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Abstract -- The goal of a dynamic power management policy is The problem of finding a power management scheme (or
to reduce the power consumption of an electronic system byolicy) that minimizes power dissipation under performance
putting system components into different states, each representingpnstraints is of great interest to system designers. A simple and
certain performance and power consumpti@vel. The policy  well-known heuristic policy is the “time-out” policy, which is
determines the type and timing of these transitions based on thevidely used in today’s portable computers. In the “time-out”
system history, workload and performance constraints. In thispolicy, one component will be shut down after it has been idle for
paper, we propose a new abstract model of a power-managed certain amount of time. The predictive system shutdown
electronic system. We formulate the problem of system-level poweapproach in [7][8] tries to achieve better power-delay trade-off by
management as a controlled optimization problem based on theredicting the “on” and “off’ time of the component. This
theories of continuous-time Markov decision processes andprediction approach uses a regression equation based on the
stochastic networks. This problem is solved exactly and efficientlicomponent’s previous “on” and “off” time to estimation the next
using a “policy iteration” approach. Our method is compared “turn-on” time, such that the component can be turned on
with existing heuristic approaches for different workload immediately before the request comes. Therefore, the system
statistics. Experimental results show that power managemenperformance can be improved. However, this method is only
method based on Markov decision process outperforms heuristi@pplicable to few cases in which the requests are highly correlated.

approaches in terms of power dissipation savings for a gises | Because heuristic policies do not haveobust system model
of system performance. and solid theoretical background, their major shortcomings are
obvious. Firstly, they can never achieve the best power-delay
l. INTRODUCTION trade-off for the system. Secondly, they cannot deal with complex

omponents that have more than two (on and off) operating modes

With the rapid progress in the semiconductor technology, the Chipcuch as defined in ACPI. In addition, they cannot deal with

density and operation frequency have increased, making the pow: . . . .
consumption in battery-operated portable devices a major concer -omplex system with multiple and interactive components.
High power consumption reduces the battery service life. The goal A Power management approach based on Markov decision
of low-power design of battery-powered devices is thus to extend?roCess has been proposed in [9]. The system is modeled as a
the battery service life while meeting performance requirements discrete-time Markov  decision process by combining the
Reducing power dissipation is a design goal even for non-portablétochastic models of its components. Once the model and its
devices since excessive power dissipation results in increasef@rameters are determined, an optimal power management policy
packaging and cooling costs as well as potential reliability @0 be obtained to achieve the best power-delay trade-off for the
problems. Many low power design methodologies and techniquesyStém. This approach offers significant improvements over
that target digital VLSI circuits have been proposed [1]-[5]. previous power management techniques in terms of theoretical
Portable electronic devices tend to be much more complexfamework for modeling and optimizing the system. There are

: ; ; . ~however some shortcomings. Firstly, because the system is
}P(?rﬂ ad?éri]tgle Xr%(? ! gﬂ'glb;h?g cggtglrr:)_rpnzr%acgirggonaennés, ég@%‘g_gmodeled in the discrete-time domain, some assumptions about the

chemical. Much of the power dissipation in a portable electronicSYS€M components may not hold for real applications. Secondly,

; i : he state transition probability of the system model cannot be
device comes from non-digital components. System des'gnerigbtained accurately. Moreover, the power management program

have started to respond to the requirement of power-constraine eeds to send control signals to the components in every time-

system designs by a combination of technological advances and;: ! ; . h
architectural improvements. Dynamic power management — whic lice, which results in heavy signal traffic and heavy load on the

refers to selective shut-off or slow-down of system componentssyStem resources (therefore more power). .

that are idle or underutilized — has proven to be a particularly, _The work of [10] overcomes the shortcomings of [9] by
effective technique. Incorporating a dynamic power managemenfntroducing a new system model (as well as component models)
scheme in the design of an already-complex system is a difficul?@sed on theontinuous-time Markov decision process. In [10], a

process that may require many design iterations and carefuPOWer-managed system is modeled in the continuous-time
debugging and validation. domain, which is closer to the situation encountered in practice;

PR ; P _ the component models are simpler andazsurately model many
To simplify the design and validation of complex power \;galistic applications.

managed systems, a number of standardization attempts ha ‘ . . ,
stated. Best known among them is #hévanced Configuration In this paper, we improve the work of [10] in the following
and Power Interfac ACPI) [6] that specifies an abstract and Ways: _ _

flexible interface  between power-manageable hardwarel. We present a new model of the service provider that

components (VLSI chips, disk drivers, display drivers, etc.) and  explicitly distinguishes between the two cases where the

the power manage(the system component that controls the turn- server is busydn and servicing some request) and idbe (

on and turn-off of the system components). It is important to but not servicing any request). ]

mention that, ACPI defines multiple power modes for system2. We introduce a new model for the service requester to

components, which is a key requirement for approaches based on  capture complex workload characteristics.

