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Abstract
This paper considers simultaneous gate and wire sizing for gen-

eral VLSI circuits under the Elmore delay model. We present a fast
and exact algorithm which can minimize total area subject to max-
imum delay bound. The algorithm can be easily modified to give
exact algorithms for optimizing several other objectives (e.g. min-
imizing maximum delay or minimizing total area subject to arrival
time specifications at all inputs and outputs). No previous algorithm
for simultaneous gate and wire sizing can guarantee exact solutions
for general circuits. Our algorithm is an iterative one with a guar-
antee on convergence to global optimal solutions. It is based on La-
grangian relaxation and “one-gate/wire-at-a-time” local optimiza-
tions, and is extremely economical and fast. For example, we can
optimize a circuit with 27,648 gates and wires in about 36 minutes
using under 23 MB memory on an IBM RS/6000 workstation.

1 Introduction
Since the invention of integrated circuits almost 40 years

ago, gate sizing has always been an effective technique to
achieve desirable circuit performance. As technology con-
tinues to scale down, total number of gates and interconnects
within a die grows over millions. In such increasingly dense
integrated circuits, a significant portion of the total circuit de-
lay comes from the interconnects. Therefore, developing effi-
cient algorithms which can handle large scale gate and inter-
connect optimization problems are of great importance.

In the past, gate delay was the dominant factor in determin-
ing circuit performance. Thus, gate and transistor sizing have
been extensively studied in the literature [6, 12, 15, 20]. As
interconnect delay plays an increasingly important role in de-
termining circuit performance, wire sizing has been an active
research topic in the past few years [2, 4, 7, 9, 17, 19].

Since gate sizes affect wire-sizing solutions and wire sizes
affect gate-sizing solutions, it is beneficial to simultaneously
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size both gates and wires. Several results on simultaneous
gate and wire sizing have been reported [2, 7, 8, 16, 18, 20].
[8] studied simultaneous driver and wire sizing and [2] con-
sidered simultaneous wire and buffer sizing, but both works
only apply to circuits that are of tree topology. For simulta-
neous gate and wire sizing for general circuits, [18] uses a
least-square optimization technique, [16] employs a sequen-
tial quadratic programming approach, and [7] uses a greedy
sizing technique in conjunction with dynamic programming.
But none of these algorithms can guarantee to give exact so-
lutions for objectives such as minimizing total area subject to
maximum delay bound or minimizing maximum delay.

In this paper, we consider simultaneous gate and wire siz-
ing for general VLSI circuits under the Elmore delay model.
We present a fast and exact algorithm which can minimize
total area subject to maximum delay bound. The algorithm
can be easily modified to give exact algorithms for optimiz-
ing several other objectives (e.g. minimizing maximum delay
or minimizing total area subject to arrival time specifications
at all inputs and outputs). Our algorithm is an iterative one
with a guarantee on convergence to global optimal solutions.
It is based on Lagrangian relaxation and “one-gate/wire-at-
a-time” local optimizations, and is extremely economical and
fast. For example, we can optimize a circuit with 27,648 gates
and wires in about 36 minutes using under 23 MB memory on
an IBM RS/6000 workstation.

The problem in this paper is formulated as a geometric pro-
gram [10]. Note that the transistor sizing problem is similar to
our problem and was also formulated as a geometric program
long time ago [12]. However, it would be very slow to solve it
by some general-purpose geometric programming solver. So
instead of solving it exactly, [12] proposed TILOS, which is
based on an efficient sensitivity-based heuristic. Years later,
[20] transforms the geometric program into a convex program
and they solve it by a sophisticated general-purpose convex
programming solver based on interior point method. This is
the best known previous algorithm that can guarantee exact
transistor sizing solutions. However, as we explore the special
structure of the geometric program, our tailored algorithm is
much faster than algorithms using general-purpose solvers as
in [20]. For example, the largest test circuit in [20] has 832
transistors and the reported runtime and memory are 9 hours
(on a Sun SPARCstation 1) and 11 MB, respectively. For a
problem of similar size (864), our approach only needs 7 sec-



onds of runtime (on a RS/6000 workstation) and 1.15 MB of
memory.

