Provably Good Global Buffering by Generalized

Multiterminal Multicommodity Flow Approximation

Feodor F. Dragan, Andrew B. Kahng, lon laddoiu, Sudhakar Muddu, and
Alexander Zelikovsky

Abstract—To implement high-performance global interconnect without impacting the placement and per-
formance of existing blocks, the use of buffer blocks is becoming increasingly popular in structured-custom
and block-based ASIC methodologies. Recent works by Cong, Kong, and Pan [5] and Tang and Wong [21]
give algorithms to solve thebuffer block planningroblem. In this paper, we address the problem of how to
perform buffering of global multiterminal nets given an existing buffer block plaitwe give provably good and
heuristic algorithms for this problem based on a recent approach of Garg and Knemann [9] and Fleischer [8]
(see also Albrecht [1]). Our method routes connections using available buffer blocks, such that required upper
and lower bounds on buffer intervals are satisfied. In addition, our algorithms allow more than one buffer
to be inserted into any given connection and observe upper bounds and parity constraints on the number of
buffers per connection. Most importantly, and unlike previous works on the problem [5], [21], we take into
account (i) multiterminal nets, (ii) multiple routing layers, (iii) simultaneous buffered routing and compaction,
and (iv) buffer libraries. Our method outperforms existing algorithms for the problem [5], which are based on
2-pin decompositions of the nets, and has been validated on top-level layouts extracted from a recent high-end

microprocessor design.

This work was partially supported by Cadence Design Systems, Inc., the MARCO Gigascale Silicon Research Center and NSF

Grant CCR-9988331.
F.F. Dragan is with the Department of Mathematics and Computer Science, Kent State University, Kent, OH 44242. E-mail:

dragan@mcs.kent.edu.
A.B. Kahng is with the Departments of Computer Science and Engineering, and of Electrical and Computer Engineering, UC

San Diego, La Jolla, CA 92093-0114. E-mail: abk@cs.ucsd.edu.
I.I. Mandoiu is with the Department of Computer Science, UC Los Angeles, Los Angeles, CA 90095-1596. E-mail: man-

doiu@cc.gatech.edu.
S. Muddu is with Sanera Systems, Inc., Santa Clara, CA. E-mail: muddu@sanera.net.
A. Zelikovsky is with the Department of Computer Science, Georgia State University, Atlanta, GA 30303. E-mail:

alexz@cs.gsu.edu.

. INTRODUCTION

Process scaling leads to an increasingly dominant effect of interconnect on high-end chip perfor-
mance. Each top-level global net must undergo repeater insertion (among other optimizations; see
[4], [13], [16]) to maintain signal integrity and reasonable signal délBgtimates of the need for
repeater insertion range up to®l@peaters for top-level on-chip interconnect when we reach the
50nm technology node. These repeaters are large (anywhere froitm2D0x minimum inverter
size), affect global routing congestion, can entail non-standard cell height and special power rout-
ing requirements, and can act as noise sources. In a block- or reuse-based methodology, designers

seek to isolate repeaters for global interconnect from individual block implementations.

For these reasons,taffer blockmethodology has become increasingly popular in structured-
custom and block-based ASIC methodologies. Two recent works by Cong, Kong, and Pan [5] and
Tang and Wong [21] give algorithms to solve tindfer block planningroblem. Their buffer block
planning formulation is roughly stated as follows: Given a placement of circuit blocks, and a set
of 2-pin connections witlfieasible regiongor buffer insertior? plan the location obuffer blocks

within the available free space so as to route a maximum number of connections.

In this paper, we address the problem of how to perform buffering of globafjnetis an existing
buffer block plan (Hence, our work is compatible with and complements the methods in [5], [21].)
We give a provably good algorithm based on a recent approach of Garga@rehi@nn [9] and
Fleischer [8]. Our method routes the nets using the available buffer blocks, such that required
upper and lower bounds on repeater intervals—as well as length upper bounds per connection—
are satisfied. Our algorithm allows more than one buffer to be inserted into any given connection
and observes upper bounds on the number of buffers per connection. In addition, our algorithm
observesepeater parity constraings.e., it will choose the number of inverters in any routing path
according to the source and destination signal parity. The authors of [5], [21] assumed that global
nets have been already decomposed into 2-pin connections; unlike these works our model takes

into accounmultiterminal nets

IFollowing the literature, we will use the terrbsifferandrepeaterfairly interchangeably. When we need to be more precise: a

repeater can be implemented as either an inverter or as a buffer (= two co-located inverters).
2In [21] only a single buffer per connection is allowed.
3For example, global repeater rules for a high-end microprocessor design 0GOS [12] require repeater intervals of at

most 450pm. The number of buffers needed for a given connection depends strongly on the length of the connection; as noted in
[12], the repeater interval is not only required for delay reduction, but also for crosstalk noise immunity and edge slewtime control.