Markov decision processes to outperform heuristic approaches. 3. We introduce a new model for the service queue that consists
of a normal queue and a high-priority queue. This is
important since some service requests are “urgent” and need
immediate response from the server.

4. We present a new system model that is composed of the new
component models.

*This work was supported in part by SRC under contract No. 98-DJ-606
and NSF under contract No. MIP-9628999.



This paper is organized as follows, Sections Il and Il

describes the models for the components and the system. Sections Os.s, (@) =0(sj,a)lXg s, » S*S; @1
0 and V present the experimental results and conclusions.
Og s @=-3 o 5 (a) 3.2)
[I. COMPONENT MODELING Sj %5

We first give the notation that will be used throughout the paper: 1 if sisthedestinatio stateof actiona
Piyj(D): transition probability from statei (directly or ~ where o(sa) =0 0 otherwise (3.3)
indirectly) to statg during time 0O td U
pi(t): probability of that the system is in statat timet The service rategy(s) andti(s) represent the service speed of
G: generator matriof a continuous-time Markov process SP for low-priority requests and high-priority requests in siate
\: service request generation rate $@rvice Request¢BR) respectively. Therefore, i(s) or 1juy(s) gives the average time

L: service rate of th8ervice Provide(SP) which is needed by SP to complete the service for one request
i.i: transition rate from stafeto statg when SP is in state
Qv;l' t of ilabl " h 9 tem is in $tat A power consumptiopow(s) is associated with each stafe
i Set ot avarlable actions when a system IS In state S. It represents the power consumption of SP during the time it
TL power management policy . occupies state The cost rate; ;of states is equal tqpow(s).
__The introduction to continuous-time Markov decision process p switching energy effs, 5) is associated with each state pair (
= Ol this scction, e desaribe the mathematical models of the): $:3S: §73; I represents the energy needed for SP to switch
components in a power-managed system. from states to states. The costc s 18 equal teends; s).
We assume that the system is embedded in an environment grom Egn. (2.5), we know that the expected power
where there is only a single source of requests, which is defined nsumption (éarnihg ,rate) of SP when it is in ssa&ted actiors,
the service requestor (SR). Requests generated by the SR canaégchosen can be calculated as:
divided into two categorieslow-priority requestsand high- ' . a
priority requests which are generated independent of each other. Cs = poW(s)+ 5 o Lends,s).
Requests generated by the SR are serviced by the system. The s'#s
system itself consists of three components: a server that processes |n reality, the working modes of the SP can be divided into
requests (the SP), a queue which stores the requests that cannot fpgee groups: busy, idle, and power-down. In busy modes, the SP
immediately serviced upon arrival (SQ), and a power managefis fully powered and working on the first request in the SQ. In idle
(PM) that issues commands. The SR is an input source, which ignodes, the SP is fully powered, but it is not working on any
outside and independent of the system. request. In power-down modes, the SP is partially or completely
Although we consider a relatively simple system in this paper,shut down, i.e., not it is functional. We distinguish idle modes
our approach can be extended to a more complicated applicatiofrom busy modes, because the SPncd switch to other state
that may consist of multiple SR’s, SP’s, and SQ's. when it is working on some request. In other words if we want to
Both the request arrival event and the request service event aféirn the SP off (switch to a power-down mode), it must be
stochastic processes and follow the Poisson distribution. Foiswitched off from an idle state.
example, the request arrival event follows the Poisson process Different busy modes may be used to model a component
(i.e., during time (0t] the number of the events has the Poisson working under different supply voltages. We associate different
distribution with meanit). Consequently, the request inter-arrival power and delay (service rate) values to each of these modes to
time follow the exponential distribution with meanAl/We model the server performance under different supply voltages.
assume that the request will be rejected if the SQ is full at the timéTherefore, our policy optimization approach (cf. Section V) also
when it comes. finds the best policy for dynamic voltage scaling as it finds the
The SP can operate in a number of different power modes. Weptimal policy for power management.
also assume that the time needed for the SP to switch from one For each busy mode, there exists a cpoading idle state.
state to another follows the exponential distribution. The PM is aThe SP may have multiple power-down modes (e.g. standby, soft
controller that reads the system state (the joint states of SP, SQff, hard off).

