cost metric is obtained from
the data sheets of the disk drive (summarized in Table I). The
user can specify two types of performance constraints. First,
a latency constraint can be enforced by specifying a value
for maximum expected waiting time for an incoming
request. Second, a constraint on request losscan be enforced
by specifying the maximum probability for an incoming
request to find the queue full.

The results of our experiments are shown in Fig. 8(b).
They refer to a time horizon of one million time steps,
corresponding to a discount factor . The continuous
line is the power-performance tradeoff curve spanned by the
optimal policies computed by the optimizer. Its computation
took less than 1 min on a SUN UltraSPARC workstation. Each
point on the curve is a solution of a PO problem with different
performance constraints. The expected performance and power
values returned by the optimizer for the various solutions were
checked by simulation.

The circles in Fig. 8(b) represent the results of simulation
(10 time steps) of the policies computed by the optimizer
with the actual trace from which the Markov model of the
workload was extracted. The distance of the circles from the
curve is a measure of the inaccuracies of the modeling process.
It is visually obvious that in this case the model is quite
accurate, and that the simulated points lie almost perfectly
on the theoretical tradeoff curve.

Triangles and boxes in Fig. 8(b) represent heuristic solutions
to the PO problem. The upwards triangles represent determin-
istic greedy policies exploiting different inactive states. The
policies shut down the disk (making a transition to a given
inactive state) as soon as there are no pending requests on the
queue end no new requests coming from the user. A wake-
up command is issued whenever a new request arrives. The
downwards triangles represent timeout heuristics. Timeout-
based policies are widely used for disk power management
[12]. They shut down the disk when the user has been inactive
for a time longer than the timeout period . The choice of
is based on simulations and on designer’s experience. Boxes
represent randomized policies where the timeout value and the
inactive state are chosen randomly with a given probability
distribution. The randomized policies are the heuristic version
of the optimal policies computed by our tool.

Although we cannot claim that our heuristic policies are the
best that any experienced designer can formulate, some of our
policies provide power-performance points not far from the
Pareto curve. We remark, however, that heuristic solutions do
not allow the designer to automatically take constraints into
account. On the other hand, trial and error approaches may be
highly expensive due to the large number of parameters (in

our case study the policy is represented by a 665 matrix
with 330 entries). Moreover, even if it is possible to produce
heuristic policies that produce “reasonable” results, there is no
way for the designer to estimate if the results can be improved.

B. Web Server

In the second case study, we modeled a web server with
two processors for a high-traffic web site, which is an example
of a system with multiple service providers. Time resolution

s. The time horizon is set to one day, i.e.,
time slices. The two processors are not identical. The second
processor has higher performance (1.5 times) and higher power
(2 times) than the first one. We model the system as a
SP with four states, one for each possible combination of
active/sleeping processors. Three of the four states are active,
in the sense that the system is able to process workload.
The power manager can independently activate or put to
sleep the two processors (by issuing one of four different
commands), trying to achieve a given average performance
level, representing system throughput, with minimum power
consumption.

Throughput is maximum (1) when the two processors are
both active, the remaining SP states have reduced throughput
(i.e., 0.4 when only processor 1 is active, 0.6 when only
processor 2 is active and zero when both processors are in
sleep state). Performance is constrained by imposing a given
minimum expected throughput. Processor power in the active
state is 1 W for the first processor, 2 W for the second. Turn-
on transition power is an additional 0.5 W over the processor’s
active power. Shut-down transition power is 0.5 W less than
active power. Expected turn-on time is 2, while expected
shut-down time is 1.

The SR model was extracted from real-life traces obtained
by monitoring a busy web server.3 We constructed a two-state
Markov model for the workload. The total number of states for
the SP and SR model is . Policy optimization results
(minimum power under performance constraints) are reported
in Fig. 9(a). The continuous-line curve shows the theoretical
Pareto curve, while the circles represent the results obtained
by simulating the model of the system with the computed
optimum policy driven by the actual workload trace.