The rest of this paper is organized as follows. In Section 2,
we will introduce some notations and terminology that we will
use in this paper. In Section 3, we will present our algorithm
for the problem of minimizing total area subject to maximum
delay bound. In Section 4, we will show how to modify our
algorithm to minimize maximum delay, to handle arrival time
specifications at all inputs and outputs, to consider power con-
sumption and to use a more accurate gate model. In Section
5, experimental results of our algorithms are presented.

2 Preliminaries
In this section, we will define some notations and terminol-

ogy that we will use in this paper.
For a general VLSI circuit, we can ignore all latches and

optimize its combinational subcircuits. Therefore, we will fo-
cus on combinational circuits below.

Given a combinational circuit with s input drivers, t out-
put loads, and n gates or wire segments, the gate sizes or the
segment widths are allowed to be varied in order to optimize
some objective. For � � i � s, let RD

i be the driver resis-
tance of the ith input driver. For � � i � t, let CL

i be the load
capacitance of the ith output load. See Figure 1 for an illustra-
tion of a circuit. Note that it is reasonable to assume that the
gates are of bounded fanin. Hence s � O�n� and t � O�n�.
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s = 2 n = 10
Input drivers
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t = 2
Gates or Wire segments (sizable) Output loads

Figure 1: A combinational circuit.

A gate, a wire segment, or an input driver is called a com-
ponent. In order to unify the notations that we will introduce
later, imagine that two factitious components are added to the
circuit as shown in Figure 2. The first one is called an output
component which consists of all the t output loads. The sec-
ond one is called an input component which connects to all
the s input drivers. Let a node be a connection point between
two components or the output point of the output component.
Note that the output of each component should connect to a
distinct node. So it is easy to see that there are n � s � �
components and n� s� � nodes.

Letm � n�s��. We label the nodes by indexes �� � � � �m
as follows. The node with index � is the output point of the
output component. For � � i � t, the node with index i is the
one connecting to the ith output load. For t� � � i � n, the
node with index i is a connection point among the gates and
wire segments. The indexes are assigned in such a way that

if node i and node j are connected to an input and the output
of some component respectively, then i � j. For n � � �
i � n� s, the node with index i is the one connecting to the
�i � n�th input driver. The node with index m is the output
point of the input component. It is not difficult to see that if
we view the circuit as a directed acyclic graph, the node index
assignment is a reverse topological ordering of the graph. We
also label the components by indexes �� � � � �m such that the
output of the component with index i is connected to node i.
See Figure 2 for an illustration of the circuit in Figure 1 with
factitious components, node indexes and component indexes.
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Figure 2: The circuit in Figure 1 with factitious components, node
indexes and component indexes.

For � � i � m � �, let input�i� be the set of indexes of
components directly connected to the input(s) of component
i. For � � i � m, let output�i� be the set of indexes of
components directly connected to the output of component i.
For example, for the circuit in Figure 2, input��� � f�� �g,
input��� � f�� 	g, and output��� � f�g. Note that j �
input�i� if and only if i � output�j�.

Let G, W and D be respectively the set of component in-
dexes of gates, wire segments and input drivers in the cir-
cuit. For the circuit in Figure 2, G � f�� 
� �g, W �
f�� �� �� 	� 
� �� ��g and D � f��� ��g.

If i � G, then let xi be the gate size, ri be the output re-
sistance of the gate and ci be the input capacitance of a pin of
the gate. (To simplify the notations, we assume without loss
of generality that the input capacitances of all input pins of
a gate are the same.) Let bri and bci be respectively the unit
size output resistance and the input capacitance per unit size
of gate i. Then ri � bri�xi and ci � bcixi. If i � W , then let xi
be the segment width, ri be the segment resistance and ci be
the segment capacitance. Let bri, bci and fi be respectively the
unit width wire resistance, the wire area capacitance per unit
width and the wire fringing capacitance of segment i. Then
ri � bri�xi and ci � bcixi � fi. For i � G �W , let Li and Ui

be respectively the lower bound and upper bound of the value
of xi, i.e. Li � xi � Ui.

For the purpose of delay calculation, we model compo-
nents as RC circuits. A gate is modeled as a switch-level RC
circuit as shown in Figure 3. (For simplicity, we ignore the
intrinsic gate delay in the model. It is easy to see that all our
results will still hold even if intrinsic delay is considered.) A



wire segment is modeled as a �-type RC circuit as shown in
Figure 4.
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Figure 3: The model of component i, which is a gate, by a switch-
level RC circuit. Although the gate shown here is a 2-input AND
gate, the model can be easily generalized for any gate with any num-
ber of input pins.
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Figure 4: The model of component i, which is a wire segment, by a
�-type RC circuit.