Our basic problem is informally defined as follows.

Given:

« a planar region with rectangular obstacles;
« a set of nets in the region, each net having:
— a single source and multiple sinks;
— a non-negative importance (criticality) coefficient;
« each sink having:
— a parity requirement, which specifies the required parity of the number of buffers (inverters)
on the path connecting it to the source;
— a timing-driven requirement, which specifies the maximum number of buffers on the path
to the source;
« a set of buffer blocks, each with given capacity; and

« anintervallL,U] specifying lower and upper bounds on the distance between buffers.

Global Routing via Buffer Blocks (GRBB) Problem: route a subset of the given nets, with

maximum total importance, such that:

« the distance between the source of a route and its first repeater, between any two consecutive
repeaters, respectively between the last repeater on a route and the route’s sink, are all between
L andU;

« the number of trees passing through any given buffer block does not exceed the block’s
capacity;

« the number of buffers on each source-to-sink path does not exceed the given upper bound
and has the required parity; to meet the parity constraint two buffers of the same block can be

used.

If possible, the optimum solution to the GRBB problem simultaneously routes all the nets. Oth-
erwise, it maximizes the sum of the importance coefficients over routed nets. The importance co-
efficients can be used to model various practical objectives. For example, importance coefficients
of 1 for each net correspond to maximizing the number of routed nets, and importance coefficients
eqgual to the number of sinks of the net correspond to maximizing the number of connected sinks.

We also consider the following extensions of the basic GRBB problem:

« Multi-Layer GRBB. The basic GRBB formulation imposes the saby&) bounds on the
length of all buffer-to-buffer, source-to-buffer, and buffer-to-sink wire segments. niiia-

layer GRBB problenaccounts for the different electrical characteristics (unit-wire resistance
and capacitance) of different routing layers and takes into consideration non-uniform source
driving strengths and sink input capacitances.

« GRBB with Set Capacity Constraints. The basic GRBB problem assumes predetermined
capacities for all buffer blocks. In practice, there is some freedom for transferring capacity from
a buffer block to neighboring buffer blocks by translating circuit blocks. GiRBB problem

with set capacity constraintaptures this freedom by allowing constraints on the total capacity
of setsof buffer blocks, instead of only constraining individual buffer blocks.

« GRBB with Buffer Library. To achieve better use of area and power resources, multiple
buffer types can be used. T&RBB problem with buffer librarpptimally distributes the
available buffer block capacity between given buffer types and simultaneously finds optimum
buffered routings.

We give integer linear program (ILP) formulations for the basic GRBB problem and its exten-
sions; these formulations generalize the vertex-capacitated integgterminal multicommodity
flow (MTMCF) problem. The main contribution of the paper is a provably good algorithm for these
generalizations of the MTMCF problem. Prior to our work, heuristics based on solving fractional
relaxations of integer multicommaodity flow formulations have been applied to VLSI global routing
[15], [20], [2], [11], [1]. As noted in [14], the applicability of this approach is limited to problem
instances of relatively small size by the prohibitive cost of solving exactly the fractional relax-
ation. As in the recent work of Albrecht [1], we avoid this limitation by using an approximation
algorithm for solving the fractional relaxations. The approximation algorithm can find solutions
within any desired accuracy; an important feature of the algorithm is that it allows for a smooth
trade-off between runtime and solution accuracy. Our experiments indicate that even low accuracy

fractional solutions give good final solutions for the GRBB problem after rounding.

The most interesting feature of our algorithm is its ability to work waithltiterminalnets; previ-
ous work on the GRBB problem [5], [21] has considered only the case of 2-pin nets. Experiments
on top-level layouts extracted from a recent high-end microprocessor design validate our algo-
rithm, and indicate that it significantly outperforms existing algorithms for the problem based on

2-pin decompositions.

5

The rest of the paper is organized as follows. In Section Il we give ILP formulations for the
GRBB problem and its extensions, and introduce a common generalization of these ILPs, referred
to as thegeneralized multiterminal multicommodity floeMTMCEF) ILP. The fractional relax-
ation of the GMTMCEF ILP is a special type pficking LR and can thus be approximated within
any desired accuracy using the algorithm of Garg andd€riann [9]. In Section Il we give a sig-
nificantly faster approximation algorithm, obtained by extending a speed-up idea due to Fleischer
[8] to this special type of packing LPs. We give the details of a key subroutine of the algorithm—
finding minimum-weight feasible Steiner trees—in Section IV, and present algorithms for round-
ing near-optimal fractional GMTMCF solutions to near-optimal integral solutions in Section V.