Analyzing the policies computed by the optimizer, we
noticed that the processor with higher performance was never
used alone. Intuitively, this is due to the fact that the power
consumption of the faster processor is twice as large as the
power of the slower one, but its performance is less than two
times higher.

C. CPU

The third type of system considered is a typical CPU
with sleep mode operation. We built our model based on
the ARM SA-1100 processor [29]. The actual processor has
three power states:active, idle,and sleep. We do not model
the idle state because the transitions betweenactive and idle
are very fast and have small cost. Hence we can assume
that they are performed greedily, independently of the power

3Internet Traffic Archive, http://ita.ee.lbl.gov/.
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(a)

(b)

Fig. 9. Power-performance tradeoff curves. (a) Two-processor http server
with real-world workload taken from the Internet Traffic Archive: solid line
and circles represent optimization and simulation results, respectively. (b)
Two-state CPU model with Markovian workload: solid and dashed lines
represent the tradeoff achievable by means of optimum stochastic control
and time-outs, respectively.

management, and we use a single macro state (that we call
active) to represent both the active and idle states of the actual
processor. As a result, the SP model has only two states,active
(with power consumption of 0.3 W and full performance) and
sleep (with null power consumption and null performance).
Shut-down and turn-on transitions (fromactive to sleepand
vice versa) take approximatively 100 ms and have power
consumption of 0.3 and 0.9 W, respectively.

The CPU is designed to react to service requests (i.e.,
interrupt signals) independently of the power manager. In
our model, whenever there are incoming requests the SP
is insensitive to PM commands, and a turn-on transition is
performed unconditionally if a new request arrives when the
SP is in sleep state. In practice, only when the SP is active and
the SR is idle the PM can control the evolution of the system
by issuing ashutdown command.

The SR model is a two-state (active and idle) Markov
chain characterized on a CPU workload trace provided by the

monitoring package described in [28]. The discretization time
step is ms. Incoming requests are not enqueued.
Request arrival when the CPU is sleeping is regarded as an
undesirable condition whose occurrence probability has to be
constrained. To this purpose, a performance penalty function is
defined taking value one when SR activeand SP sleep,
zero otherwise.

The constrained power optimization problem consists of
deciding when to issue theshut down command, in order
to minimize power while keeping performance penalty under
a given threshold. Optimum policies depend on a single
parameter, that is the probability of issuing theshutdown
command when in state SR activeand SP sleep. Notice
that this degree of freedom is the same that could be exploited
by a traditional shut-down mechanism. Hence, we can use
this case study to make a fair comparison between optimum
stochastic control and timer-based heuristics.

Comparative results are reported in Fig. 9(b). The solid line
is the Pareto curve of optimum stochastic control (obtained by
varying the performance penalty constraint). The dashed line
is obtained by varying timeout values for a timeout heuristic.
We remark that optimum stochastic control performs better
than a timeout heuristic even in this case, where the power
manager can only control shutdown. The difference in power
savings is due to the fact that timeout-based policies waste
power while waiting for a timeout to expire.

VII. M ODELING ASSUMPTIONS: A CRITIQUE

The key feature of our policy optimization algorithm is that
it allows us to compute a globally optimum policy in polyno-
mial time in the number of states of the system. However, such
a strong result is based on several fundamental assumption
on the system model. These assumption should be clearly
understood in order to assess the domain of applicability of
our technique. The basic hypotheses for the validity of our
Markov model are as follows:

• The arrival of service requests can be modeled by a
state Markov chain.

• The state transition delays in the service provider can be
modeled as random variables with a geometric distribu-
tion.

• Model parameters and cost functions are available and
accurately measured before optimization.

It is possible to envision systems in which one or more of
these hypotheses is not verified. For instance, request arrival
times can be nonstationary and their distribution can widely
change over time.