Elmore delay model [11] is used for delay calculation. Ba-
sically, the Elmore delay along a signal path is the sum of the
delays associated with the resistors in the path, where the de-
lay associated with a resistor is equal to its resistance times
its downstream capacitance. For our case, each component
(except the 2 factitious components) contains a resistor. We
label the resistors by indexes �� � � � � n� s such that resistor i
is the one inside component i. For convenience, for i � D,
let ri � RD

i�n (i.e. the driver resistance of the �i� n�th input
driver). So for i � G�W�D, the resistance of resistor i is ri.
For i � G �W � D, let Ci be the downstream capacitance of
resistor i. Figure 5 shows the circuit in Figure 2 after replac-
ing the components by the RC models. The resistance of each
resistor is marked in the figure. Also, the regions correspond-
ing to the downstream capacitances of resistor 	 and resistor
�� are shaded.
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Figure 5: The circuit in Figure 2 after replacing the gates and wire
segments by the RC models.

Let Di � riCi be the delay associated with resistor i. We
represent a signal path passing through resistors i�� � � � � ik by
the set p � fi�� � � � � ikg. Let P be the set of all possible paths
from node m to node � (i.e. from an input driver to an output

load). Then for any p � P , the Elmore delay along path p isP
i�pDi.

3 Minimizing total area subject to maximum
delay bound

In this section, we will solve the problem of minimiz-
ing the total component area with respect to component sizes
x�� � � � � xn subject to the constraint that the maximum delay
from any input driver to any output load is at most some con-
stant A� (i.e. A� is a bound on the arrival time at node �).
We will formulate the problem as a constrained optimization
problem and then solve it using Lagrangian relaxation. La-
grangian relaxation is a general technique for solving con-
strained optimization problems. We outline the basic idea
of Lagrangian relaxation below. More details can be found
in [1, 13, 14].

We call the constrained optimization problem to be solved
the primal problem (PP). In Lagrangian relaxation, “trou-
blesome” constraints in PP are “relaxed” and incorporated
into the objective function after multiplying them by con-
stants called Lagrange multipliers, one multiplier for each
constraint. For each fixed vector � of the Lagrange multipli-
ers introduced, we have a new optimization problem (which
should be easier to solve because it is free of troublesome con-
straints) called the Lagrangian relaxation subproblem associ-
ated with � (LRS��). It can be shown that there exists a
vector � such that the optimal solution of LRS�� is also the
optimal solution of the original problem PP. The problem of
finding such a vector � is called the Lagrangian dual problem
(LDP). So if we can solve both LRS�� and LDP , then the
optimal solution of PP will be given by LRS�� where � is
the optimal solution of LDP .

In Section 3.1, we will show how to formulate the gate and
wire sizing problem as a constrained optimization problem
with a polynomial number of constraints. This formulation is
our primal problem (PP). In Section 3.2, we will show how
PP is relaxed to obtain the LRS��. We will use the Kuhn-
Tucker conditions (see [1] for a reference) to greatly simplify
LRS��. We call the simplified version LRS��. In Section
3.3, we will show how to solve LRS�� (i.e. LRS��) for
any fixed vector �. In Section 3.4, we will show how to solve
theLDP by the classical method of subgradient optimization.
Due to space limitation, all the proofs in this section have been
omitted. They can be found in [5].
3.1 Problem formulation

The total component area can be written as
Pn

i�� �ixi for
some constants ��� � � � � �n. So the problem of minimizing
total area subject to maximum delay bound can be formulated
directly as the mathematical program:

min.
Pn

i�� �ixi
s.t.

P
i�pDi � A� �p � P

Li � xi � Ui i � G �W

However, the number of possible signal paths from node m to
node � (and hence the number of constraints in the mathemat-



ical program above) can be exponential in n. So this direct
formulation is impractical.