and SR) and issues mode-switching commands to the SP. In our mathematical model of the SP, we divide the statg set
In the remainder of this paper, we will use upper case boldinto two subsets:

letters .9, M) to denote matrices, lowercase bold letterg,(v) (1) The set of active stateSacrive, Where L(S,e) is larger than 0

to denote vectors, italicized Arial-Font letteesq, S) to denote for eachs,cd Sactive.

sets, uppercase italicized letteesy( S) to denote scalar constants (2) The set of inactive stateSiacive, Wherep(s,s) is O for each

and lower case italicized letters g, x) to denote scalar variables. Snal)Sinactive.

A. Model of the Service Provider The busy modes belong to the first subset. The idle and

The Service Provider(SP) is modeled as a stationary, continuous- power-down mode_s belong to th_e second subset. _
time Markov decision process with state (operation mode) set Not all actions inA are valid in all SP states. Constraints on a
S={s; s.t. i=1, 2...., S}, action sef\, and parameterized generator Valid action can be stated as follows:

; ; The action cannot make a transition between a busy mode to
matrix Gsp(a) , dJA. It can be described by a quadrupiei(s). a power-down mode directly. Transitions between them must

pow(s), ene(s §)) where: ()X is an &S matrix; (i) p(s) and go through an idle mode.
Hn(S) are functionspy,uy: S —R; (i) pow(s) is a function, pow: 2. The action cannot cause a transition from a busy mode to its
S-R; (iv) ene(s §) is a function, enesx S R. correspondent idle mode. The transition from a busy mode to

17 . . an idle mode is done autonomously when the SP finishes a
We callx, the switching speed matrix of the SP. Thgth entry service (therefore it is not controllabl)tla).

of X is denoted ag( 5, and represents the switching speed from 3. The action cannot cause a transition between two busy
states to 5. The average switching time from stat¢o states is Qﬁngia\?éhgnaﬁg?vg is in a busy mode, no transition to any
then 1xs s - We setxs g to beo, because the switch from '

Definition 3.1 Inactive states; is morevigilant than inactive state

states to itself is instantaneous. . ; : -
&5 10 . . s, if the SP in state; wakes up (switches to an active state) faster
The entries of the parameterized generator mairip(a) can be than the same SP in stage

calculated as:



Example 3.1Consider a SP with four stateSs{busy idle, wait, continuous-time Markov process with the generator madix
sleef. When the SP is in statusy it provides the service for the  Thg yalue ofo, . (the transition rate from stateto stater;) can
requests. The average time needed for each service (for both low- fiof !
priority requests and high-priority requests) is 5 second.pe calculated as:

Therefore, p(busy and u,(busy are 0.2. y(idle), uy(idle), o
u(wait), un(wait), p(sleep and un(sleep are all 0. Let the
command set be defined a4={go_busy go_idle go_wait
go_sleep. Notice that not all four commands are valid (or
available) in all states. The switching speed magiixgiven by:

=Th M, Opp == ) O, (3.4)

Iy #H
Therequest rated,(r) andAy(r) are associated with stateR.

When the SR is in state the generation of the low-priority
requests follows the Poisson process with mean va(ug and

By

2
E 0 OB the generation of the high-priority requests follows the Poisson
- %0 e 1 054 process with mean valug(r).
(0 0454 o« 150 C. Model of the Service Queue
0.166 15 OOE A Single Service Queue(SSQ) is modeled as a stationary,

] continuous-time Markov process, with state@eto={q; , i=0, 1,
By default, the order of states in rows and columns are the same & ..., Q} and the generator matri®ssds, 1), where s is the state
the order of states i§. x5 s =@ means that the SP can transfer Of SP, ris the state of SR state.
) ) The shortcoming of using SSQ as the stochastic model of the
from states to 5 immediately. x5 s =0 means that the SP can service queue is that, we can assign only one delay constraint (i.e.

