
Stochastic Modeling of a Power-Managed System:
Construction and Optimization

Qinru Qiu, Qing Wu and Massoud Pedram
Department of Electrical Engineering-Systems

University of Southern California
Los Angeles, CA 90089

Abstract -- The goal of a dynamic power management policy is
to reduce the power consumption of an electronic system by
putting system components into different states, each representing
certain performance and power consumption level. The policy
determines the type and timing of these transitions based on the
system history, workload and performance constraints. In this
paper, we propose a new abstract model of a power-managed
electronic system. We formulate the problem of system-level power
management as a controlled optimization problem based on the
theories of continuous-time Markov decision processes and
stochastic networks. This problem is solved exactly and efficiently
using a “policy iteration” approach. Our method is compared
with existing heuristic approaches for different workload
statistics. Experimental results show that power management
method based on Markov decision process outperforms heuristic
approaches in terms of power dissipation savings for a given level
of system performance.

I. INTRODUCTION
With the rapid progress in the semiconductor technology, the chip
density and operation frequency have increased, making the power
consumption in battery-operated portable devices a major concern.
High power consumption reduces the battery service life. The goal
of low-power design of battery-powered devices is thus to extend
the battery service life while meeting performance requirements.
Reducing power dissipation is a design goal even for non-portable
devices since excessive power dissipation results in increased
packaging and cooling costs as well as potential reliability
problems. Many low power design methodologies and techniques
that target digital VLSI circuits have been proposed [1]-[5].

Portable electronic devices tend to be much more complex
than a single VLSI chip. They contain many components, ranging
from digital and analog to electro-mechanical and electro-
chemical. Much of the power dissipation in a portable electronic
device comes from non-digital components. System designers
have started to respond to the requirement of power-constrained
system designs by a combination of technological advances and
architectural improvements. Dynamic power management – which
refers to selective shut-off or slow-down of system components
that are idle or underutilized – has proven to be a particularly
effective technique. Incorporating a dynamic power management
scheme in the design of an already-complex system is a difficult
process that may require many design iterations and careful
debugging and validation.

To simplify the design and validation of complex power-
managed systems, a number of standardization attempts have
stated. Best known among them is the Advanced Configuration
and Power Interface (ACPI) [6] that specifies an abstract and
flexible interface between power-manageable hardware
components (VLSI chips, disk drivers, display drivers, etc.) and
the power manager (the system component that controls the turn-
on and turn-off of the system components). It is important to
mention that, ACPI defines multiple power modes for system
components, which is a key requirement for approaches based on
Markov decision processes to outperform heuristic approaches.

The problem of finding a power management scheme (or
policy) that minimizes power dissipation under performance
constraints is of great interest to system designers. A simple and
well-known heuristic policy is the “time-out” policy, which is
widely used in today’s portable computers. In the “time-out”
policy, one component will be shut down after it has been idle for
a certain amount of time. The predictive system shutdown
approach in [7][8] tries to achieve better power-delay trade-off by
predicting the “on” and “off” time of the component. This
prediction approach uses a regression equation based on the
component’s previous “on” and “off” time to estimation the next
“turn-on” time, such that the component can be turned on
immediately before the request comes. Therefore, the system
performance can be improved. However, this method is only
applicable to few cases in which the requests are highly correlated.

Because heuristic policies do not have a robust system model
and solid theoretical background, their major shortcomings are
obvious. Firstly, they can never achieve the best power-delay
trade-off for the system. Secondly, they cannot deal with complex
components that have more than two (on and off) operating modes
such as defined in ACPI. In addition, they cannot deal with
complex system with multiple and interactive components.

A power management approach based on Markov decision
process has been proposed in [9]. The system is modeled as a
discrete-time Markov decision process by combining the
stochastic models of its components. Once the model and its
parameters are determined, an optimal power management policy
can be obtained to achieve the best power-delay trade-off for the
system. This approach offers significant improvements over
previous power management techniques in terms of theoretical
framework for modeling and optimizing the system. There are
however some shortcomings. Firstly, because the system is
modeled in the discrete-time domain, some assumptions about the
system components may not hold for real applications. Secondly,
the state transition probability of the system model cannot be
obtained accurately. Moreover, the power management program
needs to send control signals to the components in every time-
slice, which results in heavy signal traffic and heavy load on the
system resources (therefore more power).

The work of [10] overcomes the shortcomings of [9] by
introducing a new system model (as well as component models)
based on the continuous-time Markov decision process. In [10], a
power-managed system is modeled in the continuous-time
domain, which is closer to the situation encountered in practice;
the component models are simpler and can accurately model many
realistic applications.

In this paper, we improve the work of [10] in the following
ways:
1. We present a new model of the service provider that

explicitly distinguishes between the two cases where the
server is busy (on and servicing some request) and idle (on
but not servicing any request).