In Section VI we describe implementations of several GRBB heuristics, some based on rounding
approximate fractional GMTMCF solutions, and some based on less sophisticated greedy ideas;
Section VII gives the results of experiments comparing these heuristics on test cases extracted from
the top-level layout of a recent high-end microprocessor. Finally, we conclude in Section VIII with

a list of future research directions.

[I. INTEGERLINEAR PROGRAM FORMULATIONS

Throughout this paper we & = (sK;tl},...,tE"), k=1,...,K, denote the nets to be routed;
s¢ Is the source andtlf,...,tf" are thesinks of net Nx. We denote bygkx > 1 the importance
(criticality) coefficient of netN, and byaL € {even, odd andlf(> 0 the prescribegbarity, re-
spectivelyupper boundon the number of buffers on the path between sosr@nd sinktli(. Let
alsoS= {sy,...,5} andS = {t%, .. ,tfl, .. ,t&, ... ,tﬂK} denote the set of sources, respectively of
sinks, andR = {r1,...,rp} denote the given set diuffer blocks For each buffer block;, we let

c(ri) denote itscapacityi.e., the maximum number of buffers that can be inserteg in

A routing graphfor netsNy, k=1,...,K, is an undirected grap@ = (V, E) such thaSUS C V.
The set of vertices db other than sources and sinks\ (SUS), is denoted by/’. Specific routing
graphs are defined in the following subsections for the GRBB problem and each of its extensions.
All vertices in these routing graphs have associated locations on the chip, including thdse in
which are associated with buffer block locations. The edges are defined according to the specific
L/U bounds imposed by each problem. Thus, every Steiner tr€auntomatically satisfies the
givenL/U bounds assuming that a buffer is inserted at each Steiner point. To ensure that upper-

bound and parity constraints on the number of buffers on source-to-sink paths are met as well, we

6

need to restrict the set of allowable Steiner trees as follows.
A pathp = (s, V1,V2,...,V ,t“(), connecting sourcs to sinktf(in routing graphG, is afeasible
(s t)-pathif
« VeV’ foreachi=1,...,l;
. the parity ofl is a; and
o I <L
A feasible Steiner tretor netN is a Steiner tredy in G connecting terminal&,tl}, .. ,tfk such
that, for every = 1,...,qx, the path ofT, connectings, to tli(isa feasible(sk,tli()-path as defined
above.
We will denote the set of all feasible Steiner trees forgby Ty, and letlT = Uﬁlek. Given
importance coefficientgx = g(Nk) for each netNy, we defineg(T) = gk for each treeT € Ty,
k=1,...,K.

A. ILP Formulation of GRBB

We begin by defining the routing graph = (V,E) for the GRBB problem. To allow fea-
sible Steiner trees that meet parity constraints by using two buffers in the same buffer block,
we introduce two distinct vertices, andr”, corresponding to each buffer block and define
V =SuSu{r',r" | r e R} If d(x,y) denotes the length of the shortest rectilinear path connect-
ing pointsx andy and avoiding all given rectangular obstacles, the edge sétiefdefined by
E = EgUE;, where

Eo = {(r',/")|reR}
SES {(Xay)| X,YEV,LSd(X,y)SU}

The GRBB problem is then equivalent to the following integer linear program:

maximize Stc7 9(T)fr (ILP1)

subject to

>TeT T[T(V) fr <1, YweSuS

Ster (Mr () + 1 (r") fr <c(r), VreR

fr € {0,1}, VT eT

whererTer (V) is the number of occurrenceswin T, i.e.,

0,ifveg T

T[T(V):
LifveT

In (ILP1), the variableft is set to 1 if the feasible Steiner tré@eis routed and to 0 otherwise.
Constraints of the first type (correspondingvte SU S) ensure that at most one feasible Steiner
tree is routed for each net; constraints of the second type (correspondirgRpenforce buffer
block capacities.

B. ILP Formulation for Multi-Layer GRBB

The basic version of the GRBB problem imposes identicd) bounds on the length of all
buffer-to-buffer, source-to-buffer, and buffer-to-sink wire segments. This is not appropriate when
routing is done in multiple layers, since different layers have different electrical characteristics
(unit-wire resistance and capacitance). In addition, signal sources typically have non-uniform driv-
ing strengths, and signal sinks have non-uniform input capacitances. Thus, an accurate formulation
of the GRBB problem forz > 1 routing layers must handle:

« layer-dependentower- and upper-boundd, /Ui, i = 1,...,z on the length of buffer-to-
buffer wire-segments;

« source- and layer-dependeldwer- and upper-bound$,’/U®, s€ S, i =1,...,z on the

length of source-to-buffer wire-segments; and

« sink- and layer-dependetdwer- and upper-boundk! /Ut t € S,i=1,...,z on the length
of buffer-to-sink wire-segments.