This difficulty can be handled by the classical technique of
partitioning the constraints on path delay into constraints on
delay across components. We associate a variable ai to each
node i. ai represents the arrival time at node i (i.e. the max-
imum delay from node m to node i). Then it is not difficult
to see that the mathematical program below, which we called
the primal problem (PP), is equivalent to the mathematical
program above:

PP � min.
Pn

i�� �ixi
s.t. aj � A� j � input���

aj �Di � ai i � G �W � �j � input�i�
Di � ai i � D
Li � xi � Ui i � G �W

Note that the number of constraints in PP is linear in n. Also
note that for the problem PP, the objective function and the
constraints can be rewritten in the form of posynomials [10].
It is well known that under a variable transformation, the prob-
lem is convex. So PP has a unique global minimum and no
other local minimum. We will see how to solve PP in the
following.
3.2 Lagrangian Relaxation

Following the Lagrangian relaxation procedure, we in-
troduce a non-negative value called the Lagrange multiplier
for each constraint on arrival time. For j � input��� (i.e.
j � �� � � � � t), we introduce �j� for the constraint aj � A�.
For i � G � W and for j � input�i�, we introduce �ji
for the constraint aj � Di � ai. For i � D, we introduce
�mi for the constraint Di � ai. Let � be a vector of all the
Lagrange multipliers introduced. Let x � �x�� � � � � xn� and
a � �a�� � � � � an�s�. Let

L��x�a� �

nX
i��

�ixi

�
X

j�input���

�j��aj �A��

�
X

i�G�W

X
j�input�i�

�ji�aj �Di � ai�

�
X
i�D

�mi�Di � ai� (1)

Then the Lagrangian relaxation subproblem associated with
the Lagrange multipliers � will be:

LRS�� � min. L��x�a�
s.t. Li � xi � Ui i � G �W

Let �x��a�� be the optimal solution of PP . By Kuhn-
Tucker conditions, if the optimal solution of LRS�� is also
the optimal solution ofPP, then�must satisfy the conditions
�L�

�ai
�x��a�� � � for � � i � n � s. Therefore, we can

consider only those � satisfying these conditions.

By rearranging (1), we can write

L��x�a� �

n�sX
i��

�
� X

k�output�i�

�ik �
X

j�input�i�

�ji

�
Aai

� terms independent of all ai’s

So 	L��	ai � � for � � i � n � s imply the following
optimality conditions on Lagrange Multipliers �:

X
k�output�i�

�ik �
X

j�input�i�

�ji for � � i � n� s (2)

Let �� � f� � � � � satisfies (2) g. We observe
that by considering only those � in �� and substituting (2)
back to (1), we can greatly simplify the objective function
L��x�a�, and hence the problem LRS��. This is summa-
rized in the following lemma.

Lemma 1 For any � � ��, the optimal x of LRS�� is the
same as the optimal x of

LRS�� � min. L��x�
s.t. Li � xi � Ui i � G �W

where � � �
�� � � � � 
n�s�, 
i �
P

j�input�i� �ji for � �

i � n� s, and L��x� �
Pn

i�� �ixi �
Pn�s

i�� 
iDi.

To solveLRS��, we can solveLRS�� to find the optimal
x. Then the optimala can be found by considering one by one
the variables ai’s in the order of decreasing i. For each a i, we
set it to the smallest possible value that satisfies the constraints
of PP.

3.3 Solving LRS��
In this subsection, for any fixed � � �, we will show how

to solveLRS�� optimally by a greedy algorithm based on it-
eratively re-sizing the gates and wire segments. Similar tech-
niques have been successfully applied to some other wire or
buffer sizing problems before (e.g. [3, 9]).

For � � i � n, let upstream�i� be the set of re-
sistor indexes (excluding i) on the path(s) from compo-
nent i to the nearest upstream gate(s) or input driver(s).
For example, for the circuit in Figure 5, upstream��� �
f�� 
g and upstream�
� � f
� �� ��� ��g. Let Ri �P

j�upstream�i� 
jrj (i.e. Ri is a weighted upstream resis-
tance of component i). For i � W , let C �i � Ci � bcixi��, and
for i � G � D, let C �i � Ci. Note that for � � i � n, C �i is
independent of xi.

If we re-size component i (i.e. changing x i) while keeping
the sizes of all the other components fixed, we say that it is a
local re-sizing of component i. An optimal local re-sizing of
component i is a local re-sizing that minimize L��x�, and is
given by the following lemma.