2. We introduce a new model for the service requester to
capture complex workload characteristics.

3. We introduce a new model for the service queue that consists
of a normal queue and a high-priority queue. This is
important since some service requests are “urgent” and need
immediate response from the server.

4. We present a new system model that is composed of the new
component models.

*This work was supported in part by SRC under contract No. 98-DJ-606
and NSF under contract No. MIP-9628999.

This paper is organized as follows, Sections II and III
describes the models for the components and the system. Sections
0 and V present the experimental results and conclusions.

II. COMPONENT MODELING
We first give the notation that will be used throughout the paper:

Pi⇒j(t): transition probability from state i (directly or
indirectly) to state j during time 0 to t
pi(t): probability of that the system is in state i at time t

G: generator matrix of a continuous-time Markov process
λ: service request generation rate for Service Requestor (SR)
µ: service rate of the Service Provider (SP)
χi,,j: transition rate from state i to state j
Ai: set of available actions when a system is in state i
π: power management policy
The introduction to continuous-time Markov decision process

is omitted to save space. Please refer [10] for detailed background.
In this section, we describe the mathematical models of the

components in a power-managed system.
We assume that the system is embedded in an environment

where there is only a single source of requests, which is defined as
the service requestor (SR). Requests generated by the SR can be
divided into two categories: low-priority requests and high-
priority requests, which are generated independent of each other.
Requests generated by the SR are serviced by the system. The
system itself consists of three components: a server that processes
requests (the SP), a queue which stores the requests that cannot be
immediately serviced upon arrival (SQ), and a power manager
(PM) that issues commands. The SR is an input source, which is
outside and independent of the system.

Although we consider a relatively simple system in this paper,
our approach can be extended to a more complicated application
that may consist of multiple SR’s, SP’s, and SQ’s.

Both the request arrival event and the request service event are
stochastic processes and follow the Poisson distribution. For
example, the request arrival event follows the Poisson process
(i.e., during time (0, t] the number of the events has the Poisson
distribution with mean λt). Consequently, the request inter-arrival
time follow the exponential distribution with mean 1/λ. We
assume that the request will be rejected if the SQ is full at the time
when it comes.

The SP can operate in a number of different power modes. We
also assume that the time needed for the SP to switch from one
state to another follows the exponential distribution. The PM is a
controller that reads the system state (the joint states of SP, SQ
and SR) and issues mode-switching commands to the SP.

In the remainder of this paper, we will use upper case bold
letters (e.g., M) to denote matrices, lowercase bold letters (e.g., v)
to denote vectors, italicized Arial-Font letters (e.g., S) to denote
sets, uppercase italicized letters (e.g., S) to denote scalar constants
and lower case italicized letters (e.g., x) to denote scalar variables.
A. Model of the Service Provider
The Service Provider (SP) is modeled as a stationary, continuous-
time Markov decision process with state (operation mode) set
S={si s.t. i=1, 2, …, S}, action set A, and parameterized generator
matrix)(aSPG , a∈A. It can be described by a quadruple (χ, µ(s),

pow(s), ene(si, sj)) where: (i) χ is an S×S matrix; (ii) µl(s) and
µh(s) are functions, µl,µh: S→R; (iii) pow(s) is a function, pow:
S→R; (iv) ene(si, sj) is a function, ene: S× S→ R.
We call χ, the switching speed matrix of the SP. The (i,j)th entry
of χ is denoted as

ji ss ,χ and represents the switching speed from

state si to sj. The average switching time from state si to state sj is
then 1/

ji ss ,χ . We set
ii ss ,χ to be ∞, because the switch from

state si to itself is instantaneous.
The entries of the parameterized generator matrix)(aSPG can be

calculated as:

jiji

ssjss asa ,,),()(χδσ ⋅= , si≠sj; (3.1)

 ∑
≠

−=
ij

jiii
ss

ssss aa)()(,, σσ (3.2)

where




=
otherwise 0

 action of state ndestinatio theis if 1
),(

as
asδ (3.3)

The service rates µl(s) and µh(s) represent the service speed of
SP for low-priority requests and high-priority requests in state s,
respectively. Therefore, 1/µl(s) or 1/µh(s) gives the average time
which is needed by SP to complete the service for one request
when SP is in state s.

A power consumption pow(s) is associated with each state s∈
S. It represents the power consumption of SP during the time it
occupies state s. The cost rate cs,s of state s is equal to pow(s).
A switching energy ene(si, sj) is associated with each state pair (si,
sj), si,sj∈S, si≠sj. It represents the energy needed for SP to switch
from state si to state sj. The cost

ji ssc , is equal to ene(si, sj).

From Eqn. (2.5), we know that the expected power
consumption (earning rate) of SP when it is in state s and action as
is chosen, can be calculated as:

 ∑
≠′

′ ′+=
ss

a
sss ssenespowc s),()(,σ .