Example 7.1:We applied a highly nonstationary and non-
Markovian workload to the case study of Section VI-C. The
workload was obtained by merging two real-world traces with
completely different statistics, representing to usage of the
CPU of a laptop computer with a single user editing a text file
and compiling C code [28]. The first trace presents alternating
idle and active periods, while the second one has a long activity
burst.

A simple two-state Markov model was characterized for the
entire trace and used as SR for policy optimization. Optimum
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Fig. 10. Power-performance tradeoff for the CPU model of Fig. 9(b) with a
nonstationary/non-Markovian workload.

policies were then simulated against the original trace. Simu-
lation results are reported in Fig. 10 together with the results
obtained by a timeout-based shut-down mechanism. In some
cases, timeout-based shutdown outperforms stochastic control.
This is a situation where one of our modeling assumptions
is not valid (namely, stationary Markovian workload), hence,
Markovian policies may be good but are not provably globally
optimum.

Similarly, assuming a geometric distribution of SP transition
times may be in many cases an inaccurate model of actual
system state transitions. For instance, transition times can be
deterministic, or have a bell-shaped distribution around an ex-
pected value. Finally, power and performance measures based
solely on the SP state may be inaccurate and it may be difficult
to obtain data on some system parameters (such as transition
probabilities for the SR). For instance, a designer may not be
able to collect in advance a time-stamped request trace which
is representative of actual workloads, and only approximate
information on the request arrival process is available.

It is possible to improve the accuracy of the model for
nonstationary workloads, nongeometric transition times and
complex cost functions by increasing the number of states
in the Markov chain representing the system. Unfortunately,
the size of the state space can easily become unmanageable
even for powerful advanced LP solvers. Consider for example
the case of a deterministic transition delay from a sleep
state to the active state. It is possible to model a deterministic
delay by a chain of states in a Markov model. There are

states with the same performance as the sleep
state. The last state of the chain has a transition to the active
state. All transitions have probability 1. Clearly, if is much
larger than , a huge number of SP states is required to
model just one transition. In practice, we need to tolerate
model inaccuracies if we want to be able to solve policy
optimization with exact LP-based solution. The price to be
paid for is in reduced optimality of the power management
policies. Good engineering intuition is required to match the
approximations made in the model to the desired level of
accuracy for constrained policy optimization.

Even if the basic assumptions on the probabilistic model are
valid, we can envision systems with a more complex structure
than the one described in the previous sections. For instance,
we may need to model multiple SR’s and/or multiple SP’s.
Furthermore, the distinction between SP and SR may blur if we
assume that a SP can pass requests to other SP’s for additional
service. A general system model is a network of interacting
service providers, multiple service requesters and queues. Even
though it is in principle possible to compute a monolithic
Markov model for an arbitrary complex network of SP’s and
SR’s, the size of the state space grows exponentially with
the number of system components. Again, designer insights
are required to formulate decomposition strategies that reduce
the state space to a manageable size, without completely
compromising the quality of the optimization.

With a correct understanding of the basic model assumption,
our policy optimization approach can be effectively employed
to reduce power consumption in a number of real-life systems.
Promising domains of application are power management for
laptop computers, for their components and for portable elec-
tronic appliances as well as energy conservation for desktop
computers. The two key advantages of our approach over
heuristic techniques are the capability of exploring the power-
performance tradeoff curve and the high degree of confidence
on the quality of the achieved results.

VIII. C ONCLUSION

The identification of optimal power management policies for
low-power systems is a critical issue that has been addressed
using common sense and heuristic solutions. In this work we
provided a mathematical framework for the formulation and
solution of thepolicy optimizationproblem. Our approach is
based on a stochastic model of power-managed devices and
workloads. The constrained policy optimization problem can
be solved exactly in our modeling framework. Policy optimiza-
tion can be cast into a linear programming problem and solved
in polynomial time by efficient interior point algorithms.
Moreover, tradeoff curves of power versus performance can
be computed. The soundness of our modeling assumptions
(and consequently the practicality of our power management
policies) has been tested on realistic case studies. Our experi-
mental results show that our stochastic model is robust and the
optimal policies are flexible and power-efficient. We believe
that our work opens the way to several new research problems.
First, it is possible to envision extensions to the basic model to
deal with systems consisting of multiple interacting resources
as well as with systems where one or more components can be
modeled by stochastic processes other than stationary Markov
chains. Another interesting direction of investigation is the
study of adaptive algorithms that can compute optimal policies
in systems where workloads are highly nonstationary and the
service provider model changes over time.