: the constraint on the average waiting time of the requests) during
never transfer from statgto . In this example, the SP needs no - policy optimization. However, in real applications, some

time to trans_fer from a state to |tse|f. 'The SP can transfer from. theervice requests may have higher priority than others. Especially
busystate tadle state with the transition rate equal to the service jn a power-managed system, the PM always buffers the incoming
rate because it goes to thde state autonomously immediately service requests, that is, to achieve the best power-delay trade-off.
after it finishes a request. The SP cannot switch betweepuye ~ The SP, under control of the PM, may not service the incoming

state andvait state (orsleepstate) directly (it must go through the request immediately even there is no other request in the queue.

idle state), therefore the corresponding entries in the matrix are 0.
The power consumption is: pow(busy=2.3W,
pow(idle)=2.3W, pow(wait)=0.8W, pow(sleep=0.1W.
The switching energgnés, §) matrix is:

P o0 = =

M 0 1 2

eNdS S0, 447 0 06630
30 93 0 ﬁ

However, there may exist high-priority requests that need
immediate service by the SP. In this case, if we use a loose delay
constraint, the power management policy does not serve the
request immediately (in order to save power). This long latency
may not be acceptable for high-priority requests. We can instead
use a tight delay constraint to make sure the high-priority requests
are serviced immediately. However, this tight delay constraint is
also applied to low-priority requests. Consequently, there will be
undesirable power dissipation related to esessarily tight delay
constraint on low-priority requests.

We henceforth model the service queue as a combination of

Entry of o means that the SP cannot switch between thetwo SSQs: one (denoted as HSQ) for the high-priority requests

corresponding states. Note that the energy cost of autonomousnd the other (denoted as LSQ) for the low-priority requests. The
state change (busy to idle) is zero. relations between these two queues are:

A graphical illustration of the SP is shown in Figure 1. The 1. Two different delay constraints are assigned to HSQ and LSQ
transition rates associated with the directed edges have not been separately such that the requests in HSQ have smaller waiting

shown in the figure. They can be extracted fr@mp(a) for
specific actions.
[

o

=

CS@Ep s

Figure 1 Markov process model of the SP

B. Model of the Service Requester

The Service Requester (SR) is modeled as a stationary,
continuous-time Markov process, with state Befr; s.t. i=0, 1,
2, ..., R} and generator matrisg It can be characterized by a
pair (1, A(r)), where: (i) Tis an RR matrix, (ii)A(r) and A(r) are
functionsA: R R.

We callt the switching speed matrix of the SR. Thpth entry of

Tis denoted ag, , . We assume that the time needed for the SR

time than those in LSQ.

The requests in LSQ can be serviced by the SP (under the
chosen PM policy) only when there is no request in HSQ.

The SP will not start serving the requests in LSQ until it
finishes all the requests (under PM policy) in HSQ.
Although we have introduced two queues in our stochastic
model of the service queue, we are actually modeling a single
priority queue in real applications. The SQ model can be used to
model the commonly used priority queue in an operating system
where two different priorities are assigned to tasks and high-
priority tasks, when they come, are inserted into the front of the
gueue. Moreover, obviously, the SQ model can be extended to
model a queue of requests that have more than two priority levels.

The formal definition of the SQ model is as follows.

The Service Queue (SQ) is modeled as a stationary,
continuous-time Markov process, which is the combination of two
SSQs: LSQ and HSQ. The state set of the SQ is givéPrby
Qsox Quso and the generator matrix is given I8sds, n=
Gisds, NOGusds, 1), where s is the state of SP, r is the state of
SR state, and the[T” operation is the tensor sum defined in
Definition 3.2

[ll. SYSTEM MODELING

We first show how to construct the model of the entire system by

to switch from one operation state to another is a random variabl%ombining the component models. Next we explain how the
with exponential distribution. The average switch time from state power-managed system model is applied to practical applications.

ri to stater; is given by 1f, . . We setr, ; to bew, because the

switch from stater; to r; is instantaneous. The SR model is a

A. Model of the Power-Managed System
The Power-Managed System(SYS) can be modeled as a
continuous-time Markov process which is the composition of the



models of the SP, the SR and the SQ. The state set is given by: The Markov processes of the SP and the SQ are however