In reality, the working modes of the SP can be divided into
three groups: busy, idle, and power-down. In busy modes, the SP
is fully powered and working on the first request in the SQ. In idle
modes, the SP is fully powered, but it is not working on any
request. In power-down modes, the SP is partially or completely
shut down, i.e., not it is functional. We distinguish idle modes
from busy modes, because the SP cannot switch to other state
when it is working on some request. In other words if we want to
turn the SP off (switch to a power-down mode), it must be
switched off from an idle state.

Different busy modes may be used to model a component
working under different supply voltages. We associate different
power and delay (service rate) values to each of these modes to
model the server performance under different supply voltages.
Therefore, our policy optimization approach (cf. Section V) also
finds the best policy for dynamic voltage scaling as it finds the
optimal policy for power management.

For each busy mode, there exists a corresponding idle state.
The SP may have multiple power-down modes (e.g. standby, soft
off, hard off).

In our mathematical model of the SP, we divide the state set S
into two subsets:
(1) The set of active states, Sactive, where µ(sact) is larger than 0

for each sact∈Sactive.
(2) The set of inactive states, Sinactive, where µ(sina) is 0 for each

sina∈Sinactive.
The busy modes belong to the first subset. The idle and

power-down modes belong to the second subset.
Not all actions in A are valid in all SP states. Constraints on a

valid action can be stated as follows:
1. The action cannot make a transition between a busy mode to

a power-down mode directly. Transitions between them must
go through an idle mode.

2. The action cannot cause a transition from a busy mode to its
correspondent idle mode. The transition from a busy mode to
an idle mode is done autonomously when the SP finishes a
service (therefore it is not controllable).

3. The action cannot cause a transition between two busy
modes. When the SP is in a busy mode, no transition to any
other state is allowed.

Definition 3.1 Inactive state s1 is more vigilant than inactive state
s2 if the SP in state s1 wakes up (switches to an active state) faster
than the same SP in state s2.

Example 3.1 Consider a SP with four states, S={busy, idle, wait,
sleep}. When the SP is in state busy, it provides the service for the
requests. The average time needed for each service (for both low-
priority requests and high-priority requests) is 5 second.
Therefore, µl(busy) and µh(busy) are 0.2. µl(idle), µh(idle),
µl(wait), µh(wait), µl(sleep) and µh(sleep) are all 0. Let the
command set be defined as A={go_busy, go_idle, go_wait,
go_sleep}. Notice that not all four commands are valid (or
available) in all states. The switching speed matrix χ is given by:



















∞
∞

∞∞
∞

=

5.1166.00

5.1454.00

5.01

002.0

$

By default, the order of states in rows and columns are the same as
the order of states in S.

ii ss ,χ =∞ means that the SP can transfer

from state si to sj immediately.
ii ss ,χ =0 means that the SP can

never transfer from state si to sj. In this example, the SP needs no
time to transfer from a state to itself. The SP can transfer from the
busy state to idle state with the transition rate equal to the service
rate because it goes to the idle state autonomously immediately
after it finishes a request. The SP cannot switch between the busy
state and wait state (or sleep state) directly (it must go through the
idle state), therefore the corresponding entries in the matrix are 0.

The power consumption is: pow(busy)=2.3W,
pow(idle)=2.3W, pow(wait)=0.8W, pow(sleep)=0.1W.

The switching energy ene(si, sj) matrix is:



















∞
∞

∞∞

=

0930

66.004.4

2100

00

),(

JJ

JJ

JJ
ssene ji

Entry of ∞ means that the SP cannot switch between the
corresponding states. Note that the energy cost of autonomous
state change (busy to idle) is zero.
A graphical illustration of the SP is shown in Figure 1. The
transition rates associated with the directed edges have not been
shown in the figure. They can be extracted from)(aSPG for

specific actions.

Figure 1 Markov process model of the SP
B. Model of the Service Requester
The Service Requester (SR) is modeled as a stationary,
continuous-time Markov process, with state set R={r i s.t. i=0, 1,
2, …, R} and generator matrix GSR. It can be characterized by a
pair (ττ, λ(r)), where: (i) ττ is an R×R matrix, (ii) λl(r) and λh(r) are
functions λ: R→ R.
We call τ the switching speed matrix of the SR. The (i,j)th entry of
τ is denoted as

ji rr ,τ . We assume that the time needed for the SR

to switch from one operation state to another is a random variable
with exponential distribution. The average switch time from state
ri to state rj is given by 1/

ji rr ,τ . We set
ii rr ,τ to be ∞, because the

switch from state ri to ri is instantaneous. The SR model is a

continuous-time Markov process with the generator matrix GSR.
The value of

ji rr ,σ (the transition rate from state ri to state rj) can

be calculated as:

jiji rrrr ,, τσ = , ri≠rj; ∑
≠

−=
ij

jiii
rr

rrrr ,, σσ (3.4)

The request rates λl(r) and λh(r) are associated with state r∈R.
When the SR is in state r, the generation of the low-priority
requests follows the Poisson process with mean value λl(r), and
the generation of the high-priority requests follows the Poisson
process with mean value λh(r).
C. Model of the Service Queue
A Single Service Queue (SSQ) is modeled as a stationary,
continuous-time Markov process, with state set QSSQ={q i , i=0, 1,
2, …, Q} and the generator matrix GSSQ(s, r), where s is the state
of SP, r is the state of SR state.