Lemma 2 Let �x � ��x�� � � � � �xn� be a component-sizing so-
lution. An optimal local re-sizing of component i is given by
changing the size of component i to

x�i � min
�
Ui�max

�
Li�
p
Bi��x��Ai��x�

��
where Ai�x� � bciRi � �i and Bi�x� � 
ibriC �i .
LRS�� can be solved by a greedy algorithm based on itera-
tively re-sizing the components. In each iteration, the com-
ponents are examined one at a time; each time a compo-
nent is re-sized optimally using Lemma 2 while keeping the
sizes of the other components fixed. We call the algorithm
SOLVE LRS�� and it is described below. Note that in order
to use Lemma 2 to re-size component i, we need to compute
Ri andC �i first. Our algorithm SOLVE LRS�� computesC �i’s
and Ri’s incrementally by traversing the circuit in a reverse
topological order (step 2) and in a topological order (step 3)
respectively. So it is not difficult to see that each iteration of
the algorithm takes only O�n� time.

ALGORITHM SOLVE LRS��:
Output: x � �x�� � � � � xn� which minimizes L��x�
1. for i �� � to n do xi �� Li

2. /* Finding C �i for � � i � n by traversing
the circuit in a reverse topological order */

for i �� � to t do

C �i ��

�
CL
i if i � G

CL
i � fi�� if i � W

for i �� t� � to n do

C �i ��

�
� if i � G
fi�� if i � W

for all k s.t. i � input�k� do

C �i ��

�
C �i � bckxk if k � G
C �i � bckxk � fk�� � C �k if k � W

3. /* Finding Ri and xi for � � i � n by traversing
the circuit in a topological order */

for i �� n downto � do
Ri �� �
for all j � input�i� do

Ri ��

�	



Ri � 
jbrj�xj if j � G
Ri � 
jbrj�xj �Rj if j � W
Ri � 
jR

D
j�n if j � D

xi �� min
�
Ui�max

�
Li�
p

ibriC �i��bciRi � �i�

��
4. Repeat step 2 and 3 until no improvement.

Note thatL��x� is a posynomial [10] inx. It is well known
that under a variable transformation, a posynomial is equiv-
alent to a convex function. So L��x� has a unique global
minimum and no other local minimum. We can prove the
following theorem which says that algorithm SOLVE LRS��
always converges to the global minimum.

Theorem 1 For any fixed vector � � �, algorithm
SOLVE LRS�� always converges to the optimal component-
sizing solution of the problem LRS��.

Algorithm SOLVE LRS�� runs in O�rn� time using O�n�
storage, where n is the number of sizable components and r
is the number of iterations. We observe that r is constant (i.e.
the run time of SOLVE LRS�� is linear) in practice.
3.4 Solving the LDP

Define the function Q��� � the optimal value of the prob-
lem LRS��. In this subsection, we will consider the La-
grangian dual problem:

LDP � Maximize Q���
Subject to � � ��

As said in Section 3.1, PP can be transformed into a con-
vex problem. So Theorem 6.2.4 of [1] implies that if � is
the optimal solution of LDP , then the optimal solution of
LRS�� will also optimize PP.

By Theorem 6.3.1 of [1], Q��� is a concave function over
� � �. However, LRS�� is not differentiable in general. So
methods like steepest descent, which depends on the gradient
directions, are not applicable. The subgradient optimization
method is usually used instead. The subgradient optimization
method can be viewed as a generalization of the steepest de-
scent method in which the gradient direction is substituted by
a subgradient-based direction (see [1] for a reference).

Basically, starting from an arbitrary point �, the method
iteratively moves from the current point to a new point fol-
lowing the subgradient direction. At step k, we first solve
LRS�� (by solving the simpler LRS��). Then for each re-
laxed constraint, we define the subgradient to be the right hand
side minus the left hand side of the constraint, evaluated at the
current solution. The subgradient direction is the vector of all
the subgradients. We move to a new point by multiplying a
step size �k to the subgradient direction and adding it to �.
After each time we moved, we project � back to the nearest
point in �� so that we can solve LRS�� instead of LRS��
for the next iteration. The procedure is repeated until it con-
verges.

It is well known (see Theorem 8.9.2 of [1]) that if the
step size sequence f�kg satisfies the conditions limk�� �k �
� and

P�

k�� �k � 	, then the subgradient optimization
method will always converge to the optimal solution.

The description is summarized in the algorithm
SOLVE LDP below.

