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Abstract

Routing plays an important role in determining the total circuit area and circuit performance

and hence must be addressed as early as possible during the design process� In this paper�

an e�ective routing�driven approach for technology�dependent logic synthesis which relies on

alphabetic tree construction is presented� Alphabetic trees are trees which are generated under

the restriction that the initial order on the leaf nodes is maintained while not introducing any

internal edge crossing�

First� a mechanism for generating all alphabetic trees on a given number of leaf nodes

is presented� Next� the number of such trees is calculated under di�erent height and degree

restriction and used to derive upper bounds on the complexity of alphabetic tree optimization

problem� A classi�cation of tree cost functions for which alphabetic trees can be generated

in polynomial time is also proposed� Speci�cally� alphabetic tree optimization algorithms are

applied to generate optimal alphabetic fanout trees� For fanout optimization we obtained ��	

improvement in chip area at the cost of �	 loss in performance�

Key words
 Alphabetic trees� Tree enumeration and optimization� Fanout optimization�

Routing�driven logic synthesis�



� Introduction

With the move towards deep�submicron technology� circuit designers enter a new world in which

interconnect becomes a dominant factor in determining all costs associated with VLSI chips�

Even in the submicron circuits� routing a�ects the circuit signi�cantly� Currently� routing

accounts for about �����	 of total chip area� ���
�	 of the circuit delay and a signi�cant part

of the total power dissipation� A combined e�ect of ever�increasing dominance of interconnect

and synthesis tools that ignore the interconnect e�ects is that the area� delay� and�or power

dissipation constraint violations are increased substantially after the interconnect contribution

is taken into account� This results in a dramatic increase in the number of synthesis�layout

iterations to meet the area� delay� or power dissipation constraints� increasing the design time

signi�cantly� Hence� addressing routing issues at all levels of design abstraction has become

a necessity� This paper is a step toward achieving this objective
 speci�cally� it describes

a routing�driven approach for the performance�oriented technology dependent phase of logic

synthesis using alphabetic trees�

Technology dependent phase of logic synthesis mainly consists of three stages
 technology

decomposition� technology mapping and fanout optimization� Technology decomposition� which

is the procedure for converting an optimized Boolean network into a � input NAND�decomposed

network� is a precursor to the technology mapping step� Technology mapping problem is the

optimization problem of �nding a minimum cost covering of this �subject graph� by choosing

from a collection of �primitive graphs� constructed for each gate in the library� In past years�

technology independent logic synthesis research has concentrated on techniques that maximize

logic sharing resulting in circuits with high number of fanouts per net� Excessive loads at such

high fanout gates after technology mapping result in considerable performance degradation�

Fanout optimization which generates bu�er�inverter trees at the output of such heavily loaded

gates is thus necessary to improve the circuit performance�

After appropriate technology�independent optimizations� both technology decomposition

and fanout optimization essentially become tree optimization problems� with di�erent com�

�Given a weighted set of leaf nodes� the objective of a tree optimization problem is to generate a tree that

optimizes a tree cost function de�ned on weights of tree nodes calculated using a combining function where

the combining function is a function using which weight of a parent node is calculated given the weights of its

children�
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bining and tree cost functions� Hence� algorithms developed for tree optimization are directly

applicable to technology decomposition and fanout optimization� In this paper� we develop al�

phabetic tree generation�optimization algorithms and then apply them to the fanout optimiza�

tion problem� Appliaction to technology decomposition is straight�forward� It is not included

here due to space limitation�

��� Prior Work

For fanout optimization� tree optimization algorithm should be able to generate a non�binary

tree under a unit fanout delay model or under a library delay model ��

Golumbic ���� and Hoover et al� ���� addressed fanout optimization under a unit delay

model with a restriction on maximum number of fanouts per bu�er� Golumbic�s �combinatorial

merging� algorithm ���� is an application of t�ary Hu�man tree generation procedure to logic

synthesis� Hoover et al� ���� present an algorithm to obtain networks of bounded fanin and

fanout� so that both size and depth are not increased by more than a constant factor� Unit delay

model� however� ignores the load and hence is not adequate for fanout optimization� Berman et

al� ���� Singh et al� ����� and Touati ���� used more realistic unit fanout and library delay models�

It was shown in ��� ��� that with these delay models� even under very simplistic assumptions�

fanout problem is NP�hard� These results have motivated various heuristic solutions� Berman�s

algorithm generates optimal fanout trees for a restricted set of trees with identical required

times for all sinks� Singh�s heuristics consists of three operations
 repowering� critical signal

isolation� and load balancing� Touati�s work on fanout optimization is the most comprehensive

to date� He extended Golumbic�s work to take into account varying loads and variable node

degrees for internal nodes of the fanout tree� To integrate critical signal isolation with load

balancing� Touati used �LT�Trees� which balance loads and isolate critical signals simultaneously

by grouping signals with similar required times at similar depths of the fanout tree�

�Unit delay model assumes that every gate has delay of � unit irrespective of the load� Unit fanout and library

delay models are more accurate measures of circuit delay� Under the unit fanout delay model� delay of the gate

is given by ���� number of fanout� where � � � � �� Library delay model uses accurate� pin�dependent values

for intrinsic delay and drive of the source as well as accurate load values for the sinks�
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��� Layout�driven Logic Synthesis using Alphabetic Trees

Using any of the existing fanout optimization mechanisms� if the original circuit graph is planar�

the resultant circuit graph may become non�planar� In general� this is not desirable since it

tends to increase the routing cost for the resulting circuit graph� Even if the original circuit is

non�planar� it is desirable to have a fanout optimization algorithm that does not increase the

nonplanarity and hence does not create more routing di�culties�

Alphabetic fanout trees provide a good trade�o� between circuit performance and routability�

These are the trees that maximize the required time at the root of the fanout tree subject to

a �xed linear order on the sinks� without creating any internal edge crossings� Linear order

on the output nodes for fanout trees is derived from a �companion placement� solution of the

circuit ����� This placement is incrementally updated during technology mapping and relaxed

�to eliminate gate overlaps� after fanout optimization�

The penalty for using alphabetic trees is minimal� It has been shown that under the unit

delay model� increase in depth is at most one� and increase in size is a constant multiplicative

factor for optimal alphabetic fanout trees as compared to optimal nonalphabetic trees ���� ����

Instead of using placement information� topological �structural� information to derive the

order on the leaf nodes can be used� Topological information is more abstract than the placement

information and hence is more appropriate for use whenever the exact gate implementation of

the circuit is not known� Other mechanisms to order leaf nodes during fanout optimization can

be used as well� For example� an ordering based on required times at the leaf nodes of a fanout

tree can be used on the premise that sinks with similar required time are likely to be on the

same level of the fanout tree �����

The paper is organized as follows� The next subsection provides a brief introduction to

alphabetic trees and the concept of enumeration and optimization� In section � and �� some

relevant results on alphabetic tree enumeration and algorithms for alphabetic tree optimization�

respectively� are presented� In section �� we introduce the alphabetic fanout optimization prob�

lem and a set of rules which increase the e�ectiveness of our algorithm� We also describe the

implementation and present our experimental results in this section� Concluding remarks and

future directions are presented in section ��
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��� Introduction to Alphabetic Trees

Tree optimization seeks to generate the best tree for a given application� If there are n nodes in

a tree where each node i has a weight wi� a measure of the quality of this tree can be obtained

by de�ning a tree cost function in terms of the weights wi and parameters associated with the

tree structure� Using this tree cost function� one tree structure can be compared with another�

Pioneering work in tree optimization was done by Hu�man ����� He assumed that only leaf

nodes were weighted� Weight of an internal node is obtained from weights of its immediate

children using the weight combining function� For example� if nodes i and j with weights wi

and wj are combined as children of node k� then wk � F �wi� wj�� where F denotes the combining

function� The application he was addressing was that of generating a pre�x�free binary encoding

of a set of symbols with minimumaverage codeword length given the probability of occurrence of

each symbol� i�e�� generating an optimal binary tree minimizing
Pn

i�� wili where n is the number

of leaf nodes� wi is the weight of leaf node i� and li is the length of the path from leaf node i to the

root of the tree� The corresponding combining function was F �wi� wj� � wi�wj� Hu�man also

proposed generalization of the algorithm to generate optimal t�ary trees� It was later discovered

that Hu�man�s algorithm generates optimal trees not only for the additive combining function

given above� but also for other combining functions �e�g�� the minimax combining function

where F �wi� wj� � max�wi� wj� � � and the tree cost function is maxi�wi � li��� Glassey and

Karp ��� provided the necessary and su�cient conditions for a combining function to generate

optimal trees using Hu�man�s algorithm� Parker ���� provided a more precise characterization

of combining functions as quasi linear functions and showed that these functions always generate

optimal trees under Hu�man�s algorithm when the tree cost function is schur concave� Use of