The shortcoming of using SSQ as the stochastic model of the
service queue is that, we can assign only one delay constraint (i.e.
the constraint on the average waiting time of the requests) during
the policy optimization. However, in real applications, some
service requests may have higher priority than others. Especially
in a power-managed system, the PM always buffers the incoming
service requests, that is, to achieve the best power-delay trade-off.
The SP, under control of the PM, may not service the incoming
request immediately even there is no other request in the queue.
However, there may exist high-priority requests that need
immediate service by the SP. In this case, if we use a loose delay
constraint, the power management policy does not serve the
request immediately (in order to save power). This long latency
may not be acceptable for high-priority requests. We can instead
use a tight delay constraint to make sure the high-priority requests
are serviced immediately. However, this tight delay constraint is
also applied to low-priority requests. Consequently, there will be
undesirable power dissipation related to unnecessarily tight delay
constraint on low-priority requests.

We henceforth model the service queue as a combination of
two SSQs: one (denoted as HSQ) for the high-priority requests
and the other (denoted as LSQ) for the low-priority requests. The
relations between these two queues are:
1. Two different delay constraints are assigned to HSQ and LSQ

separately such that the requests in HSQ have smaller waiting
time than those in LSQ.

2. The requests in LSQ can be serviced by the SP (under the
chosen PM policy) only when there is no request in HSQ.

3. The SP will not start serving the requests in LSQ until it
finishes all the requests (under PM policy) in HSQ.

Although we have introduced two queues in our stochastic
model of the service queue, we are actually modeling a single
priority queue in real applications. The SQ model can be used to
model the commonly used priority queue in an operating system
where two different priorities are assigned to tasks and high-
priority tasks, when they come, are inserted into the front of the
queue. Moreover, obviously, the SQ model can be extended to
model a queue of requests that have more than two priority levels.

The formal definition of the SQ model is as follows.
The Service Queue (SQ) is modeled as a stationary,

continuous-time Markov process, which is the combination of two
SSQs: LSQ and HSQ. The state set of the SQ is given by Q=
QLSQ× QHSQ and the generator matrix is given by GSQ(s, r)=
GLSQ(s, r)⊕GHSQ(s, r), where s is the state of SP, r is the state of
SR state, and the “⊕” operation is the tensor sum defined in
Definition 3.2.

III. SYSTEM MODELING
We first show how to construct the model of the entire system by
combining the component models. Next we explain how the
power-managed system model is applied to practical applications.
A. Model of the Power-Managed System
The Power-Managed System (SYS) can be modeled as a
continuous-time Markov process which is the composition of the

sleep wait

idle

busy

models of the SP, the SR and the SQ. The state set is given by:
X=S×Q×R-{invalid states where SP is busy and SQ is empty}. An
action set of all possible actions which is the same as A in the SP
model. A parameterized generator matrix GSYS(a) gives the state
transition rates under action a. A cost function Cost(x, a) gives the
system cost under action a when the SYS is in state x.

Similar to the situation of the SP model, not all actions are
valid for any system state. The action constraints (which is
described in Section III.A) for the SP model still apply to the
model of SYS. In addition, we add the following constraints
related to the SYS model.
(1) When both LSQ and HSQ are full and the SP is in an inactive

state, the SP cannot make a transition to another inactive state
which is less vigilant (Definition 4.1) than the current one.
This constraint is reasonable because the SP must go to the
working mode as soon as possible in this situation.

(2) When both LSQ and HSQ are full and the SP is in an idle
state, the SP cannot make a transition to a power-down state
or another idle state whose corresponding busy state has a
slower service rate. This constraint is reasonable, because
when SP and SQ are in the above states, it means that the
service speed cannot catch the incoming speed of the
requests. Therefore, we need to increase the service rate.

The SYS state can be represented as (s, r, (lq, hq)), where
s∈S, r∈R, lq∈QLSQ and hq∈QHSQ. The SYS model is a
connected Markov process. Consequently, the limiting
distributions of the state probabilities exist and are independent of
the initial state.
B. Calculating the generator matrix
We next introduce the method of calculating the generator matrix
GSYS(a) from the generator matrices of the system components:
GSP(a), GSR, and GSQ(s, r).