X=SxQxR-{invalid states where SP is busy and SQ is empty}. Ancorrelated. Because whenever the SP makes a transition from a
action set of all possible actions which is the sam@ asthe SP busy state to an idle state (finishes the service for a request), the
model. A parameterized generator mat@xy{a) gives the state  SQ must make a transition which decreases the number of requests
transition rates under action a. A cost function Cost(x, a) gives thein SQ by 1.

system cost under action a when the SYS is in state x. To show how to calculat@sp.sda, r) from Gsg(a) andGsq(s,
Similar to the situation of the SP model, not all actions arer), we need to firstly partition §x(a) as follows:

valid for any system state. The action constraints (which is B GA (a0

described in Section Ill.A) for the SP model still apply to the Gsp(@)=0] sp(@) sp(a) (4.2)

model of SYS. In addition, we add the following constraints FG4h(a) GEA(@)n

related to the SYS model.

(1) When both LSQ and HSQ are full and the SP is in an inactiveMatrix Ggp(a) contains the transition rates for transitions
state, the SP cannot make a transition to another inactive state ) ] A ) .
which is less vigilantDefinition 4.1) than the current one. between inactive states. MatriGgp(a cgntains the transition
This constraint is reasonable because the SP must go 0 thgytes for transitions from any inactive state to any active state.
working mode as soon as possible in this situation. i A ) - -

(2) When both LSQ and HSQ are full and the SP is in an idleMatrix Ggp(a) contains the transition rates for transitions from
state, the SP cannot make a transition to a power-down state . . . .
or another idle state whose corresponding busy state has &1y active state to any inactive state. Mat@gp(a cojtains the
slower service rate. This constraint is reasonable, becauseansition rates for transitions between active states.
when SP and SQ are in the above states, it means that the \ye can partitiorGep.sqa, r) as:
service speed cannot catch the incoming speed of the

requests. Therefore, we need to increase the service rate. : QS'S',FLSQ(a,r) G'SAP_SQ(a,r)D
The SYS state can be representedsas, ((Ig, hg)), where Gspso(ar) =L @n GM. (a r)D (4.3)
s3S, rOR, 1g0Qiso and hgQuso. The SYS model is a sp-sQ(@ sp-sQ(anQ

connected Markov process. ~Consequently, the limiting  To calculateGspsda, r), we first calculate the four sub-
distributions of the state probabilities exist and are independent ofnatrices in Eqgn. (4.3) except the diagonalG> sda, r). The
the initial state. entries on the diagonal are calculated using Eqn. (2.4) after the
B. Calculating the generator matrix sub-matrices are calculated.
Gsvys(a) from the generator matrices of the system components:
GsH@), Gsgr, andGsd(s, I). any two statess(, (191, hay)) and &, (192, hap)) s.t. 51, S0Sinactive

First, we show how to calculate the generator matrix of a joint (defined in Section I1.A)Jg1, 19,0Qrse and hay, ha,OQkso. It
process of two independent continuous-time Markov processescan be obtained as:
Proposition 4.1 gives a method to obtain the joint transition rate of I I
two independent continuous-time Markov processes. Proposition Gsp-sq(ar) =Gsp(a) UGsq(sr ) (4.4)
gyzstgln\qejs?n Sqﬁqtgt?ic)j( g‘;)gg‘t%ggng the generator matrix of the joinfotice that, after the operation, the parametar Gsg(s, r) has
Proposition 4.1 Given two independent stochastic processes Xbeﬁn removed by substituting the real state of the SP.
and Y, letdy,) «y) denote the transition rate of the joint process Ggp-gg(a,r) is calculated directly by thel operation because
fsrt%?; tshsajccgn(';fs)t(?tg éﬁ'g)éc;tjggtsf)?ég 8} ’¥_)’L9V;\Cedrgn)ét2ntﬁex trans?t?on between inactive SP states is not correlated with the
transition rate of process X from state x to state x @pddenote  {ransition of SQ state. B B
the transition rate of process Y from state y to statdhen We letgx(x, X;) denote the transition rate for the transition
Oy cy) = Gyoys Oey)y) = Txxs Txy) () = O- from statex; to X, of a Markov process X. Notice thgk(x;, Xo)

may be a parameterized quantity aGip Gsg, Gsp.so andGsys

Given two matrices A and B as follows: G'éAp_SQ(a,r) defines the transition rates for transitions between
By a0 B Bz sl any two statess(, (Id, ha) and &, (z ) S.t. 5,0 Snacie,