APPENDIX A
SOLVING THE POLICY OPTIMIZATION PROBLEM

We first introduce a simplified, unconstrained version
of PO1 that can be solved in polynomial time bylinear
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programming. The solutions of the unconstrained version of
PO1 are deterministic stationary Markov policies. Then, we
show that the introduction of constraints does not change the
complexity of the problem, that can still be solved by linear
programming. However, the solutions become randomized
stationary Markov policies.

If we remove the power constraint, unconstrained perfor-
mance optimization (POU) can be formulated as

(11)

the unknown in POU is the policy , and the cost function
to be minimized is an infinite sum, where each

summand is the product of the -dimensional row vector
(the initial state probability vector) and the column

vector . The th component of
represents the expected performance penalty at time, given
that the initial state was , and the th component of
represents thetotal expected performance penalty at time,
given that the initial state was. If we find a policy that
minimizes each component of the column vector, such policy
will be the solution of POU, independently from . The
following classical result [21] provides the key insight that
leads to the solution of POU

Theorem A.1:There exists an optimal policy that
minimizes each component of . Such policy is stationary,
deterministic and Markovian. The optimal value , called

, does not depend on the time index and its components
satisfy the optimality equations:

. The optimality equations can be
written in vector form as

(12)

Proof for this theorem can be found in [21]. Remember that
is the finite set of all possible stationary deterministic

policies. We focus here on the interpretation of the optimality
equations; for detailed accounts (in order of increasing gener-
ality and complexity), see [21]–[23]. The optimality equations
state an intuitive fact: by taking an optimal decisionat
the beginning of time , the optimal penalty will be the
performance penalty relative to this time slice [i.e.,in (12)],
plus the expected cost from time onward; but, by virtue of
the Markovian structure of the system (i.e., conditioning only
on the previous slice), this is the discounted () expected value
( ) of the optimal penalty ().

Many algorithms are available to efficiently solve the class
of optimization problems POU [21], the most well-known
being policy improvement, successive approximations,and
linear programming. We will use the last method, because
it allows to generalize our model to the constrained case in
a straightforward fashion. We note first that the optimal cost
vector satisfies the set of vector inequalities

for all (13)

The set of vector inequalities is equivalent to scalar
inequalities. If two vectors , satisfy inequalities (13),

Fig. 11. Balance equation interpretation of the first constraint in LP2.

then the maximum for the two vectors (taken component-
wise), , satisfies the same set of inequalities. A
candidate for the optimal objective vector is thefor which
the inequalities become tight. In other terms, it is thewhich
satisfies the following linear program:

s.t for all
(14)

Notice that the solution of LP1 is the same independently
from the choice of the initial state distribution . This is
because Theorem A.1 guarantees that all components ofare
minimized when is used.

It is possible to show [22] that is equivalent to
the following linear program which has a more intuitive
interpretation:

s.t.

for all

for all (15)

The unknowns in LP2, , called state-action fre-
quencies,have the following intuitive interpretation: they are
the expected number of times that the system is in state
and command is issued. The objective function is, thus,
the total expected penalty under the optimal policy. The first
set of constraints expresses the condition that the expected
number of times state is the current state ( )

is equal to the expected initial population of, , plus
the expected number of times is reached from another
state ( ). This “balance equation”
is described pictorially in Fig. 11, that represents the “incom-
ing flow” (transitions toward state ) and “outgoing flow”
(transitions from state ) for state .