First, we show how to calculate the generator matrix of a joint
process of two independent continuous-time Markov processes.
Proposition 4.1 gives a method to obtain the joint transition rate of
two independent continuous-time Markov processes. Proposition
4.2 gives a method of generating the generator matrix of the joint
system using matrix operations.
Proposition 4.1 Given two independent stochastic processes X
and Y, let σ(x,y),(x’y’) denote the transition rate of the joint process
from the joint state (x,y) to joint state (x’,y’), where x and x’∈
state space of X, y and y’ ∈ state space of Y. Let σx,x’ denote the
transition rate of process X from state x to state x’ and σy,y’ denote
the transition rate of process Y from state y to state y′. Then
σ(x,y),(x,y’) = σy,,y’, σ(x,y),(x’,y) = σx,x’, σ(x,y),(x’,y’) = 0.

Given two matrices A and B as follows:









=

2221

1211

aa

aa
A and
















=

333231

232221

131211

bbb

bbb

bbb

B

Definition 4.1 The tensor product C=A⊗B is given by









=

BB

BB
C

2221

1211

aa

aa
. The tensor sum C=A⊕B is given by:

BIIAC ⊗+⊗=
12 nn , where n1 is the order of A, n2 is the order

of B,
inI is the identity matrix of order ni.

Proposition 4.2 Given two independent continuous-time Markov
processes with generator matrices A and B, the generator matrix
of the joint process is given by A⊕B.

We have mentioned that the SR is independent from the rest of

the system. Therefore, GSYS(a) can be calculated as:
 GSYS(a)=GSP-SQ(a, r)⊕GSR (4.1)

where GSP-SQ(a, r) is the generator matrix of the joint process
of SP and SQ. Notice that GSYS(a) generator matrix is also a
parameterized matrix of action a.

The Markov processes of the SP and the SQ are however
correlated. Because whenever the SP makes a transition from a
busy state to an idle state (finishes the service for a request), the
SQ must make a transition which decreases the number of requests
in SQ by 1.

To show how to calculate GSP-SQ(a, r) from GSP(a) and GSQ(s,
r), we need to firstly partition GSP(a) as follows:












=

)()(

)()(
)(

aa

aa
a

AA
SP

AI
SP

IA
SP

II
SP

SP
GG

GG
G (4.2)

Matrix)(aII
SPG contains the transition rates for transitions

between inactive states. Matrix)(aIA
SPG contains the transition

rates for transitions from any inactive state to any active state.

Matrix)(aIA
SPG contains the transition rates for transitions from

any active state to any inactive state. Matrix)(aAA
SPG contains the

transition rates for transitions between active states.
We can partition GSP-SQ(a, r) as:












=

−−

−−
−

),(),(

),(),(
),(

rara

rara
ra AA

SQSP
AI

SQSP

IA
SQSP

II
SQSP

SQSP
GG

GG
G (4.3)

To calculate GSP-SQ(a, r), we first calculate the four sub-
matrices in Eqn. (4.3) except the diagonal of GSP-SQ(a, r). The
entries on the diagonal are calculated using Eqn. (2.4) after the
sub-matrices are calculated.

),(raII
SQSP−G defines the transition rates for transitions between

any two states (s1, (lq1, hq1)) and (s2, (lq2, hq2)) s.t. s1, s2∈Sinactive
(defined in Section III.A), lq1, lq2∈QLSQ and hq1, hq2∈QHSQ. It
can be obtained as:

),()(),(rsara SQ
II
SP

II
SQSP GGG ⊕=− (4.4)

Notice that, after the operation, the parameter s in GSQ(s, r) has
been removed by substituting the real state of the SP.

),(raII
SQSP−G is calculated directly by the ⊕ operation because

transition between inactive SP states is not correlated with the
transition of SQ state.

We let gX(x1, x2) denote the transition rate for the transition
from state x1 to x2 of a Markov process X. Notice that gX(x1, x2)
may be a parameterized quantity as in GSP, GSQ, GSP-SQ, and GSYS

),(raIA
SQSP−G defines the transition rates for transitions between

any two states (s1, (lq1, hq1)) and (s2, (lq2, hq2)) s.t. s1∈Sinactive,
s2∈Sactive, lq1, lq2∈QLSQ and hq1, hq2∈QHSQ. The rule for

calculating the entries of),(raIA
SQSP−G is as follows:

gSP-SQ((s1, (lq1, hq1)), (s2, (lq2, hq2))) is equal to gSP(s1, s2) if
{(s1 is an idle state) AND (s2 is the busy state correspondent to s1)
AND (lq1==lq2) AND (hq1==hq2)} holds; Otherwise, it is zero.