Hu�man�s algorithm for several applications has been reported in ���� �� 
� ����

Variations to tree optimization� e�g�� generation of optimal trees with height constraint�

generation of optimal trees minimizing the variance of tree depths� generation of optimal trees

given an order on the leaf nodes etc�� have been proposed for di�erent applications� Trees

generated under an order restriction on the leaf nodes are known as alphabetic trees� This

name was coined in a paper by Gilbert and Moore ��� where they introduced the concept of

alphabetic trees in the context of encoding an alphabet with a linear ordering relationship

between the letters of the alphabet� Subsequently� alphabetic trees have found applications

in �elds of computer science �search trees� information storage and retrieval etc�� ���� ��� ��
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��� ��� ��� ��� ��� ��� matrix multiplication ��
�� information theory ��� ��� ���� fault diagnosis

�and similar applications like medical diagnosis� laboratory analysis� genetic identi�cation etc��

�
� ��� ���� and logic synthesis ���� ����

Pioneering work in tree enumeration of alphabetic trees was done by Cayley in ���� ���

where he provided the number of alphabetic trees on n leaf nodes� He calculated the number of

alphabetic trees while allowing internal nodes to have one or more children� He also considered

a case where each internal node bifurcates� i�e�� where the resulting alphabetic tree is binary�

and rediscovered the catalan numbers which give the number of alphabetic binary trees on n��

leaf nodes� Catalan numbers were again derived by Gilbert and Moore in their classic paper ���

where they provided an O�n�� algorithm to obtain the best binary alphabetic tree� After these

initial works� the tree enumeration for alphabetic trees has been left unaddressed� Speci�cally�

the problem of enumerating all alphabetic trees on n leaf nodes where each internal node at

least bifurcates� has been left unresolved� This is an important problem as all applications of

alphabetic trees listed above require that each internal node at least bifurcates�

The �eld of tree optimization of alphabetic trees has been more active� Knuth ���� improved

upon O�n�� algorithm of Gilbert and Moore for constructing an optimal alphabetic binary

tree by proposing an O�n�� algorithm utilizing the concept of monotonicity� Hu and Tucker

���� proposed an algorithm similar to Hu�man�s algorithm with run time of O�nlogn�� Hu

et al� ���� de�ned a class of combining functions called regular functions and showed that

all combining functions which are regular functions generate optimal alphabetic binary trees

using their algorithm� Kirkpatrick and Klawe ���� proposed a linear algorithm for alphabetic

binary tree optimization under minimax combining function with integer leaf weights and an

O�nlogn� algorithm for real leaf weights� Wessner ���� and Itai ���� proposed O�n�h� algorithms

to generate optimal alphabetic binary trees with a height restriction h�

For multi�way �i�e�� non�binary� alphabetic trees� the work has mainly focused on additive

or minimax cost functions� Gotlieb ���� and Vaishnavi et al� ���� independently provided an

O�n�logt� algorithm for generating optimal alphabetic trees where each internal node has at

most t children� Vaishnavi et al� also identi�ed a tree cost function for which O�n�t� is the best

possible runtime and showed that O�n�logt� complexity is possible only for a restricted class of

tree cost functions� These approaches were proposed for the additive combining function �except

for Coppersmith et al� ���� who have addressed the minimax combining function proposing an

O�nlogn� algorithm for a unit delay based minimax combining function�� However� runtimes of
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O�n�t� holds for a larger class of combining functions�

This paper solves the important problem of counting the number of alphabetic trees where

each internal node at least bifurcates� Recurrence equations for the number of alphabetic

trees with bounded height or bounded degree or both are also derived� Next� tree optimization

algorithms for alphabetic trees with general tree cost functions are provided and it is shown that�

with appropriate restrictions� these algorithms reduce to the best known algorithms proposed

for additive or minimax tree cost functions� Finally� the application of the tree optimization

algorithms to the fanout optimization problem in logic synthesis is presented�

� Alphabetic Tree Enumeration

��� Terminology and Notation

We follow the standard de�nitions of graphs and trees ����� Trees are connected graphs with no

cycles� Weighted graphs refer to node�weighted graphs� A forest refers to a set of trees built

on some set of leaf nodes such that each tree is node�disjoint from any other tree and the set

of trees in the forest cover the set of leaf nodes� Support of a forest F refers to the set of leaf

nodes corresponding to the forest F � The Notation used in this paper is as follows� A k�tree

forest with support fLi� � � � � Li�dg is a set of k trees such that support of these k trees partition
fLi� � � � � Li�dg� This k�tree forest is denoted by Fk�i�i�d� A ��tree forest on leaf node i through

i� d� namely� F��i�i�d is denoted as Ti�i�d� A ��tree forest on leaf nodes i through i � d with a

height bound h� a degree bound t and a root degree bound r �where r � t� is denoted by T h�r�t
i�i�d�

A collection of alphabetic forests is denoted by �� Speci�cally� a collection of k�tree forests

on leaf nodes i through i� d is denoted by �k�i�i�d� A collection of ��tree forests on leaf nodes

i through i� d� namely ���i�i�d� is also denoted by �i�i�d� A collection of ��tree forests on leaf

nodes i through i�d with a height bound h� a degree bound t and a root degree bound r �where

r � t� is denoted by �h�r�t
i�i�d� The corresponding number of ��tree forests in these collections of

forests on d leaf nodes is denoted by  d� For example� j�h�r�t
i�i�dj �  h�r�t

d � A collection of ��tree

forests on leaf nodes i through i� d with an exact height restriction h� a degree bound t� and a

root degree bound r �where r � t� is denoted by �
�h��r�t
i�i�d � With this notation� �

h�t�t
i�i�d corresponds

�Note that we had to resort to rather complicated notations to capture the theory in this section� A summary

of theoretical results in Sections 	 and 
 is provided in Section 
��






Figure �
 Illustration of operations Join and Split

to collection of alphabetic ��tree forests with height restriction h and degree restriction t� We

denote this as �h�t
i�i�d� Noting that �

i�j�k
i�i�d � �d�d���d��

i�i�d �i � d and �j� k � d � �� we replace

each index for which there is no restriction by �� i�e�� on leaf nodes i through i� d� collection

of ��tree forests without height restriction is denoted by ���t
i�i�d while collection of ��tree forests

without degree restriction is denoted by �h��
i�i�d� A collection of ��tree forests on leaf nodes i

through i�d� namely� �i�i�d is the same as ����
i�i�d� Finally� �i�i gives the set of alphabetic ��tree

forests on a single leaf node� i�e�� the leaf node itself�

��� Enumeration

De�nition ��� Given a forest F with rooted trees� Join of F �denoted by �F � is obtained by

generating a rooted ��tree forest T with the roots of trees in F as children of the root of the tree

in ��tree forest T �Figure ���

De�nition ��� Given a rooted ��tree forest T � Split of T �denoted by
�
�� � �T � is obtained by

deleting the root making all its children rooted trees in a forest F �Figure ���

For example� consider a forest with � trees� i�e�� F	 � fT�� T�� T�� T	g as shown in Figure ��
Applying Join operation to F	 results in a ��tree forest F� � fTg� By applying Split on F�

we get back F	 � fT�� T�� T�� T	g� Thus� �� ��� � �F�� � F� and
�
�� � ���F	� � F	�

These operations are also applicable to a collection of forests� Given a collection of

forests �i�i�d� ��i�i�d results in a collection of ��tree forests such that each ��tree for�

est corresponds to Join of some forest in �i�i�d� Likewise� given a collection of ��

tree forests �i�i�d�
�
�� � ��i�i�d results in a collection of forests such that each forest in

this collection corresponds to Split of some ��tree forest in �i�i�d� For example� if

� � ffTi�i�j�� Ti�j����i�k� � Ti�k����i�dg� fTi�i�j��� Ti�j�����i�k�� � Ti�k�����i�dgg� where j� � k� �

d and j�� � k�� � d� then �� � �� � ffT �
i�i�dg� fT ��

i�i�dgg where fT �
i�i�dg �

�



Figure �
 A graphical illustration of one�to�one correspondence between �i�i�� and
S	
k���k�i�i��

�fTi�i�j�� Ti�j����i�k� � Ti�k����i�dg and fT ��
i�i�dg � �fTi�i�j�� � Ti�j�����i�k�� � Ti�k�����i�dg and �

�� � ��� �

�� Split can also be applied on a collection of forests where each forest has di�erent number

of trees�

For the purpose of alphabetic tree enumeration� all distinct alphabetic trees on leaf nodes �

through n need to be counted� In the rest of the paper� we use ���n to refer to this exhaustive

collection of trees on n leaf nodes and  n to refer to the number of such trees� i�e��  n � j���nj�

Lemma ���

�i�i�d �
d���
k��

���k�i�i�d� ���

Proof �i�i�d could be partitioned with respect to the arity of the root of each element of �i�i�d�

The lemma follows from the observation that there is a one to one correspondence between each

element of �k�i�i�d and elements of �i�i�d with k�ary roots� This is also shown in Figure ��

Corollary ���

�
�� � ��i�i�d �

d���
k��

�k�i�i�d ���

De�nition ��� Given two sets �� and ��� we de�ne their Cartesian product �denoted by ��
as	 �� ���� � fF j F � F � � F ��� F � 	 ��� F �� 	 ���g�

�



Theorem ���

�i�i�d �
d���
j�


����i�i�j ��i�j���i�d� � ���i�i�j � � ��� � ��i�j���i�d���

����i�i�d�� ��i�d�i�d� for d � � ���

Proof First� we show that

�i�i�d �
d���
j�


���i�i�j � �
d�j�
k��

�k�i�j���i�d�� for d � � ���

Examining equation ���� for some values of j and k� we are Joining a ��tree forest with

support fi� � � � � i � jg with a k�tree forest with support fi � j � �� � � � � i � dg to generate a
��tree forest with support fi� � � � � i � dg� Increasing value of j in this equation corresponds

to incrementally adding more leaf nodes to the leftmost subtree of the tree root� Denote by

��i�i�j��i�d the collection of alphabetic trees on leaf nodes i through i � d such that � � j � d

and leaf node i� j is the rightmost leaf node of the leftmost subtree� Hence�

�i�i�d �
d���
j�


��i�i�j��i�d ���

A generalization of lemma ��� gives us


��i�i�j��i�d �
d�j���
k��

���k��i�i�j��i�d� �
�

However� all k�ary trees with node i � j as the rightmost leaf node of the leftmost tree can be

generated by Joining each tree on leaf nodes i through i�j with all possible k
� rooted forests
on leaf nodes i� j � � through i� d� This allows us to rewrite equation �
� as


��i�i�j��i�d �
d�j���
k��

���i�i�j ��k���i�j���i�d�

�
d�j�
k��

���i�i�j ��k�i�j���i�d�

Substituting the above in equation ��� we get


�i�i�d �
d���
j�


d�j�
k��

���i�i�j ��k�i�j���i�d�

�
d���
j�


���i�i�j � �
d�j�
k��

�k�i�j���i�d��

�



Figure �
 Generating alphabetic trees for a� � leaf node� b� � leaf nodes� c� � leaf nodes� and d�

� leaf nodes

The second term of the Cartesian product above corresponds to all k�tree forests for � �
k � d
 j on d
 j leaf nodes �leaf nodes i� j � � through i� d�� All possible k�tree forests on

leaf nodes i � j � � through i � d for � � k � d 
 j� namely �k�i�j���i�d� can be obtained by

Splitting each element of �i�j���i�d with k�ary root� This gives the following d
 � equations�

���i�i�d � �i�i ��i���i�d � � � � ��i�i�d�� ��i�d���i�d ��i�i�d�� ��i�d�i�d

���i�i�d � �i�i ����i���i�d � � � � ��i�i�d�� ����i�d���i�d

���
���

�d���i�i�d � �i�i ��d�i���i�d

Taking the union of RHS�s and then Joining each element gives us �i�i�d� Performing the same

operation on LHS�s and applying corollary ��� on terms of the last d
 � equations above gives
us the desired result�

Equation ��� is illustrated for n � �� �� � and � in Figure �� From ����  n for n leaf nodes

is determined using a recursive di�erence equation given below� Detailed derivation is omitted

to save space�

��



 n �

����
���

�
Pn��

j�� � n�j j� �  n�� �for n � �

� for n � �

���

The above equation is a convoluted recurrence equation whose solution is given below�

Lemma ��� The number of alphabetic trees on n leaf nodes is given by	

 n � 
�
�

bn��cX
j�


�
BB�

n
 j

j

	
CCA �

�n��j

�
BB�

���

n
 j

	
CCAfor n � � ���

Detailed proof is omitted to save space�

This sequence is identical to the sequence generated for dissection of a polygon by Motzkin

����� The same sequence is also derived in ���� while solving equations for a pair of inverse series

without reference to any particular application� The formula proposed there is given below


 n �
nX

k�


�
��j
�
BB�

�n 
 j

j

	
CCA

�
BB�

�n 
 �j

n
 j

	
CCA

�n�j

n
 j � �
���

Indeed� we have formally shown that equations ��� and ��� are equivalent� Motzkin has also

shown that for large n  n��� n � ����� implying that  n is O�

n��

It is interesting to note that if we restrict alphabetic trees to be binary� equation ��� is

reduced to


�i�i�d �
d���
j�


���i�i�j ��i�j���i�d� for d � �

This gives rise to a simpler convoluted recurrence equation of the form  n �
Pn��

j��  n�j j for

n � � whose solution gives the Catalan numbers� Thus� the number of alphabetic binary trees

on n leaf nodes is given by


�
BB�

�n 
 �

n 
 �

	
CCA
�

n

 �n��

p
��n
 ����� for large n� ����

Cayley ���� and Gilbert and Moore ��� have independently derived expressions for the number

of alphabetic binary trees which are equivalent to the Catalan numbers�

��



��� Bounded Height Trees

Height of a tree is the maximum number of edges on the path from root to any leaf node� Let

us now enumerate alphabetic trees with height restriction h� The tree enumeration equation for

bounded height alphabetic trees is derived from equation ��� as


�h��
i�i�d �

d���
j�


����h����
i�i�j ��h����

i�j���i�d� � ���h����
i�i�j � � ��� � ��h��

i�j���i�d���

����h����
i�i�d�� ��h����

i�d�i�d� for d � � ����

Correctness of the equation follows from the observation that alphabetic trees with maximum

height h can be generated by Joining all alphabetic trees with maximum height h 
 �� The
number of such trees is computed using the following recursive di�erence equation


 h��
n �

����
���

Pn��
j�� � 

h����
j � h����

n�j �  h��
n�j �� �  

h����
n�� for n � ��h � n

� for n � � or h � �

����

Unlike equation ���� equation ���� is a multi�variable recurrence equation for which no

closed form solutions exists� �This also applies to equation ���� and ���� in Section ��� and ����

respectively�� However� equation ���� can easily be used to derive the number of trees given the

number of leaf nodes and a height constraint�

Using  h��
n and  h����

n � the number of alphabetic trees with exact height h can also be

derived� i�e��  �h���
n �  h��

n 
 h����
n with the initial condition  �����

n �  ���
n �

Maximum height of a tree with n leaf nodes is n
 �� Hence� the number of alphabetic trees
on n leaf nodes is also given by


n��X
h��

 �h���
n �

n��X
h��

� h��
n 
 h����

n � �  ���
n �  n����

n ����

��� Bounded Degree Trees

Some applications require that internal nodes have no more than t children� The corresponding

enumeration equation is


���r�t
i�i�d �

d���
j�


������t
i�i�j ����t

i�j���i�d� � �����t
i�i�j � �

�
�� � ����r���t

i�j���i�d���

��



������t
i�i�d�� ����t

i�d�i�d� for d � �� � � r � t � d� � ����

Note that ���r�t
i�i�d � Null set for r � � or t � ��

Hence


 ��r�t
n �

���������
��������

Pn��
j�� � 

��t
j � ��t

n�j �  
��r���t
n�j �� �  ��t

n�� for n � �� � � r � t

� for r � �

� for n � � and r �� �

����

��� Bounded Height and Bounded Degree Trees

In the most general setting� alphabetic trees with both degree and height restriction can be

enumerated� Corresponding enumeration equation and recurrence equations are as given below�

�h�r�t
i�i�d �

d���
j�


����h���t
i�i�j ��h���t

i�j���i�d� � ���h���t
i�i�j � �

�
�� � ��h���r���t

i�j���i�d���

����h���t
i�i�d�� ��h���t

i�d�i�d� for d � �� � � r � t � d� ��h � n ��
�

Again� �h�r�t
i�i�d � Null set for r � � or t � ��

 h�r�t
n �

���������
��������

Pn��
j�� � 

h���t
j � h���t

n�j �  h�r���t
n�j �� �  h���t

n�� for n � �� � � r � t�h � �

� for r � �

� for h � � or n � � when r �� �

����

It should be noted that solution to above equation will automatically provide solutions to

equation ���� equation ���� and equation ���� as special cases�

� Alphabetic Tree Optimization

Alphabetic tree optimization implies �nding the �best� alphabetic tree given a combining func�

tion and a tree cost function� Formally� the problem of alphabetic tree optimization can be

de�ned as given below� Here� without loss of generality� we assume that the tree cost function

is to be minimized�

��



Problem ��� Alphabetic Tree Optimization

Instance� A set of n ordered and weighted leaf nodes �L�� L�� � � � � Ln� with corresponding

weights WLi and a combining function F which combines t � � nodes to generate an

internal node Ip with weight WIp � F �WchildIp��
� � � � �WchildIp�t

� and a tree cost function

CT � C�WL�
� � � � �WLn��

Problem� Generate a minimum cost tree that has no internal edge crossing�

The following algorithm enumerates all alphabetic trees and selects the best alphabetic tree

with respect to the given tree cost function�

Algorithm ��� GenBestAlpTree �N �
N is a set of n leaf nodes with weights

begin

� for d � � to n 
 � do
� for i � � to n
 d do

� if d � � �i�i �SingleNodeTree�i�

� else

� for l � � to d �l�i�i�d � Null


 for j � � to d
 � do
� ForEachElement F��i�i�j of ���i�i�j do

� for l � � to d 
 j do

� ForEachElement Fl�i�j���i�d of �l�i�j���i�d do

�� �l���i�i�d � �l���i�i�d
SfF��i�i�j � Fl�i�j���i�dg

�� �i�i�d � �i�i�d
Sf��F��i�i�j � Fl�i�j���i�d�g

�� Result � FindBest����n�

end

Here d corresponds to the number of leaf nodes being considered in the main loop of the

algorithm� and i corresponds to the �rst leaf node of the set of leaf nodes being considered in

the current loop� Thus� i � d corresponds to the last leaf node in the set of leaf nodes being

considered in the current loop� j corresponds to the number of leaf nodes under the leftmost

branch� Thus� d
j corresponds to the number of leaf nodes under all other branches of the tree�

��



l corresponds to the number of siblings of the leftmost branch� The braces used in line �� signify

a set generation operation� Line �� results in l���tree forests by generating a set from the union

of ��tree forests on leaf nodes i to i� j with l�tree forests on leaf nodes i� j�� to i�d� Line ��

generates the corresponding ��tree forest by Joining these l� ��tree forest� The algorithm can

be easily modi�ed to generate optimal alphabetic trees with each internal node having at most t

children by restricting l � t� With small modi�cations� a generic algorithm for bounded�height

and bounded�degree alphabetic tree enumeration can be obtained using equation �����

Lemma ��� The time and space complexity of algorithm 
�� are O�n�
n��� and O�n�
n��

respectively�	

Proof Motzkin ���� has shown that for large n�  n��� n � ����� Hence�  n is O�
n�� In line

� of the algorithm� there are O�
j��� elements in ���i�i�j� Likewise� there are totally O�
d�j�

elements in the right branches of the tree �corresponding to line �� �� �� and ���� Thus� the total

time complexity of inner loop corresponding to line ���� is O�
d���� Hence� the time complexity

can be calculated as


n��X
d��

�
n�dX
i��

�
d��X
j�



d�� � d�� � n �
n��X
d��

�n
 d��d
d�� � d�� � O�n�
n���

Since there are O�n�� ordered subsets of leaf nodes �e�g�� n 
 � two leaf node sets� n 
 �
three leaf node sets� etc���� assuming that the information about an n leaf tree can be stored

in O�n� space� a naive implementation of this algorithm requires space complexity O�n�
n� for

maintaining all alphabetic forests for every ordered subset of leaf nodes�

In general� depending on the combining and tree cost functions� complexity of determining

the best tree may be reduced by considering only a subset of all tree structures which are non�

inferior with respect to each other for the purpose of optimizing the tree cost� In particular�

if the tree is subtree optimal� as will be de�ned next� the optimal alphabetic binary trees can

be found in polynomial time for arbitrary tree cost functions� Similarly� the optimal alphabetic

non�binary tree can be found in polynomial time if the tree is subforest optimal as de�ned next�

�These bounds are not tight�

��



��� Subtree and Subforest Optimality

Given a set of internal nodes I � fI�� I�� � � � � Img and leaf nodes L � fL�� L�� � � � � Lng of a tree
where Im is the root of the tree� cost of the tree is given by CT � C�WL�

� � � � �WLn� where WN

denotes weight of leaf node N � The objective is to solve problem ���� Consider two trees T and

T � on leaf nodes fL�� � � � � Lng� Let us assume that these trees only di�er in subtrees rooted at
internal node I� that is� T and T � are identical except for di�erences between subtrees TI and

T �
I � Then� the tree is subtree optimal �ST�optimal� if we can de�ne a subtree cost function

H for every such TI and T �
I such that� HTI � HTI�

� CT � CT ��

De�nition ��� A tree is ST�optimal if the tree cost is monotone non�decreasing in subtree cost

of each of its subtrees� that is� if we increase �decrease� the subtree cost of some subtree� the tree

cost will not decrease �increase�� Necessary conditions for ST�optimality are	

�� The tree cost function CT is decomposable in terms of subtree cost function of each of its

subtrees� i�e�� CT � G�HTI �WL� �I 	 I�


� Function G is independent of the tree structure TI at node I�

�� Function G is monotone non�decreasing in HTI �

This allows us to independently optimizeHTI �I 	 I using dynamic programming� Hence� to
determine whether the given tree optimization problem is ST�optimal� a function HT satisfying

the above conditions needs to be identi�ed� Fortunately� for most ST�optimal trees� the tree

cost is easily decomposable in terms of the tree cost of its subtrees �i�e�� HT � CT �� In Figure ��

let fL�� L�� L�� L	� L
g be the set of leaf nodes with weights fWL�
�WL�

�WL�
�WL�

�WL�
g� Two

alphabetic binary tree structures are shown in the �gure� Both additive tree cost and minimax

tree costs allow us to decompose the tree cost in terms of tree costs of its subtrees� resulting in

ST�optimality of the additive and minimax tree cost functions�

The implication of ST�optimality is that if a tree is ST�optimal� with a dynamic programming

based approach� only the optimal subtrees for each subset of leaf nodes need to be maintained�

This is su�cient to reduce the time complexity of alphabetic binary tree optimization from

exponential to polynomial as described in section ���� However� for non�binary trees� this is not

su�cient to reduce exponential time complexity to polynomial� Polynomial runtime is achieved

if the tree is subforest optimal as described next�

�




Figure �
 Examples of ST�optimal tree cost functions

Let us consider an internal node I of a tree T with V immediate children and leaf sup�

port fLi� � � � � Li�dg� Consider any subset D of these V children such that these children

have continuous leaf support fLi�j� � � � � Li�kg where � � j � k � d� Let D � jDj where
� � D � V � Let us denote the corresponding tree structures as T�� T�� � � � � TD with tree

costs CT�� CT�� � � � � CTD� respectively� We de�ne this set of trees as a subforest of the origi�

nal tree T � Now� let us consider another tree T � that has identical tree structure except for

the tree structures rooted at these D children of internal node I� Let us denote the corre�

sponding tree structures as T �
�� T

�
�� � � � � T

�
D with tree costs CT �

�
� CT �

�
� � � � � CT �

D
� Then� the tree

is subforest optimal �SF�optimal� if we can de�ne a subforest cost function H such that�

H�CT�� CT�� � � � � CTD� � H�CT �
�
� CT �

�
� � � � � CT �

D
�� CT � CT ��

De�nition ��� A tree is SF�optimal if the tree cost is monotone non�decreasing in subforest

cost of each of its subforests� that is� if we increase �decrease� the subforest cost of some subforest�

the tree cost will not decrease �increase�� Necessary conditions for SF�optimality are	

�� The tree cost function CT is decomposable in terms of the subforest cost function of each

of its subforests� i�e�� CT � G�H�CT� � CT�� � � � � CTD��WL� for all subforests D of T �


� Function G is independent of the subforest structure of D�

��



�� Function G is monotone non�decreasing in H�CT�� CT�� � � � � CTD��

SF�optimality is a generalization of ST�optimality with ST�optimality being a special case of

SF�optimality when we have D � �� Indeed� a notion of strong SF�optimality can be proposed

that distinguishes between two forests of any number of trees on the same set of leaf nodes�

This is however� outside the scope of this paper�

It is interesting to note here that conditions of SF�optimality are subsumed by the princi�

ple of optimality �see ��
�� for example� used in characterizing the decomposable problems for

the dynamic programming approach� Hence� conditions for SF�optimality can be viewed as

specialization of the principles of optimality for tree optimization�

Examples of SF�optimal trees include the original Hu�man trees with the additive cost

function as shown in Figure �� Minimax trees are also SF�optimal� A variation of Minimax trees�

namely� trees with combining function F �W�� � � � �Wn� �Max�W�� � � � �Wn��n are SF�optimal�

These minimax trees are very important in many applications� specially in logic synthesis where

this latter combining function corresponds to the unit fanout delay model� SF�optimality of unit

fanout delay model has allowed us to propose an optimal alphabetic fanout tree in polynomial

time� An example of the minimax combining function with unit fanout delay model is shown

in Figure ��

Note that ST�optimality �or SF�optimality� is a property of the tree optimization problem be�

ing solved� Indeed� the combining functions and the tree cost functions determine ST�optimality

or SF�optimality of trees generated and the underlying tree optimization problem� It should

also be pointed out that ST�optimality and SF�optimality apply to alphabetic as well as non�

alphabetic trees� In essence� ST�optimality characterizes binary trees that permit the use of

dynamic programming approach while guaranteeing time complexity of O�n�� or better while

strong SF�optimality characterizes non�binary trees that permit use of dynamic programming

approach while guaranteeing time complexity of O�n�� or better� Trees which are SF�optimal

but are not strongly SF�optimal allow use of dynamic programming approach while guarantee�

ing time complexity of O�n	� or better� We discuss the time and space complexity issues for