Once the have been found by solving LP2, the elements
of the optimal stationary policy are simply given

by

(16)

Example A.1:Consider the example system introduced
in the previous section. The system has eight states

and two actions on and off. Thus,
LP2 has unknowns, the state-action frequencies

. We assume that the time
window of interest is [0, 10], hence, the discount factor is

. The performance cost has
only two values: for the four states where the queue
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is empty, and for the four states with queue full.
The initial probability distribution is: ,
for all (i.e., the service provider is initially on, no
requests are issued and the queue is empty). The transition
probabilities are those described in Example 3.5.

The linear program LP2 has eight equality constraints (one
for each state) and 16 inequality constraints (one for each

). The cost function is the sum of eight state-action
frequencies, those corresponding to states for which
(i.e., states with full queue). The optimal policy minimizes the
sum of the for these states. The command probabilities

are obtained from the state-action frequencies using (16).
The linear programming formulation (LP2) of the uncon-

strained policy optimization problem has the advantage that
it can be easily extended to the constrained case, because
it is easy to express constraints on a second cost metric
as a linear function of the state-action frequencies. In our
case, the total expected power consumption can be written as:

. Therefore, we can solve problem
PO1 by simply adding a power constraint in LP2, as follows:

s.t.

for all (17)

for all (18)

The following result [22] holds for the constrained optimiza-
tion problem LP3, and shows that the set of stationary
deterministic policies does not contain all optimal solutions:

Theorem A.2:If the constraint
is inactive, the solution of LP3 is a

stationary, Markovian deterministic policy. If the constraint
(18) is active, and the feasible region is nonempty, the
solution is a stationary, Markovian randomized policy.

Proof for this theorem can be found in [22]. The theorem
states that the optimal policy is Markovian, stationary and
randomized whenever the expected power consumption of
the system is exactly . In other words, the most aggres-
sive optimal policies that push power consumption up to its
maximum allowed value but achieve maximum performance,
are randomized.

Although we have discussed the solution of PO1 in detail,
the equivalent problem PO2 can be solved by a linear program
as well. The linear program for the solution of LP2 is the
following:

s.t.

for all

for all (19)

Observe that linear programs LP3 and LP4 have the same
number of unknowns and of constraints. Moreover, the min-
imum power consumption obtained by solving LP4 for a
given performance constraint is equal to the value we
should assign to the power constraint if we want to obtain
a solution of LP3 with minimum performance penalty.
Hence, the solutions of LP3 and LP4 are equivalent both
from the computational and numeric viewpoint. The choice
of what problem to solve is based on how the constraints and
optimization targets are specified in practical instances.

One key advantage of the linear programming formulation
is that it allows the specification of additional constraints.
For instance, it is possible to enforce a constraint on the
maximum probability of arequest loss(defined in Section III).
The constraint is specified by adding to LP3 (or LP4) an
inequality requiring that the sum of all state-action frequencies
corresponding to states where SR issues a request and the
queue is full is smaller than a given bound.

Example A.2:Consider linear program LP4 for our simple
example system, with discount factor . The initial
state is: no request from SR, queue empty and active SP. Thus,

has only one element equal to one and all others equal
to zero. Performance cost function is the same as in
Example A.1. The power cost function is
when SP is “on” and the command ison; when
SP is “on” and the command is off and when SP is “off”
and the command is on; , otherwise. This cost
function models a system where forcing SP state transitions
is more power-consuming than leaving the SP on, hence, the
SR should be shut off only when there is high probability that
the SP will not issue requests for a relatively long time in the
future.

The average queue length is constrained to be not larger
than 0.5. Thus, the performance constraint is set to 0.5
( ) 50 000. The probability of losing a request must
be smaller than 20%. The request lossconstraint is, thus,

20 000. LP4 is solved, and the 16
state-action frequencies are computed. Then, the elements of
policy matrix are computed with (16). The matrix of the
resulting optimal policy is

on off

The minimum expected power value is W. Notice
that the SP power in “on” state is 3 W. Thus, the optimal
policy reduces power consumption of almost a factor of two
with respect to the trivial policy that never shuts down the
SP. Consider the first row of . State is the triple

: the SP is on, the SR is not issuing any request,
and the queue is empty. The decision prescribes that theoff
command can be issued with probability 0.226 and theon
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command can be issued with probability 0.774. In other words,
the SP is put to sleep with probability 0.226, otherwise it stays
active, even if there are no incoming requests. Obviously, the
optimum policy is not equivalent to the eager one, that would
shut down the SP as soon as it becomes idle.