),(raAI
SQSP−G defines the transition rates for transitions between

any two states (s1, (lq1, hq1)) and (s2, (lq2, hq2)) s.t. s1∈Sactive,
s2∈Sinactive, lq1, lq2∈QLSQ and hq1, hq2∈QHSQ. The rule for

calculating the entries of),(raAI
SQSP−G is as follows:

gSP-SQ((s1, (lq1, hq1)), (s2, (lq2, hq2))) is equal to µl(s1) if {(s1 is
a busy state) AND (s2 is the idle state correspondent to s1) AND
(lq1==(lq2+1)) AND (hq1==hq2==0)} holds; It is equal to µh(s1) if
{(s1 is a busy state) AND (s2 is the idle state correspondent to s1)
AND (lq1==lq2) AND (hq1==(hq2+1))} holds; Otherwise it is zero.

),(raAA
SQSP−G defines the transition rates for transitions between

any two states (s1, (lq1, hq1)) and (s2, (lq2, hq2)) s.t. s1∈Sactive,

s2∈Sactive, lq1, lq2∈QLSQ and hq1, hq2∈QHSQ. The rule for

calculating the entries of),(raAA
SQSP−G is as follows:

gSP-SQ((s1, (lq1, hq1)), (s2, (lq2, hq2))) is equal to λl(r) if
{(s1==s2) AND (lq1==(lq2 -1)) AND (hq1==hq2)} holds; It is equal
to λh(r) if {(s1==s2) AND (lq1==lq2) AND (hq1==(hq2 -1))} holds;
Otherwise it is zero.
C. Calculating the cost function
The cost of the system is related to the state x of the SYS and the
action a taken by the SYS in state x . As in [10], we use the
average power consumption and the average number of waiting
requests to capture the system cost. Therefore, we have three cost
functions in our model: the power consumption of the SP Cpow(x),
the average number of requests in the LSQ of the SQ Clsq(x), and
the average number of requests in the HSQ of the SQ Chsq(x,a).

Let x be denoted as (s, r, (lq, hq)), where s∈S, r∈Re, lq∈QLSQ
and hq∈QHSQ.

The power cost can be calculated as:
 ∑

≠∈
+=

ssSs
pow ssenessgspowaxC

','
)',()',()(),((4.5)

where pow(s) and ene(s,s’) were defined in Section III.A, and
g(s,s’) is the transition rate from state s to s’ of the SP. Notice that
g(s,s’) is a function of a.

In addition, the delay costs are:.
 Clsq(x)=lq and Chsq(x)=hq (4.6)

The average waiting time of the requests is often used as the
cost of delay. However, in [10], it is shown that there exists a
linear relationship between the average number of requests in the
queue and the average waiting time. Therefore, Eqn. (4.6) can be
used as the delay cost.

We define the total cost as a weighted summation of the power
and delay costs:
 Cost(x,a)=w1⋅Cpow(x,a)+w2⋅Clsq(x)+w3⋅Chsq(x) (4.7)

where w1+w2+w3=1.
The optimal policy for the system model is then solved using

the policy iteration algorithm used in [10].
D. Application issues

Using the SYS model, a power-managed system in real
application can work in the following way: When the SP of the
system changes state, it sends an interrupt signal SWITCH_DONE
to the PM. The PM then reads the states of all components in the
power-managed system (hence obtains the joint system state),
issues a command according to the chosen policy. The SP receives
the command and immediately starts to switch to a state which is
given by the command. Notice that the command may ask the SP
to switch to its current state, therefore the SP state will not change.
We assume that, after the SP finishes a service, it will stay in the
idle state for some time that is long enough for it to accept the
command from the PM and switch to another state. We also
assume that the PM reads the states and issues command in a short
time that does not affect the system performance.

IV. EXPERIMENTAL RESULTS
Experiments have been designed to evaluate the performance of
our system model and the optimization method.
A. Experiment for comparing models of the SQ
The original model (i.e., the model which does not consider the
request priority) [10] includes:
1. A SP model that is the same as in Example 3.1.
2. A SR model with only one state r, λl(r)= 1/80 and

λh(r)=1/100.
3. A SQ model with a SSQ of length 7.
Our new system model includes:
1. A SP model that is the same as the one in Example 3.1.
2. A SR model with only one state r, λl(r)= 1/80 and

λh(r)=1/100.
3. A SQ model with a LSQ of length 5 and a HSQ of length 2.

Our goal is to apply a tight delay constraint C on the high-priority
requests such that they are serviced within a required amount of
time. And as for the low-priority requests, we only want to
maintain their throughput (same incoming and outgoing rate).
Optimal policies for both models are calculated under following
two different scenarios:
1. Since the original model cannot distinguish between high-

priority requests and low priority requests, to make sure that
the delay of high priority requests meets the constraint C, it
has to apply the constraint C on all requests. Using the new
model, we only need to apply C on the HSQ and use a looser
delay constraint on the LSQ to maintain the throughput of the
low-priority requests.