ST�optimal and SF�optimal trees next�

��� ST�optimal Trees

��



Figure �
 SF�optimal tree cost functions

��



Figure 

 A graphical illustration of ST�optimal alphabetic tree generation equation

Lemma ��� Consider a tree optimization problem� If the resulting trees are ST�optimal� then

there exists an optimal tree with optimal subtrees�

Proof Since the tree is ST�optimal� we could always substitute any non�optimal subtree by

an optimal subtree without increasing the tree cost�

Corollary ��� To generate an optimal alphabetic tree using equation ���� it is su�cient to

consider only optimal trees as arguments to the Join operator�

Let �i�i�j denote the optimal tree on the set of leaves �i� � � � � i�j� and St�i�j���i�d denote the

collection of alphabetic trees on leaves �Li�j��� � � � � Li�d� such that for each tree in St�i�j���i�d�

every subtree is optimal� Then� equations ��� and ��� can be rewritten as


St�i�i�d �
d���
j�




��f�i�i�j� �i�j���i�dg� � ���f�i�i�jg � � ��� � �St�i�j���i�d���

�

�
��f�i�i�d��� �i�d�i�dg� for d � � ����

St n �

����
���

Pj��
j�� �St n�d � �� � � if n � �

� if n � �

����

��



Lemma ��� The number of ST�optimal alphabetic trees on n leaves �n � ��� St n� is equal to

�n�� 
 ��

Proof We prove this by induction�

� For two leaf nodes St � � ����
� � � which is true since there is only one tree structure
on two leaves�

� Assuming the above equation is true for i � �� we prove its correctness for i� �


St i�� �
i��X
d��

�St i���d � �� �
i��X
d��

��i�d 
 � � �� � � �
i��X
d�


��d� � � 
 �
 � �i 
 �

Thus� St n � �n�� 
 ��
For all practical purposes� St���n is the largest collection of trees any optimal alphabetic

tree construction algorithm has to consider when the tree is ST�optimal� This leads to an upper

bound on the complexity of any ST�optimal alphabetic tree problem� A corresponding algorithm

is shown below�

Algorithm ��� GenBestAlpTree�STOptimal �N �
N is a set of n leaf nodes with weights

begin

� for d � � to n 
 � do
� for i � � to n 
 d do

� if d � � St�i�i �SingleNodeTree�i�

� else

� �i�i�d � Null


 for l � � to d St�l�i�i�d � Null

� for j � � to d
 � do
� for l � � to d
 j do

� ForEachElement Fl�i�j���i�d of St�l�i�j���i�d do

�� St�l���i�i�d � St�l���i�i�d
Sff�i�i�jg � Fl�i�j���i�dg

�� �i�i�d � ChooseBest��i�i�d���f�i�i�jg � Fl�i�j���i�d��

�� Result � ���n

end

��



Algorithm ���� is similar to algorithm ���� However� algorithm ��� does not enumerate

through each element of St�i�i�j corresponding to line � of algorithm ��� because St���i�i�j �

ff�i�i�jgg� Apart from this� in line �� algorithm ��� maintains only the best tree while the

corresponding line in algorithm ��� maintained a collection of ��tree forests�

Lemma ��	 The time and space complexities of algorithm 
�
 are O��n��� and O�n��n����

respectively�

Proof The exponential time complexity of this algorithm is due to exponentially large ways

of selecting optimal subtrees to generate subforests at an internal node� i�e�� jSt�i�j���i�d �
�
�� � �St�i�j���i�dj � Pd�j

l�� jSt�l�i�j���i�dj� The number of subforests on d
 j
 � leaf nodes is also
given by the number of ways an ordered set of d 
 j 
 � elements can be partitioned� This is
shown in Figure �� When the left most branch of the tree is already determined� we have d
j
�
ways of generating ��tree subforests with optimal alphabetic trees� �d
 j
 ���d
 j
 ���� ways
of generating ��tree subforests with optimal alphabetic trees� etc�� The recurrence equation for

this problem is  �d�j �
Pd�j��

i��  i
��� with the solution of  �d�j � �

d�j��� giving the runtime of

inner most loops as well as the number of subforests to be maintained on every ordered subset

of leaf nodes� Hence� the time complexity of algorithm ��� is


n��X
d��

�
n�dX
i��

�
d��X
j�


�d�j�� � d�� � n � �n�� � �n��
 
 �n��� � �n�� 
 � � O��n���

Again� since there are O�n�� ordered subsets of leaf nodes� assuming that the information

about an n leaf tree can be stored in O�n� space� a naive implementation of this algorithm

requires space complexity O�n�� for maintaining optimal subtrees for every ordered subset of

leaf nodes� However� for each ordered subset of leaf nodes� a list of subforests consisting of

ST�optimal subtrees needs to be maintained� Since each subtree is optimal� only a list of

pointers to corresponding optimal subtrees need to be kept� requiring O�n� space per subforest�

As explained above� since there are �n�� ways to partition an ordered set of n nodes� and

since since each partition corresponds to a subforest� the space complexity of the algorithm is

O�n��n����

Thus� for non�binary trees� ST�optimality of the trees has improved the run time and space

complexity signi�cantly although still not reducing them to polynomial� However� for alpha�

betic binary trees� ST�optimality is su�cient to reduce the run times and space complexity to

polynomial as will be described next�

��



Figure �
 Example showing � possible ways to generate alphabetic trees with four leaf nodes

under right branches

��� ST�optimal Binary Trees

Lemma ��
 The number of ST�optimal alphabetic binary trees on n leaf nodes is equal to n
��

Proof For ST�optimal binary trees� ��f�i�i�jg� � ��� � �St�i�j���i�d�� drops out of equation �����

thus

Bi�i�i�d �
d���
j�


��f�i�i�j� �i�j���i�dg� for d � � ����

where Bi�i�i�d denote the collection of apropos alphabetic binary trees� This gives


 n �

����
���

n
 � if n � �

� if n � �

����

Lemma ��
 can be exploited to generate optimal alphabetic binary trees in O�n�� time

complexity as follows�

��



Algorithm ��� GenBestAlpBinaryTree�STOptimal �N �
N is given set of n leaf nodes with weights

begin

� for d � � to n
 � do
� for i � � to n
 d do

� Bi�i�i�d � Null

� �i�i�d � Null

� if d � � Bi�i�i �SingleNodeTree�i�


 else

� for k � � to d
 � do
� Bi�i�i�d � Bi�i�i�d

S�f�i�i�k � �i�k���i�dg
� �i�i�d � ChooseBest��i�i�d��f�i�i�k � �i�k���i�dg�
�� Result � ���n

end

For each i� we generate n 
 i optimal binary trees on subset of i leaf nodes� This has to be

done n times� thus� time complexity of algorithm ��� is

i�n��X
i��

i�n
 i� � n��
 
 n�
 � O�n���

Since for each of the n�n 
 ���� ordered subsets� we need to maintain only two pointers

�one pointing to the ordered subset which corresponds to the best right subtree and the other

pointing to the best left subtree�� the space complexity of the algorithm is O�n���

As mentioned in section �� the number of distinct alphabetic binary trees on n leaf nodes

is given by the Catalan numbers that are O��n�� Subtree optimality of tree cost reduces the

number of trees to be considered signi�cantly� resulting in a polynomial time algorithm for

�nding an optimal alphabetic binary tree� This remains true irrespective of other characteristics

of weights� tree cost function and combining functions� Previous researchers ���� ��� �� ��� ��� ��

have generated optimal alphabetic binary trees� restricting leaf weights and�or some parameters

of combining function to be integer� or only with respect to a speci�c tree cost function� Our

algorithm generates optimal alphabetic trees for ST�optimal trees in O�n�� without any such

restriction� This run time can be further reduced to O�n�� for certain tree cost functions

��



satisfying the monotonicity principle proposed by Knuth in ����� Monotonicity property of a

tree cost function guarantees that for optimal alphabetic trees� the tree cost of the left most

branch of the root will not decrease if an additional leaf node is introduced to the right of all

leaf nodes �and vice versa�� The corresponding algorithm is given below�

Algorithm ��� GenBestAlpBinaryTree�STOptimalMonotone �N �
N is given set of n leaf nodes with weights

begin

� for d � � to n
 � do
� for i � � to n
 d do

� Bi�i�i�d � Null

� �i�i�d � Null

� if d � � Bi�i�i �SingleNodeTree�i�


 else

� StartIndexO�set � IndexOfRightMostLeafOfLeftSubTree��i�i�d��� 
i
� StopIndexO�set � IndexOfLeftMostLeafOfRightSubtree��i���i�d� 
i
� for k � StartIndexO�set to StopIndexO�set do

�� Bi�i�i�d � Bi�i�i�d
S�f�i�i�k � �i�k���i�dg

�� �i�i�d � ChooseBest��i�i�d��f�i�i�k � �i�k���i�dg�
�� Result � ���n

end

The class of ST�optimal trees is the most general characterization of tree cost functions

for which optimal alphabetic binary trees can be generated in O�n��� Likewise� the class of

ST�optimal trees that satisfy the monotonicity principle is the most general characterization

of tree cost functions for which optimal alphabetic binary trees can be generated in O�n���

Hu et al� ���� have proposed a generalization of tree cost functions called regular functions

for which their O�nlogn� algorithm produces optimal results� It is noteworthy that all trees

constructed using a regular tree cost function are also ST�optimal� Since the algorithm they

used is based on dynamic programming� i�e�� it assumes that optimal alphabetic subtrees are

su�cient to generate optimal alphabetic trees� it is natural that all regular functions should be

subtree optimal�

��



We are not aware of any previous work to characterize tree cost functions that satisfy the

monotonicity principle� However� we conjecture that all regular functions satisfy the monotonic�

ity principle� in which case our run time of O�n�� is not much worse than O�nlogn� run time

of Hu�Tucker algorithm for regular functions� However� our algorithm will run in O�n�� for a

much larger class of tree cost functions�

Furthermore� we can show that the most general sets of combining and tree cost functions

known so far for which Hu�man�s algorithm generates optimal trees ! namely� all quasi linear

combining functions with Schur concave tree cost functions ���� ! result in ST�optimal trees� It

should be noted that these conditions are derived for non�alphabetic binary trees� Thus� our

work encompasses not only the alphabetic trees� but also other non�alphabetic tree optimization

problems� However� our proposed algorithm is only applicable to alphabetic trees� Unlike

alphabetic trees� ST�optimality is not su�cient to guarantee polynomial runtime for optimal

non�alphabetic binary tree generation�

��� SF�optimal trees

As described above� for non�binary ST�optimality of tree cost is not su�cient to guarantee poly�

nomial runtime of alphabetic tree optimization� However� if jPd�j
l�� St�l�i�j���i�dj is restricted

to a constant or even to a polynomial in d
 j� algorithm ��� will run in polynomial time� e�g��

if jPd�j
l�� St�l�i�j���i�dj � c� runtime of algorithm ��� will be


n��X
d��

�
n�dX
i��

�
d��X
j�


c � d�� � n �
n��X
d��

��c� ���n
 d�d� � n � �c� ��n��
 
 �c
 ��n�
 � O�n���

If jPd�j
l�� St�l�i�j���i�dj � � �as is the case for binary trees as well as for non�binary trees

when the stronger de�nition of SF�optimality is satis�ed� as the left most branch will never have

more than one set of siblings� Thus� inner loop in algorithm ��� is a constant time operation

leading to a O�n�� run time for the algorithm�

According to the de�nition of SF�optimality� if the tree is SF�optimal� jSt�l�i�j���i�dj �
�� � � l � d
 j� giving jPd�j

l�� St�l�i�j���i�dj � d
 j� In this case algorithm ��� will run in time

complexity given by


n��X
d��

�
n�dX
i��

�
d��X
j�


�d
 j� � d�� � n � �n	 � 
n� 
 n� 
 
n���� � O�n	�

�




Intuitively� if a tree is SF�optimal� the cost contribution due to every subset of siblings is

identi�able in terms of function H� allowing us to determine a priori if one k�tree subforest is

better than another k�tree subforest on the same set of leaf nodes� Fortunately� conditions of

SF�optimality are often satis�ed� e�g�� in case of Hu�man�s original additive combining function

and tree cost function�

For generating degree�restricted optimal alphabetic trees� the above is modi�ed to


n��X
d��

�
n�dX
i��

�
d��X
j�


min�d
 j� t� � d�� � n �
n��X
d��

�
n�dX
i��

�
d��X
j�


t� d��� n � �t���n��

 �t
 ��n�
 � O�n�t�

In this special case� however� our algorithm has reduced to the algorithm proposed by Vaish�

navi et al� ����� Application they were considering was t�ary alphabetic tree optimization with

optimum average weighted search time� They also showed that for that application� no further

reduction in run time is possible� Thus� their algorithm was derived for a speci�c tree cost

function while we arrived at our algorithm from a more general algorithm� Hence� we can char�

acterize tree cost functions for which we can achieve O�n�t� run time� An improved run time of

O�n�logt� has been achieved by Itai ���� and Gotlieb ����� However� that algorithm is applicable

to a restricted set of tree cost functions for which there is always an optimal tree with maximum

allowable number of branches at the root�

It is intuitive to note that ST�optimality was su�cient for binary trees because the only

proper subsets of a set of two children of an internal node contain only one subtree� As a

matter of fact� even for SF�optimality it is su�cient to consider only proper subsets of the set

of children of an internal node� For example� for trees with degree bounded by t� it is su�cient

that SF�optimality is satis�ed for up to �t
 ���tree subforests�

��� Summary

We have derived the number of alphabetic trees on n leaf nodes and provided a generic algorithm

to produce alphabetic trees for any application� We showed that the exponential run time of

this algorithm can be signi�cantly improved when the tree is ST�optimal� We classi�ed a set

of tree cost functions that result in ST�optimal trees� ST�optimal tree cost function allows us

to generate optimal alphabetic binary trees with the same time complexity as the best known

algorithms� However� since our algorithm was derived using a top�down approach as opposed

to deriving optimal alphabetic binary tree with respect to a speci�c tree cost function� we can

��



generalize and apply the algorithm to a larger class of tree cost functions� To derive optimal

alphabetic non�binary trees in polynomial time� we proposed a further classi�cation of tree

cost functions� namely� SF�optimal trees� Again� we showed that in most cases� our algorithm

reduces to the best known algorithm while being applicable for a much larger set of tree cost

functions�

In the next section we consider applications of alphabetic trees in the �eld of logic synthesis�

We apply the optimal alphabetic binary tree generation mechanism and optimal alphabetic non�

binary tree generation to the fanout optimization problem� For additional details and another

application to technology decomposition� please refer to ���� ����

� Alphabetic Fanout Optimization

Alphabetic fanout optimization problem may be stated as follows�

Problem ��� Alphabetic Fanout Optimization �AlpFanout�

� Instance�

�� A set of n sinks �L�� L�� � � � � Ln� in a given� �xed order with ��dimensional weights

WLi � �rLi� 	Li� where rLi 
 required time at Li and 	Li 
 input load of sink Li�


� A 
�dimensional combining function �freq� fload� which combines l nodes generating

an internal node Im with weight vector WIm where�

rIm � freq�Wchild�
Im
�Wchild�

Im
� � � � �Wchildl

Im
�

� mini�rchildi
Im
�
 
buf

X
i

	childi
Im

 �buf ����

	Im � fload�Wchild�
Im
�Wchild�

Im
� � � � �Wchildl

Im
�

� 	buf ����


buf � �buf and 	buf denote drive resistance� internal delay and input load of the bu�er�

respectively�

�� A tree cost function C�T � � rIm where Im is the root of the fanout tree T �

��



� Problem� Generate a tree T such that the cost �required time at the root� is maximum

and the tree has no internal wire crossings
�

Notice that this formulation considers only maximization of the required time at the root of

a fanout tree with �xed sink order while creating no internal wire crossings� Other cost factors

such as the number of bu�ers used or the area of such bu�ers are not directly considered�

Combining function in AlpFanout corresponds to the library delay model� The problem

can be easily modi�ed to consider other delay models by restricting the values of di�erent

parameters� For example� if unit fanout delay model is used� �buf � �� 
buf � � and 	buf � ��

Under the library delay model� more than one bu�ers may be available with di�erent 
buf � �buf

and 	buf � adding an extra degree of complexity to the problem� To simplify the problem we

use only one bu�er type in our implementation� However� we discuss implications of allowing

multiple bu�ers in section ����

Lemma ��� Alphabetic fanout trees are SF�optimal under the unit delay model and unit fanout

delay model�

Proof For the unit delay model� the proof follows from the constant value of fload �fload � ���

The optimal solution in this case is trivial� namely� a tree in which the root directly connects to

all the sinks� Even under unit fanout delay model� value of fload is a priori known for a D�rooted

forests �D �fload � c D � constant multiplied by number of outputs�� Hence in either case� it

is su�cient to keep the D�rooted forest with the maximum required time� The corresponding

tree cost decomposition is shown in Figure ��

Above lemmas imply that under the unit delay or unit fanout delay� alphabetic fanout

optimization problem is optimally solvable in polynomial time� Even under library delay model

the above lemmas hold if the loads are identical� However� with di�erent loads or multiple

bu�ers the alphabetic fanout trees are no longer SF�optimal�

Fortunately� even with di�erent loads alphabetic fanout trees are still ST�optimal if there is

only one bu�er in the gate library�

Lemma ��� Alphabetic fanout trees are ST�optimal the under library delay model if the library

contains only one bu�er�inverter�

�The proposed method can be extended to limit the number of fanouts per bu�er� However� in this paper�

for sake of simplicity� we will assume that bu�ers have with no fanout limit�
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Proof According to the de�nition of ST�optimality� a tree is subtree optimal if the tree cost

is monotone in the tree cost of each of its subtrees� Since� we have only one internal node� all

internal nodes have the same load� Thus� only required time at an internal node may change due

to restructuring of the subtree structure at that internal node� As per the combining equation

of alphabetic fanout optimization problem� increasing the required time at an internal node

while maintaining the load at constant may never result in a decrease of the tree cost function

�required time at the root��

As a result of above lemma and lemma ���� we can use algorithm ��� with O��n� complexity

for solving the AlpFanout problem optimally� Otherwise� we need to resort to algorithm