A= ) azzg and B= g&l by b3y $0Saciive, 101, 10:0Qso and hay, hpOQuse. The rule for

31 bsp bssH calculating the entries @?F_SQ(a,r i as follows:

Definition 4.1 The tensor product C=AOB is given by gsp-sd(S, (191, haw), (S (2, hap)) is equal togsH(s:, ) if
[&B a;,B0 . ) {(s1 is an idle stateAND (s, is the busy state correspondent{o s

C= - The tensor sum C=A0B is given by: AND (Ig;==lg,) AND (hay==ha,)} holds; Otherwiseit is zero.
%213 azB[

C=A0ly, +I, OB, where nis the order of A, qis the order G4, g(a,r) defines the transition rates for transitions between

of B, |n‘ is the Identlty matrix of Orderi.n any two Statess(’ (|q1’ hql)) and SZ! (|q2, hqz)) s.t. $;0Szciive,

Proposition 4.2 Given two independent continuous-time Markov S:HSinaciive, 101, 10200Quse and hay, hglQnse. The rule for
g;?ﬁgsjg?nst gr'gégsesniesrzti%;ngggésand B, the generator matrix  c5|cylating the entries @B op-solar i as follows:
Osp-sd(Su_ (19, haw), (S, (192, hap))) is equal tau(sy) if {(s1 is
We have mentioned that the SR is independent from the rest oft busy statepND (s; is the idle state correspondent {9 AND
the system. Therefor§sys(a) can be calculated as: lg:==(lg>+1)) AND (hq,==hg,==0)} holds; It is equal tqi(s,) if
§<a)=Gsp.sda, NIGsr (4.1) {(s1 is a busy state)ND (s; is the idle state correspondent {p s
whereGgsp_sda, r) is the generator matrix of the joint process AND (19,==I02) AND (hgi==(hq:+1))} holds; Otherwise it s zero.

of SP and SQ. Notice th&svg(a) generator matrix is also a
parameterized matrix of actian Géé_SQ(a,r) defines the transition rates for transitions between

any two statess(, (Iq;, hay)) and &, (19, hap)) s.t. $0Szctive,



$0Sactive, 101, 10.0Qso and haq;, haOQuse. The rule for
calculating the entries cﬁ;éé_sQ(a,r s as follows:

Osp-sd(S, (191, haw), (2, (g2, hap))) is equal toA(r) if
{(s;==5) AND (Ig;==(lg2-1)) AND (haq;==h,)} holds; It is equal
to Ap(r) If {(s1==5) AND (Ig;==Ig,) AND (ha;==(h,-1))} holds;
Otherwise it is zero.
C. Calculating the cost function
The cost of the system is related to the staiéthe SYS and the
action a taken by the SYS in state. As in [10], we use the
average power consumption and the average number of waitin

requests to capture the system cost. Therefore, we have three cost

functions in our model: the power consumption of th X),
the average number of requests in the LSQ of th , and
the average number of requests in the HSQ of th&€34X,a).
Let x be denoted as,(r, (19, hq)), wheres[1S, r0Re, Ig0Qwso
andhgJQ~xso.
The power cost can be calculated as:
Cpow(X.8) = pow(s) + 3 g(s,s)engs,s)
sS,s'£s
wherepow(s) andends,s) were defined in Section Ill.A, and
g(s,S) is the transition rate from stagdo s of the SP. Notice that
g(s,s) is a function ofa.
In addition, the delay costs are:.
G(¥)=lg andCpsx)=hq

(4.5)

(4.6)

The average waiting time of the requests is often used as the

cost ofdelay However, in [10], it is shown that there exists a

linear relationship between the average number of requests in the
gueue and the average waiting time. Therefore, Eqn. (4.6) can be

used as the delay cost.