Theorem 2 The algorithm SOLVE LDP always converges to
the optimal solution of LDP .

We conclude Section 3 by giving the algorithm SGWS-LR
(Simultaneous Gate and Wire Sizing by Lagrangian Relax-
ation) below.

Theorem 3 For simultaneous gate and wire sizing, the prob-
lem of minimizing total area subject to maximum delay bound
can be solved optimally by SGWS-LR.



ALGORITHM SOLVE LDP:
Output: � which maximizes LRS��
1. k �� � /* step counter */
� �� arbitrary initial vector in ��

2. � � �
�� � � � � 
n�s� where 
i �
P

j�input�i� �ji
Solve LRS��. (Solve LRS�� by SOLVE LRS��,

and then calculate a�� � � � � an�s as in Section 3.2).
3. /* Move to a new � by adjusting multipliers �ji */

for i �� � to n� s do
for all j � input�i� do

�ji ��

�	


�ji � �k�aj �A�� if i � �
�ji � �k�aj �Di � ai� if i � G �W
�ji � �k�Di � ai� if i � D

4. Project � onto the nearest point in ��.
5. k �� k � �
6. Repeat step 2–5 until �

Pn
i�� �ixi �Q���� � error bd.

ALGORITHM SGWS-LR:
Output: the optimal gate and wire sizing solution x
1. Call SOLVE LDP to find the optimal �.
2. � � �
�� � � � � 
n�s� where 
i �

P
j�input�i� �ji

3. Call SOLVE LRS�� to find the optimal x.

4 Extensions
In this section, we will show how to extend our approach

to handle problems with other objectives and with other con-
straints. For all the extensions, as we will see, only slight
modifications to our algorithms presented in Section 3 are
needed. Moreover, convergence to global optimal solutions
is still guaranteed. Actually, it is not difficult to see that any
combination of the problem in Section 3 and the extensions
here can be handled similarly. For example, we can optimally
solve the problem of minimizing power subject to bounds on
area and on maximum delay from any input to any output.

4.1 Minimizing Maximum Delay

Instead of having a constant bound A� for the arrival time
at node �, we introduce one more variable a� to represent the
arrival time at node � (i.e. maximum delay), and we want to
minimize a�. As in Section 3.1, the problem can be formu-
lated as the mathematical program below:

PP � min. a�
s.t. aj � a� j � input���

aj �Di � ai i � G �W � �j � input�i�
Di � ai i � D
Li � xi � Ui i � G �W

As in Section 3.2, we relax all the constraints on arrival time to
obtain the problem LRS��. By Kuhn-Tucker conditions, we
can focus on those � in �� � f� � � �

P
k�output�i� �ik �P

j�input�i� �ji for � � i � n � s � � �
P

j�input��� �j�g.

Then LRS�� can be simplified to

LRS�� � min. L��x�
s.t. Li � xi � Ui i � G �W

where � � �
�� � � � � 
n�s�, 
i �
P

j�input�i� �ji for � �

i � n� s, and L��x� �
Pn�s

i�� 
iDi.
It is easy to see that LRS�� can be solved optimally by

the iterative local re-sizing algorithm in Section 3.3 and the
correspondingLDP can be solved optimally by the subgradi-
ent optimization method as described in Section 3.4. There-
fore the problem of minimizing maximum delay can also be
solved optimally by our approach.

In fact, the problem of minimizing maximum delay sub-
ject to area bound can also be optimally solved by our La-
grangian relaxation approach. The constraint on area can be
relaxed and incorporated into the objective function as well.
The function L��x�a� will be of the same form as the one in
Section 3.2.
4.2 Arrival Time Specifications on Inputs and Out-

puts
We show in this subsection that different arrival time speci-

fications on the input and output signals can be easily handled.
We demonstrate the idea by considering the problem of min-
imizing total area subject to different arrival time constraints
at inputs and outputs.