���� Let us denote the specialization of algorithm ��� or algorithm ��� �as the case maybe� for

the AlpFanout problem as AlgAlpFanout� However� before applying this algorithm� we

analyze the AlpFanout problem in order to simplify the problem space and reduce the number

of trees which need to be considered in order to generate an optimal alphabetic fanout tree� We

refer to this reduced set of trees as apropos trees for alphabetic fanout trees� i�e�� trees which

are su�cient for the purpose of alphabetic fanout optimization�

The delay through a bu�er is given by �buf � 
buf
P

j�FObuf
	j where FObuf denotes fanouts

of the bu�er � The wiring load is estimated dynamically based on the number of fanouts� This

load can then be included in 	j � Using this mechanism� the required time at an intermediate

bu�er k is given by rk � minj�FOk
�rj�
 �buf 
 
buf

P
j�FOk

	j�

The fanout tree generating rules given below do not undermine the optimality of the algo�

rithm but improve its e�ciency� Given a set of original sinks� these rules generate a modi�ed

set of sinks� An additional requirement for these rules to be valid is that the 	j � 	buf for each

sink Lj� This requirement is satis�ed in most cases as input capacitance of the inverter is less

than most other gates� Similar rules for the unit delay model were proposed in ��� for generation

of t�ary minimax tree under the unit delay model�

Lemma ��� Given n internal or sink nodes and if the input capacitance of the inverter is

less than that of all sinks� application of the following rules does not undermine optimality of

AlgAlpFanout�

Rule �� If n � � and ri � max�ri��� ri���� � � i � n� make ri � max�ri��� ri����

Rule �� If max�ri� ri�s��� � min�ri��� � � � � ri�s� 
 �buf 
 
buf
Ps

j�� 	i�j � replace the sequence

Li��� ��Li�s of nodes by one node with required time min�ri��� ���ri�s�
�buf

buf Ps
j�� 	i�j �

��



Figure �
 Illustration of Rule � and Rule �

Proof Instead of providing an exhaustive case enumeration� we only give an outline of the

proof� Each rule takes a set of sinks and produces a modi�ed set of sinks which may be smaller�

Rule �� For rule �� ri will either get Joined with ri��� ri��� or an ancestor or ri�� or ri��� In

each case� the required time of ri will get dominated by it�s sibling� as long as ri � max�ri��� ri���

Rule �� Consider an optimal alphabetic tree on leaf nodes � to n� Rule � can be proved by

considering all subtrees on some proper subset of leaf nodes i� �� i� �� � � � � i� s with a sibling

which is either ri or ri�s� or any ancestor of ri or ri�s� Each such subtree can be replaced by

a subtree with load 	buf and a required time given by min�ri��� ���ri�s�
 �buf 
 
buf
Ps

j�� 	i�j �

without changing the required time at the root� Finally� keeping only one of these subtrees�

while discarding the rest can never result in a decrease in the required time the the root� This

exactly corresponds to application on rule �� Thus� application of rule � never undermines

optimality of AlgAlpFanout�

Application of these rules is illustrated in Figure � a�� To simplify the presentation� we

assume the unit fanout delay model� i�e�� �buf � �� 
buf � � and 	j � � for all j� As shown in

the �gure let the required time at sinks be given by vector r � ���� ��� ��� ��� �� �� ��� ���� Rule

� is applied on L�� while rule � is applied on �L�� L�� L	� and on �L�� L��� generating internal

nodes I� and I�� respectively� At this stage� we reach an impasse as neither of the rules can be

applied� Instead� if we had used unit delay model� these rules would have generated optimal

alphabetic fanout trees in O�n� time complexity without encountering any impasse� For the

unit fanout or the library delay model� impasse is likely to occur� in which case we resolve the

impasse by resorting to the tree generation part of AlgAlpFanout� Application of these rules�

however� has reduced the solution space by reducing the number of sinks from � to ��
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��� Handling Di	erent Loads

Let us denote the set of apropos trees on leaf nodes i through j as Ap�i�j� As seen from equation

����� because of the tree splitting term� we must generate all subtrees in Ap�i�j��i� j � n� This

number can be reduced signi�cantly using the following theorem�

Let RT � LT � reqT and loadT denote minimum of the required times at immediate children of

the root of tree T � cumulative load o�ered by immediate children of the root of tree T � required

time at the root of the tree T � and the load at the root of the tree T � respectively� Using this

notation� required time for a tree T generated by ��fTlg � � ��� � �Tr�� is given by


reqT � min�reqTl� RTr�
 
buf �loadTl � LTr�
 �buf

De�nition ��� Given two trees T � and T �� on the same leaf nodes�

� T � and T �� are non�inferior with respect to each other if �RT �
RT ��� � 
buf�LT �
LT ��� � ��

� T � is superior to T �� if �RT � 
RT ��� � � � 
buf �LT � 
 LT ����

� T � is inferior to T �� if 
buf�LT � 
 LT ��� � �RT � 
RT ��� � ��

Theorem ��� For fanout optimization� when generating the set of apropos trees on sinks j

through m� it is su�cient to maintain a set of trees which are non�inferior with respect to each

other� but superior to all other trees�

Proof As per the notation proposed earlier� the set of apropos trees on sinks j�� through m

is denoted by Ap�j���m and the set of all alphabetic trees on sinks j � � though m is denoted

by �j���m� When we split a tree Tr 	 �j���m� it generates a forest Fr with minimum of the

required time at the roots given by RTr and sum of loads at the roots given by LTr � We need

to show that apropos trees are su�cient to generate optimal alphabetic fanout tree in any tree

structure�

According to tree generation procedure we have to Join Fr with the best tree Tl � �i�j�

while generating a tree T 	 �i�m� In this case� the sibling of Fr consist only of Tl� The required

time at the root of the tree T is given by

reqT � min�reqTl� RTr�
 
buf�loadTl � LTr� ����
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Let us consider any two trees T �
r� T

��
r 	 �j���m� Without loss of generality� we assume RT �

r
�

RT ��
r � From the de�nition ���� T �

r is either superior� inferior or non�inferior with respect to T ��
r�

We will now show that if T �
r is superior or inferior with respect to T ��

r� we need to consider

only one of the two�

T �
r is superior to T ��

r� Given �RT �
r

 RT ��

r
� � � � 
buf �LT �

r

 LT ��

r
�� we need to prove the

following


min�reqTl� RT �
r
�
 
buf �loadTl � LT �

r
� � min�reqTl� RT ��

r
�
 
buf �loadTl � LT ��

r
�

This is true from the de�nition of a superior tree irrespective of the value of reqTl� loadTl

and 
buf �

T �
r is inferior to T ��

r� Given 
buf �LT � 
 LT ��� � �RT � 
 RT ��� � �� we need to prove the fol�

lowing


min�reqTl� RT �
r�
 
buf �loadTl � LT �

r � � min�reqTl� RT ��
r �
 
buf�loadTl � LT ��

r � ����

From equation ���� we obtain the following�

min�reqTl� RT �
r
�
min�reqTl� RT ��

r
� � 
buf �LT �

r

 LT ��

r
�

From the de�nition ������ this is true for each of the three cases� RT ��
r
� RT �

r
� RTl�

RT ��
r
� RTl � RT �

r
� and RTl � RT ��

r
� RT �

r
�

Thus� when the siblings of Fr consist only of a single tree� i�e�� Tl� only those trees from �j�m

need to be considered which are non�inferior with respect to each other�

When the sibling of Fr consist of more than one tree� the above can be proved similarly by

considering reqTl to be the minimum of the remaining siblings and loadTl to be the total of their

load�

Theorem ��� enables us to reduce the number of apropos trees for AlpFanout by only

generating the set of non�inferior trees Ni�i�m� As we generate each tree structure� we compare

it with the trees in the current Ni�i�m� deleting inferior trees from Ni�i�m in the process� We

introduce a rule which will exploit this fact�

Rule �� During tree generation on sinks i through m� current tree T is added to Ni�i�m only

if T is non�inferior to all the trees in Ni�i�m� If T is superior to some trees currently in

Ni�i�m� we remove those trees from Ni�i�m before adding T �

The correctness of rule � follows from theorem ����
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��� Handling Multiple bu	ers

If the library of gates contains multiple bu�ers�inverters� ST�optimality of alphabetic fanout

optimization is not guaranteed� Let us consider subtrees generated on leaf nodes i� � � � � i � d�

For each bu�er�inverter in the library we could generate the best alphabetic tree on these leaf

nodes with the corresponding bu�er�inverter being the root of the tree� Let us denote by B
the set of bu�ers in the gate library� Let the gate driving the root of the fanout tree be G� So

far� it was assumed that the root of the tree is also the same bu�er� Here� along with allowing

multiple bu�ers� we also allow a sink to be driven directly by the library gate corresponding to

the function�

We extend the de�nition of superior and non�inferior trees between pairs of ��tree forests�

De�nition ��� Given two trees on T � and T �� on same leaf nodes�

� T � and T �� are non�inferior with respect to each other if �reqT � 
 reqT ��� � 
buf �loadT � 

loadT ��� � � or if �RT � 
RT ��� � 
buf �LT � 
 
buf ��LT �� � ��

� T � is superior to T �� if �reqT � 
 reqT ��� � � � 
buf�loadT � 
 loadT ��� or if �RT � 
 RT ��� �

� � 
buf �LT � 
 
buf ��LT ���

� T � is inferior to T �� if 
buf�loadT �
loadT ��� � �reqT �
reqT ��� � � or if 
buf �LT �

buf ��LT �� �
�RT � 
RT ��� � ��

� buf� buf �� buf �� 	 B � fGg�

In context of de�nition ���� theorem ��� can be modi�ed and a corresponding rule � can

be obtained� Since these are rather simple modi�cations� we do not discuss them in detail�

However� a direct implication of allowing multiple bu�ers is that� for each subset of leaf nodes�

instead of maintaining only one subtree� we may have to maintain as many subtrees as the

number of bu�ers in the library� In addition� as per de�nition ���� the set of non�inferior tree

may become large due to multiple subtrees that must be considered and maintained for one set

of leaf nodes� However� since number of bu�ers is usually small ����� bu�ers for most libraries�

and since all the inferior subtrees are �ltered out during tree generation� the run times do not

grow substantially because of considering multiple bu�ers�
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��� Implementation and Experimental Results

The algorithm AlpFanout Alg was implemented in the SIS environment� Mapped networks

were optimized with AlpFanout Alg after deriving an order on the fanout of each node using

the ordering mechanism speci�ed�

Algorithm ��� AlpFanout Alg �"� #�$�

" is an optimized mapped Boolean network

# is a vector of required times

$ is the ordering mechanism

begin

for each node n 	 " �in preorder� do
L � Order sinks �"� n�$�

L� � Reduce sinks �L�#�

� � Generate best AlpFanout tree �n�L��

update network �"� n� ��

end

end

Reduce sinks reduces the number of sinks using rule � and rule 
� Given a set of ordered

sinks� Generate best AlpFanout tree returns an optimal fanout tree on the ordered sinks L�

using rule � and the apropos tree generation equation ����� Application of rule � during tree

generation signi�cantly improves e�ciency of AlpFanout Alg� This is illustrated in Figure

� as described next�

Continuing with the previous example� we want to generate the optimal fanout trees on the

modi�ed set of sinks �L�� I�� L
� L�� I��� From these � sinks� using the tree generation mechanism�

we generate all alphabetic trees on every subset of ordered sinks of size � to �� According to

rule �� every tree in the list of current apropos tree should be non�inferior to all others� Inferior

trees are dropped from the current list of trees and are excluded from further consideration�

For this particular example� from equation ���� there are ���� alphabetic fanout tree struc�

tures� Due to the monotone tree cost function� the number of apropos trees �i�e�� trees that must

be considered to �nd the optimal solution� is ���� Use of rules � and � reduces the number

of sinks to �� hence lowering the number of apropos trees to ��� Rule � eventually reduces

��



Figure �
 Illustration of AlpFanout Alg

�




the total number of apropos trees on �nal set of sinks to �� Note that rule � also reduces the

number of apropos trees during the generation of subtrees� Since� on average� number of sinks

for fanout optimization ranges between ��
 sinks� in spite of being exponential in the worst

case AlgAlpFanout is quite fast in practice� This also shows how a detailed analysis of an

exponential algorithm can lead to better runtimes of the optimal algorithm� alleviating of any

need for non�optimal heuristic procedures�

Now we describe how we handled di�erent polarities of the sinks and the mechanism to derive

the order of sinks� Previous algorithms considered sinks with di�ering polarities separately�

However� to maintain alphabetic order on the sinks irrespective of their polarities� we used

the following mechanism� For every set of the sinks� we generated two fanout trees
 one with

positive polarity at the root and the other with negative polarity at the root� Apart from this�

during every Join operation� we only joined the subtrees with identical polarities�

The ordering on the sinks was derived using di�erent mechanisms�� The Place Order

imposes a sink ordering based on the sink positions derived from a global placement solution for

the Boolean network� The idea is that since the placement solution captures the connectivity

structure of the network and the addition of fanout tree does not modify the network structure

to a great extent� we can rely on this placement solution for estimating the relative positions of

the sinks after fanout optimization and placement� By using the placement information� due to

the non�crossing property of the alphabetic trees� we are able to preserve the crossing number

of the network during fanout optimization� The underlying intuition is that increased planarity

due to reduced crossing number would improve the circuit routing�

The Required Order generates a sink ordering based on the required times of the sinks�

This option has been adopted by other researchers in the �eld� However� our fanout optimization

algorithm is provably better than other algorithms as shown in the previous sections� The

rationale behind this ordering is that� in general� it is desirable �from the performance point of

view� to put sinks with similar required times at the same depth in the fanout tree�

Table � compares AlpFanout with SisFanout ���� for all multi�level logic benchmarks

recommended in ����� All circuits were �rst optimized in Sis using area optimizing script� The

�Depending on the secondary objective of fanout optimization 
routing congestion� power e�ciency� etc��

other ordering mechanisms can be proposed and implemented� A strong point about our work is that it allows

various optimization criteria to be considered during the fanout optimization with little or no degradation of the

circuit performance�
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SisFanout AlpFanout

Req Place

circuit Area Delay Area Delay Area Delay

��� ns ��� ns ��� ns

C�
�� 	�
� 
���	 	��� 
���� 	��� 
��
�

C���� 
��
 ����	 
��� �
��� 	��� �����

C	��� �		� 

��� ���� 
���� ���� 
	���

C
��� ���
� ����� ����	 ����� ����� �����

C�
	 �
�� ���
� ���� 
���
 ���� 
��
	

C�	�� 	���� ������ 	��
� �����	 	���
 ������

C���	 	�	�� ����� 		�

 ���	� ����� �����

�symml �
�� 	���
 ���	 	���� ���
 	
��


b� ��
 ���	
 ��� ����� ��� �����

dalu ����� ���	
 ����� ����� ���	� �
��	

k	 ���	� 
��	� ����� 
���	 ����� 
��
�

rot ���
 	���� ���� 	���� �		� 
��	�

t��� ���� 
���� ��
� 	���� ��	� 
����

� Gain ��� ��� �	�� ���
 ���
 �����

Table �
 Comparison between fanout optimization in Sis and AlpFanout�
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circuits were mapped using the Sis mapper in timing mode ��
� and then optimized using two

fanout optimization algorithms� After the fanout optimization the circuits were placed using

Gordian ���� and routed using TimberWolf global router ���� and Yacr� detailed router �����

The �rst two columns give results generated by SisFanout� SISFanout tries a number

of fanout optimization algorithms �LT trees� Two Level� Balanced� etc� at each node and picks

the best fanout solution� The columns denoted by Req corresponds to the AlpFanout results

with Required Order� Last two columns corresponds to the Place Order option of Alp�

Fanout� For Place Order the circuits were placed using Gordian and sink orders were

derived from this placement�

As can be seen� we do better then SisFanout in area for all cases� The best performance

results are obtained with the Required Order� and the best routing �smallest chip area� is

obtained with the Place Order� Overall the Place Order saves ��	 chip area as com�

pared to SisFanout without a signi�cant performance degradation� Fanout trees generated by

Required Order are about �	 faster than Place Order but at the cost of 
	 increase in

chip area�

AlpFanout runtimes are quite comparable with those of the SisFanout� On a Sun Sparc

Station �� for C����� C����� C�
��� C����� C���� C
��� and C����� AlpFanout took ������

�
���� ��
��� ������ 
���� ���
��� and �
���� seconds respectively� versus the SisFanout time

which were ������ ������ ������ 
����� ����� ������ and ������ seconds respectively�

� Concluding Remarks

In this paper� a generic alphabetic tree generation procedure was introduced and the number

of alphabetic trees on n leaves was computed� We introduced the concept of ST�optimal and

SF�optimal trees which allow us to signi�cantly reduce the solution space for generating optimal

alphabetic trees� Using this concept we showed that optimal alphabetic binary trees on n leaf

nodes can be generated in O�n�� time complexity for ST�optimal tree costs�

For fanout optimization we proposed an e�cient fanout optimization algorithm which im�

proves circuit performance while honoring an order restriction on the sinks� This ordering is

derived based on an early global placement� analysis of the network structure� or required time

constraints at the primary sinks� We also proposed a set of rules that reduce size of the solution

space while maintaining the optimality where we also introduce the notion of non�inferior set

��



of fanout trees and use this to obtain further reduction in the solution space� For alphabetic

fanout� optimization we obtained ��	 improvement in chip area as compared to SisFanout

without a signi�cant performance degradation�

The improvements in routing area and the delay clearly indicate that routing issues should

be considered at earlier stages of logic synthesis and that such integration could signi�cantly

improve the performance and chip area� Our results motivate us to apply the routing driven

approach to the technology independent phase of logic synthesis� speci�cally� logic decomposi�

tion and kernelization procedures� We hope that this theory will provide an e�ective way of

incorporating routing issues �e�g�� wire crossing� congestion� into logic synthesis�
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