We define the total cost as a weighted summation of the power

and delay costs:

Cost(x,a)=YCxou(X,2) +FWolCisq(X)+W3CThsfX) 4.7)

Our goal is to apply a tight delay constrathbn the high-priority
requests such that they are serviced within a required amount of
time. And as for the low-priority requests, we only want to
maintain their throughput (same incoming and outgoing rate).
Optimal policies for both models are calculated under following
two different scenarios:

1. Since the original model cannot distinguish between high-
priority requests and low priority requests, to make sure that
the delay of high priority requests meets the const@jrit

has to apply the constrai@ on all requests. Using the new
model, we only need to apply on the HSQ and use a looser
delay constraint on the LSQ to maintain the throughput of the
low-priority requests.

Results from scenario 1 shows that, by applying the
constraintC on all requests, the original model always gets
much smaller delay on both high and low priority requests
than required. Therefore in this scenario, in the new model,
we further tighten the HSQ constraint such that the delay of
high-priority requests matches those in the original model.
Different C values are used to generate the multiple rows in Table
1 and Table 2. Optimal policies are simulated using an even-
driven simulator which has the following setup:

1. The SP is modeled the same aBxample 3.1

2. A total of 20,000 service requests are randomly generated.
Both low-priority and high-priority requests are generated
independently such that they follow Poisson distributions
with parameterd,(r)= 1/80 and\,(r)=1/100, respectively.

A queue of length 7 buffers the incoming service requests.
An incoming high-priority request will be inserted in front of
all other requests except the high-priority requests that came
earlier and/or the low-priority request that is being serviced
by the SP.

Tables 1 and 2 show the experimental results for both scenarios.

Table 1 Experimental results for scenario 1

g

2.

wherew;+wy+ws=1.

The optimal policy for the system model is then solved using
the policy iteration algorithm used in [10].
D. Application issues

Using the SYS model, a power-managed system in reg

application can work in the following way: When the SP of the

system changes state, it sends an interrupt signal SWITCH_DON
to the PM. The PM then reads the states of all components in t

power-managed system (hence obtains the joint system stat
issues a command according to the chosen policy. The SP receiv

the command and immediately starts to switch to a state which

given by the command. Notice that the command may ask the S
to switch to its current state, therefore the SP state will not chang
We assume that, after the SP finishes a service, it will stay in thi
idle state for some time that is long enough for iateept the

command from the PM and switch to another state. We als

assume that the PM reads the states and issues command in a sk

time that does not affect the system performance.

V. EXPERIMENTAL RESULTS

Original model New model
Ave. # of [ Ave. # of| Ave. |Ave. # of| Ave. # of| Ave. | Power
high- low- power | high- low- power | differ-
priority | priority [consumpt priority | priority |consump; ence
Irequests irequests intion (W) [requests imequests intion (W)
the queugthe queug the queugthe queug
0.26 0.83 1.99 0.62 1.60 0.89 55%6
o 0.42 0.61 1.36 1.02 1.84 0.66 51%0
y 0.63 0.86 1.04 1.26 2.41 0.54] 48%0
€s Table 2 Experimental results for scenario 2
Original model New model
| Ave. # of| Ave. # of| Ave. [Ave.# of| Ave. # of| Ave. | Power
[ high- low- power high- low- power | differ-
i priority | priority |consump} priority | priority [consumpgt ence
requests iflequests iption (W) [requests imequests inion (W)
the queugthe queug the queugthe queug
~'0.26 0.83 1.99 0.24 0.35 1.84 79
0.42 0.61 1.36 0.38 1.18 1.14 16%0
0.63 0.86 1.04 0.62 1.60 0.89 14%

Experiments have been designed to evaluate the performance
our system model and the optimization method.

A. Experiment for comparing models of the SQ

The original model (i.e., the model which does not consider theq

request priority) [10] includes:

1. A SP model that is the same agkxample 3.1

2. A SR model with only one state, A(r)= 1/80 and
Ar(r)=1/100.

3. A SQ model with a SSQ of length 7.

Our new system model includes:

1. A SP model that is the same as the oriexample 3.1

2. A SR model with only one state, A(r)= 1/80 and
An(r)=1/100.

3. A SQ model with a LSQ of length 5 and a HSQ of length 2.

Notice that the data in both tables are the same for the original
Hodel because they have the same delay constraints.