APPENDIX B
SENSITIVITY TO MODEL PARAMETERS

In Section IV we assumed a Markov system model, and
we showed how to compute globally-optimum policies. In
this subsection we study how system structure and parameters
impact the result of the optimization process. In other words,
we exploit our powerful optimization engine to gain deep
insights on how to design and tune systems that can be
effectively power managed.

To perform this study, we start from a baseline system
implementation, we introduce changes in its structure and pa-
rameters and we perform policy optimization on the modified
system targeting minimum power consumption with a fixed
performance constraint (i.e., we solve LP4). We then compare
the expected power consumption obtained by the optimizer
for the modified system with the optimum expected power
consumption achieved by the baseline system. Our baseline
implementation is the following. SP has two states:activeand
sleep1. Power consumption is high in active state (3 W) and
lower in sleep state (2 W). When the SP is performing a state
transition, the power consumption is 4 W. Transitions from
active to sleep1require only one time slice. The SR model
has two states as well. In one state a request is issued, while
no request is issued in the other state. The transition probability
from one state to another and vice versa is 0.01. The queue
has maximum length equal 2.

Our first set of experiments, illustrated in Fig. 12, focuses
on the sensitivity to the structure of the service provider. Time
horizon is . In the first experiment, we analyze the
impact of multiple sleep states. Sleep state 1 is the baseline,
and the power for the baseline system is represented by the
leftmost point in the graphs. States 2–4 are deeper sleep states,
ordered for decreasing power and increasing transition delay
for returning to active. Statesleep2has power 1 and transition
probability 0.1 (i.e., in average 10 clock cycles are required
to transition from sleep to active), statesleep3has power 0.5
and transition probability 0.01 and statesleep4has power 0.0
and transition probability 0.001. Fig. 12(a) shows two sets of
data points, representing the minimum power achievable with
a given SP structure. The continuous line joins power values
obtained with a tight performance constraint, while the dashed
line joins power values obtained with a loose performance
constraint. Points on the same abscissa have been obtained
with the same SP structure. We considered six alternative SP
structures with multiple sleep states (the number and type of
sleep states for each alternative SP is reported in the figure).

The impact of the number and type of sleep states is quite
clear. Having more than one sleep state improves power, but
many multiple sleep states are not always useful. For the
workload condition specified for the experiment, introducing
statesleep2brings a sizable power reduction, while introduc-

(a)

(b)

Fig. 12. (a) Power consumption versus available sleep states of the SP. (b)
Power consumption versus SP state transition cost.

ing additional states does not help much. Notice also that the
performance constraint influences the amount of incremental
power savings. When the constraint is tight, it is more difficult
to use deep sleep states, hence, they are less effective in
reducing power. Furthermore, we can improve power even
without increasing the number of states. For instance, the
system with only the active an thesleep4state performs better
than the baseline system (that uses sleep statesleep1).

In Fig. 12(b) we study the impact of the transition time
between active and sleep and vice versa. We assume that the
system has a single sleep state and that the power dissipated
during transition is 4 W (which is higher than the 3 W active
power consumption). Time horizon is . Four sets of
data-point are shown in the figure. The topmost two sets cor-
respond to SP models where the power dissipated in the sleep
states is 2 W, while the other two sets are obtained by assuming
zero sleep state power. The data sets joined by continuous
lines are obtained by optimizing power with a constraint on
request loss, while a performance constraint is enforced for
the sets joined by dashed lines. The abscissa reports the value
of the transition probability for exiting the sleep state (which
is inversely proportional to the average transition time).
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(a)

(b)

Fig. 13. (a) Power consumption versus SR burstiness. (b) Power consump-
tion versus SR memory.