2. Results from scenario 1 shows that, by applying the
constraint C on all requests, the original model always gets
much smaller delay on both high and low priority requests
than required. Therefore in this scenario, in the new model,
we further tighten the HSQ constraint such that the delay of
high-priority requests matches those in the original model.

Different C values are used to generate the multiple rows in Table
1 and Table 2. Optimal policies are simulated using an even-
driven simulator which has the following setup:
1. The SP is modeled the same as in Example 3.1.
2. A total of 20,000 service requests are randomly generated.

Both low-priority and high-priority requests are generated
independently such that they follow Poisson distributions
with parameters λl(r)= 1/80 and λh(r)=1/100, respectively.

3. A queue of length 7 buffers the incoming service requests.
An incoming high-priority request will be inserted in front of
all other requests except the high-priority requests that came
earlier and/or the low-priority request that is being serviced
by the SP.

Tables 1 and 2 show the experimental results for both scenarios.
Table 1 Experimental results for scenario 1

Original model New model
Ave. # of

high-
priority

requests in
the queue

Ave. # of
low-

priority
requests in
the queue

Ave.
power

consump-
tion (W)

Ave. # of
high-

priority
requests in
the queue

Ave. # of
low-

priority
requests in
the queue

Ave.
power

consump-
tion (W)

Power
differ-
ence

0.26 0.83 1.99 0.62 1.60 0.89 55%
0.42 0.61 1.36 1.02 1.84 0.66 51%
0.63 0.86 1.04 1.26 2.41 0.54 48%

Table 2 Experimental results for scenario 2
Original model New model

Ave. # of
high-

priority
requests in
the queue

Ave. # of
low-

priority
requests in
the queue

Ave.
power

consump-
tion (W)

Ave. # of
high-

priority
requests in
the queue

Ave. # of
low-

priority
requests in
the queue

Ave.
power

consumpt
ion (W)

Power
differ-
ence

0.26 0.83 1.99 0.24 0.35 1.85 7%
0.42 0.61 1.36 0.38 1.18 1.14 16%
0.63 0.86 1.04 0.62 1.60 0.89 14%

Notice that the data in both tables are the same for the original
model because they have the same delay constraints.

From the results in Tables 1 and 2, we can draw following
conclusions:
1. The original model sets the same delay constraints on both

low-priority requests and high-priority requests. This results
in undesirable increase in power dissipation. In addition, the
original model always over-estimates the delay of high-
priority requests, i.e., the simulated delay of high-priority
requests is always smaller than the pre-set constraint. While
in the new model, the simulated delay of both high-priority
and low priority requests is always close to the pre-set
constraints.

2. Even though the policy based on the old model gets smaller
delay (in simulation) for high-priority requests in scenario 1,
we can always find an optimal policy while matching the
HSQ delay constraint (which is the situation in scenario 2).

The optimal policy based on the new model still saves more
power.

In fact, the new model saves more power by taking advantage
of being able to setting a different delay constraint on the low-
priority requests. If the percentage of the low-priority requests in
all requests increases, the optimal policy based on our model saves
more power than the optimal policy based on the original model.
On the other hand, if the percentage of the low-priority requests
decreases, the advantage of the new model will become less
significant.
B. Experiments for comparing our method with heuristic policies
The system model used in this part includes:
1. A SP model that is the same as in Example 3.1.
2. A SR model with two states r1 and r2,

GSR(r1,r2)=GSR(r2,r1)=1/1000, λl(r1)= 1/10, λh(r1)=1/40,
λl(r2)= 1/20, λh(r2)=1/80.

3. A SQ model with a LSQ of length 5 and a HSQ of length 2.
Three different traces of requests are used for simulation:

Trace 1. Requests are generated to exactly follow the SR model.
Trace 2. Requests are generated to follow the SR state transition
rate between r1 and r2. However, in state r1, the inter-arrival time
of low-priority requests follows a uniform distribution with mean
value 10, the inter-arrival time of high-priority requests follows a
uniform distribution with mean value 40. In state r2, the inter-
arrival time of low-priority requests follows a uniform distribution
with mean value 20, the inter-arrival time of high-priority requests
follows a uniform distribution with mean value 80.
Trace 3. Request trace extracted from real operations on a
portable computer. In this case, the parameters in the SR model
are obtained by curve fitting.
Our method is compared with four heuristic power management
methods:
1. Greedy policy: turn on the SP whenever a request comes and

turn off the SP whenever the SP is idle and there is no request
in the queue.

2. Timeout policy (T=20): turn on the SP whenever a request
comes and turn off the SP whenever the SP has been idle for
20 seconds and there is no request in the queue.

3. Timeout policy (T=40): turn on the SP whenever a request
comes and turn off the SP whenever the SP has been idle for
40 seconds and there is no request in the queue.