From the results in Tables 1 and 2, we can draw following
conclusions:
The original model sets the same delay constraints on both
low-priority requests and high-priority requests. This results
in undesirable increase in power dissipation. In addition, the
original model always over-estimates the delay of high-
priority requests, i.e., the simulated delay of high-priority
requests is always smaller than the pre-set constraint. While
in the new model, the simulated delay of both high-priority
and low priority requests is always close to the pre-set
constraints.
Even though the policy based on the old model gets smaller
delay (in simulation) for high-priority requests in scenario 1,
we can always find an optimal policy while matching the
HSQ delay constraint (which is the situation in scenario 2).



The optimal policy based on the new model still saves moreselection problem based on the theories of continuous-time

power.

Markov decision process, and stochastic network. Comparing with

In fact, the new model saves more power by taking advantaggrevious work, we introduced new and more complete model of
of being able to setting a different delay constraint on the low-the system components, as well as the model of the whole system.
priority requests. If the percentage of the low-priority requests inThe proposed models are closer to the real applications than other
all requests increases, the optimal policy based on our model savggeviously proposed models. Experimental results showed that our
more power than the optimal policy based on the original model.model has better performance than previous models in real
On the other hand, if the percentage of the low-priority requestsapplication. We also showed that the dynamic power management
decreases, the advantage of the new model will become lesgethod out-perform the heuristic approaches in terms of better and

significant.

B. Experiments for comparing our method with heuristic policies

The system model used in this part includes:

1. A SP model that is the same agEkxample 3.1

2. A SR model with two statesr; and ry,

GSR(rl,rz):GSR(rz,rl):]./looo, A|(r1): 1/10, Ah(r1)=1/40,

Al(r2)= 1/20,A4(r2)=1/80.

3. A SQ model with a LSQ of length 5 and a HSQ of length 2.
Three different traces of requests are used for simulation:

Trace 1 Requests are generated to exactly follow the SR model.

Trace 2 Requests are generated to follow the SR state transition

rate betweem,; andr,. However, in state;, the inter-arrival time
of low-priority requests follows a uniform distribution with mean
value 10, the inter-arrival time of high-priority requests follows a

more flexible power-delay trade-off.

Table 3 Experimental results for comparing power
management methods using request trace 1

Method Ave. waiting timefgAve. waiting time @ Ave. Power|
high-priority low-priority Dissipation
reguests (sec) reqguests (sec) (W)
Greedy 16.4 25.5 2.03
Timeout (T=20) 13.9 19.5 2.29
Timeout (T=40) 12.9 18.3 2.20
Predictive 17.5 25.5 2.17
Our DPM 20.0 33.7 1.80
Table 4 Experimental results for comparing power

management methods using request trace 2

uniform distribution with mean value 40. In statg the inter- Method Av?]'ig\ﬁg'r?gritt'y € Aveiov\\,'\,a}g'r?gritt';n e g\ilseéis:t\ﬁlﬂ
arrival time of low-priority requests follows a uniform distribution requests (sec) requests (sec) (W)
with mean value 20, the inter-arrival time of high-priority requests Greed 96 155 367
follows a uniform distribution with mean value 80. T y_ - - -
. imeout (T=20) 5.6 7.6 2.59
Trace 3. Request trace extracted from real operations on a Timeout (T=40) 3 67 530
portable computer. In this case, the parameters in the SR mode ——— : - :
are obtained by curve fitting. Predictive 10.3 157 3.90
Our method is compared with four heuristic power management Our DPM 10.2 247 195
methods: Table 5 Experimental results for comparing power
1. Greedy policy: turn on the SP whenever a request comes and management methods using request trace 3
turn off the SP whenever the SP is idle and there is no request Method Ave. waiting timefpAve. waiting time § Ave. Power
in the queue. high-priority low-priority Dissipation
2. Timeout policy (T=20): turn on the SP whenever a request requests (sec) requests (sec) (W)
comes and turn off the SP whenever the SP has been idle foi Greedy 13.0 11.8 2.39
20 seconds and there is no request in the queue. Timeout (T=20) 9.2 6.4 215
3. Timeout policy (T=40): turn on the SP whenever a request [ Timeout (T=40) 8.7 3.9 2.06
comes and turn off the SP whenever the SP has been idle fo Predictive 15.0 16.5 3.10
40 seconds and there is no request in the queue. Our DPM 15.1 365 151
4. Predictive method proposed in [7].
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