From the plot we can infer the following observations.
Since transitions have high power consumption, the optimal
power value is strongly sensitive to transition speed (faster
transition times corresponds to points on the right side of the
plot). For very slow transition times, performance constraints
inhibit the exploitation of sleep states (the two points on
the upper left corner). Even when constraints are not active
(the two uppermost points of the two top curves), if the
average transition times are comparable with the time horizon,
sleep states are not used. Notice also that high-power, but
fast-transition sleep states may become more convenient than
low-power, slow-transition sleep states (the two top-most
curves for faster transition times are more power-efficient than
the two lower curves for slow transition times).

The experiments summarized by the plots of Fig. 13 assess
the impact of SR characteristics. The plot of Fig. 13(a) focuses
on SR burstiness. For all data points we used the same SP
model (with four sleep states). Time horizon is .
Maximum expected request loss was set to 0.01. Two sets of
points are shown for two performance constraints. The abscissa
reports the probability of a transition from the state where a

(a)

(b)

Fig. 14. (a) Power consumption versus time horizon. (b) Power consumption
versus queue length.

request is issued to the state where no requests are issued and
vice versa. Points to the left correspond to bursty SR. The
interpretation of these results is immediate. The more bursty
is the receiver the more effective is power management. It is
important to notice that increased burstiness does not imply
reduced workload. In fact, the probability of issuing a request
is the same (0.5) for all data points in the plot.

In Fig. 13(b) we study the dependency of the optimization
on SR memory. A Markov model with memory 1 has two
states (this is the baseline SR model). The number of states
in the SR is , where is the memory. Intuitively, longer
memory means more complex correlations between past and
current history. From an optimization point of view, a more
complex SR model gives the optimizer more possibilities
of exploiting past history to predict request issues and take
optimal decisions. Clearly, this increased knowledge about
the past is paid for by increased system complexity (the
number of states is exponential in). We optimized power
with three different performance constraints (time horizon
is ). We also considered two different SP: the
baseline one, and a SP with two sleep states. Clearly, increased
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memory improves optimization quality, because the optimizer
can better distinguish long request bursts from short ones.
Also, the power savings are higher if there are multiple sleep
states to chose from, because the optimal policy matches the
length of idle periods with the best sleep state.

In the last set of experiments (Fig. 14), we studied optimal
power as a function of time horizon and queue length. In
Fig. 14(a) we plot optimum power values for the SP with four
sleep states, performance better than 0.5, baseline two-state SR
and queue length two. Two sets of points are shown, for two
request loss constraints. The abscissa reports the probability of
a transition to the trap state, i.e., longer time horizons are to the
left of the plot. The interpretation of the plot is straightforward.
The longer the time horizon the better are the achievable power
savings, because the optimizer has a longer time to amortize
wrong decisions, hence, more degrees of freedom in selecting
aggressive shutdown policies.

The interpretation of Fig. 14(b) is a little more involved.
Time horizon is . The -axis reports the maximum
queue length. We have three sets of data points, for different
request loss constraints. Performance constraint is the same
(performance penalty better than 0.5) for all plots. The SP
has four sleep states, and the SR model is the baseline one.
For the two sets of data points marked with squares, the
constraint on request loss is very tight and dominates the
optimization results. For the data points marked with circles,
the performance constraint dominates. When optimization is
dominated by request loss constraint, larger maximum queue
length reduces the probability of a request to find the queue full
even if the resource is aggressively shut down. Thus, power
dissipation can be reduced more effectively. However, when
optimization is dominated by performance constraint, which
is related to average waiting time, shorter queue lengths give
better results. This is because a high-capacity queue reduces
the probability of an arrival with queue full (i.e., a request
loss), but implies that enqueued requests wait a longer time
for service.
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