For i � D, let Ai be the arrival time specification of the
input signal at the �i � n�th input driver. For j � input���,
let Aj be the arrival time requirement on the output signal at
the jth output load. Then the problem can be formulated as
follows:

PP � min.
Pn

i�� �ixi
s.t. aj � Aj j � input���

aj �Di � ai i � G �W � �j � input�i�
Ai �Di � ai i � D
Li � xi � Ui i � G �W

We can obtain exactly the same optimality conditions on La-
grange multipliers as (2) in Section 3.2. The problemLRS��
is also in exactly the same form as the one in Lemma 1. So
LRS�� and LDP can be solved as before.
4.3 Power Consideration

For each i, the power consumption of component i is
proportional to its size xi. Therefore, the total power con-
sumption can be written as

Pn
i�� �ixi for some constants

��� � � � � �n. It is of the same form as the total component area.
So it is easy to see that it can be handle in exactly the same
way as component area.
4.4 More Accurate Gate Model

For higher precision timing requirements, more accurate
gate models are desirable. Although in Section 2, we model
a gate as a switch-level RC circuit with a resistance propor-
tional to the gate size, better gate models can be easily inte-
grated into our algorithm. We now show an example of using
precharacterized function as the delay model for gates.



The following precharacterized delay function D i�� and
output slope function Ti�� can capture the input slope effect
as well as the diffusion capacitance effect to the delay of gate
i:

Di�xi� ti� Ci� � bsi � bpiti � bqixi � briCi�xi�

Ti�xi� ti� Ci� � �si � �piti � �qixi � �riCi�xi�

where xi is the gate size, ti is the input rise or fall time of
gate i, Ci is the capacitance load, bsi� bqi� bri� �si� �qi and �ri are
precharacterized coefficients.

It is not difficult to see that while keeping the size of other
components fixed, the input slope ti is a linear function of xi
since gate i contributes only the linear term bcixi to its parents’
capacitance load. Hence the delay of gate i can be rewritten
as follows:

Di�xi� ti� Ci� � bsi� � bqi�xi � briCi�xi

where bsi� � bsi� bpi��sj � �pjtj � �qjxj�, bqi� � bqi� bpibci �rjxj , and
component j is the parent of component i. It is not hard to see
that after the substitution, Ai�x� � bciRi � �i � bqi�. Hence
our algorithm in Section 3 will still converge to the optimal
solution under this modification.

5 Experimental Results
We implemented our algorithms in an RS/6000 worksta-

tion. We ran our algorithms on adders of different sizes rang-
ing from 8 bits to 512 bits. Number of gates range from 120 to
15,360. Number of wires range from 96 to 12,288 (note that
the number of wires here means the number of sizable wire
segments). The total number of sizable components range
from 216 to 27,648. The lower bound and upper bound of
the size of each gate are 1 and 100 respectively. The lower
bound and upper bound of the width of each wire are 1 and 3

m respectively. The stopping criteria of our algorithm is the
solution is within 1% of the optimal solution.

Table 1 shows the runtime and storage requirements of our
algorithm. Even for a circuit with 27,648 sizable components,
the runtime and storage requirements of our algorithm are
only about half an hour and 23 MB respectively. The max-
imum delays for the solution of minimum gate and wire sizes,
and for our solution are also listed.

Figure 6 and Figure 7 show the runtime and storage re-
quirements of our algorithm respectively. Figure 6 shows that
the runtime increases roughly three times when the circuit size
is doubled. Hence the empirical runtime of our program is
about nlog �� log 	 
 n��
. Figure 7 shows that the storage re-
quirement is linear to the circuit size. The storage requirement
for each sizable component is about 0.8 KB.

Figure 8 shows the convergence sequence of our algorithm
SOLVE LDP on a 128-bit adder. It shows that our algorithm
converges steadily to the optimal solution. The solid line and
the dotted line represent respectively the upper bound and
lower bound of the optimal delay. The lower bound values
come from the optimal value of LRS�� at current iteration.

Runtime vs. Circuit Size
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Figure 6: The runtime requirement of our algorithm vs. circuit size.

Storage vs. Circuit Size
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Figure 7: The storage requirement of our algorithm vs. circuit size.

Note that the optimal solution is always inbetween the upper
bound and the lower bound. So these curves provide useful in-
formation about the distance between the optimal solution and
the current solution, and help users to decide when to stop the
program.

Figure 9 shows the area versus delay tradeoff curve of a
16-bit adder. In our experiment, we observe that to generate a
new point in the area and delay tradeoff curve, SOLVE LDP
converges in only about 5 iterations. It is because the � of
the previous point is a good approximation for that of the new
point and hence the convergence of SOLVE LDP is fast. As
a result, generating these tradeoff curves requires only a little
bit more runtime but provides precious information.
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