4. Predictive method proposed in [7].
Tables 3, 4 and 5 present the comparison results by simulation.
The conclusions we have from these experiments are:
1. The new model saves more than 30% power on average over

heuristic methods. The average waiting time of low-priority
requests has been increased for less power. Note however
that the throughput of low priority requests is maintained.

2. By using our new system model, the latency of the high-
priority requests can be kept low, which is required in real
applications.

3. With new model, the latency of the high-priority requests is
still a little higher compared with heuristic methods, mostly
because of the SP switching time from power-down states to
functional states (heuristic methods make less switch than
DPM method). This situation can be improved in other
applications where the SP switches faster than the one in our
experimental setup.

4. The new model can handle multiple power modes whereas
the heuristic methods can only handle on-off states.

5. The new model can make different power-delay trade-offs by
changing the constraints on request waiting time.

6. The new model can adjust the optimal policy when workload
characteristics change, while the greedy and timeout methods
are not adaptive to the workload.

V. CONCLUSION
We have proposed a new system model and method for dynamic
power management at the system-level. The problem of system-
level power management was formulated as an optimal policy

selection problem based on the theories of continuous-time
Markov decision process, and stochastic network. Comparing with
previous work, we introduced new and more complete model of
the system components, as well as the model of the whole system.
The proposed models are closer to the real applications than other
previously proposed models. Experimental results showed that our
model has better performance than previous models in real
application. We also showed that the dynamic power management
method out-perform the heuristic approaches in terms of better and
more flexible power-delay trade-off.

Table 3 Experimental results for comparing power
management methods using request trace 1

Method Ave. waiting time of
high-priority
requests (sec)

Ave. waiting time of
low-priority

requests (sec)

Ave. Power
Dissipation

(W)
Greedy 16.4 25.5 2.03

Timeout (T=20) 13.9 19.5 2.29
Timeout (T=40) 12.9 18.3 2.20

Predictive 17.5 25.5 2.17
Our DPM 20.0 33.7 1.80

Table 4 Experimental results for comparing power
management methods using request trace 2

Method Ave. waiting time of
high-priority
requests (sec)

Ave. waiting time of
low-priority

requests (sec)

Ave. Power
Dissipation

(W)
Greedy 9.6 15.5 3.67

Timeout (T=20) 5.6 7.6 2.59
Timeout (T=40) 5.2 6.7 2.30

Predictive 10.3 15.7 3.90
Our DPM 10.2 24.7 1.95

Table 5 Experimental results for comparing power
management methods using request trace 3

Method Ave. waiting time of
high-priority
requests (sec)

Ave. waiting time of
low-priority

requests (sec)

Ave. Power
Dissipation

(W)
Greedy 13.0 11.8 2.39

Timeout (T=20) 9.2 6.4 2.15
Timeout (T=40) 8.7 3.9 2.06

Predictive 15.0 16.5 3.10
Our DPM 15.1 36.5 1.51

REFERENCES
[1] A. Chandrakasan, R. Brodersen, Low Power Digital CMOS Design,

Kluwer Academic Publishers, July 1995.
[2] M. Horowitz, T. Indermaur, and R. Gonzalez, “Low-Power Digital

Design”, IEEE Symposium on Low Power Electronics, pp.8-11,
1994.

[3] A. Chandrakasan, V. Gutnik, and T. Xanthopoulos, “Data Driven
Signal Processing: An Approach for Energy Efficient Computing”,
1996 International Symposium on Low Power Electronics and
Design”, pp.347-352, Aug. 1996.

[4] J. Rabaey and M. Pedram, Low Power Design Methodologies,
Kluwer Academic Publishers, 1996

[5] L. Benini and G. De Micheli, Dynamic Power Management: Design
Techniques and CAD Tools, Kluwer Academic Publishers, 1997.

[6] Intel, Microsoft and Toshiba, “Advanced Configuration and Power
Interface specification”, URL:
http://www.intel.com/ial/powermgm/specs.html, 1996

[7] M. Srivastava, A. Chandrakasan. R. Brodersen, “Predictive system
shutdown and other architectural techniques for energy effcient
programmable computation," IEEE Transactions on VLSI Systems,
Vol. 4, No. 1, pp.42-55, 1996.

[8] C.-H. Hwang and A. Wu, “A Predictive System Shutdown Method
for Energy Saving of Event-Driven Computation,” Proc. of the Intl.

[9] G. A. Paleologo, L. Benini, et.al, “Policy Optimization for Dynamic
Power Management”, Proceedings of the Design Automation
Conference, pp.182-187, Jun. 1998.

[10] Q. Qiu, M. Pedram, “Dynamic Power Management Based on
Continuous-Time Markov Decision Processes”to appear,
Proceedings of the Design Automation Conference, Jun. 1999.