These additional parameters are taken into account by appropriately modifying the routing graph
graphG = (V,E). The vertex set o6 remains the sam¥&, = SUS U{r’,r" : r € R}, but we now
defineE = EgU E1 UE> U E3, where

Eo = {(r';r")|reRr}

Er = {(

Ex = {(rL,ry), (r,ro), (rf,r5), (r{,r5) | ri,ro e Rry #rp, i € {1,...,2} s.t.Lj < di(ry,rz) < Ui}
(

Es = {(r',t),(r",t)|reRteS, diell,...,z} stL<d(rt)<Ul}

Syrl)v(syr”) |S€ SreRdie {17"'72} S.t. I‘ISS di(S,r) SUis}

8

Here, di(x,y) denotes the length of the shortest rectilinear path connecting poeutsly and
avoiding all rectangular obstacles in layer
The multi-layer GRBB problem is then equivalent to (ILP1) for the modified routing g@aph

C. ILP Formulation for GRBB with Set Capacity Constraints

Our basic formulation of the GRBB problem assumes predetermined capacities for all buffer
blocks. In practice, buffer blocks are placed in the free space available after compaction, when
some of the circuit blocks can still be moved within certain limits, thus transferring capacity from
a buffer block to neighboring buffer blocks (see Fig. 1). This freedom is captured by upper-bounds

on the total capacity of entirgets of buffer blocksather than individual buffer blocks.

BB1 BB2

-

Fig. 1. Two buffer blocks BB1 and BB2 that share capacity: if the circuit block M moves right, then the

capacity of buffer block BB1 is increasing while the capacity of buffer block BB2 is decreasing. In
this example it is the sum of capacities of BB1 and BB2, rather than their individual capacities, that is
bounded.

Assume that, as the result of compaction, we have identified suBsets, R, of R (some of
which may consist of a single buffer block) such that there is a positive upper-looRi)cbn the
total capacity of eacR,. Assuming further that circuit block movements are so small compared
to the givenL/U bounds that we can ignore changes in buffer block positions, it follows that the
GRBB problem with set-capacity constraints givendiy), ..., c(Rp) is equivalent to the follow-

ing integer linear program, in which the underlying routing graph is defined as in Section II-A.

maximize Stc1 9(T)fr (ILP2)

subject to

>TeT T[T(V) fr <1, Ywe SuS

Stet (Zrer (M (M) + 10 (")) fr <c(R), Vie{l,....p}

fr € {0,1}, VT eT

D. ILP Formulation for GRBB with Buffer Library

The basic GRBB problem formulation implicitly assumes the use of a single buffer type. In
practice, better use of area and power resources may be achieved by using more than one type
of buffer. In this subsection we give an integer program formulation for the GRBB problem with
buffers chosen from a given buffer library. This version of the problem allows buffered routings of
the nets using any mix of buffers from the given library, and also allows buffers of different types
(and hence, of different sizes) be placed in the same buffer block, up to the capacity of the block.

Let B be the set of buffer types in the library. We assume to be given thesszzdy), for each
buffer typeb € B, as well as lower- and upper-bound$? /U (sb), () /y(bE) | respectively
L(bvt)/u (bY) " on the length of each wire segment connecting sosre& to a buffer of typeb, a
buffer of typeb to a buffer of type, respectively a buffer of typke to sinkt € S. To ensure that
the available buffer block capacity is optimally distributed between the given buffer types and also
allow feasible Steiner trees that use more than one buffer in the same buffer block, we introduce
2|B| vertices corresponding to each buffer blackFormally, the routing grapie = (V,E) has
vertex seV = SUSU{r|,rp | r € R, be B} and edge sdf = EgUE; UE, UE3UE4, where

Eo = { I’é
Ex = { r{:,l,rbz) (rbl,rbz), (rbl,rgz), (rgl,rgz) |r € R by,by € B, by # by}

(rh,re) | r € R beB}
(

E2 = {(sr}),(sr)) | s€eSreRbeB, LY <d(sr) <ulsh)
(
(

Es = {(rby0b,) (b Gy), (b, Ghy). (1B, O,) | LG € R T £, b, bz € B, LP1P2) < d(r,q) <U(PrP2)}
Es = {(rp,t),(r5,t) | reR beB,teS, LPY <d(rt) <u®y}

The GRBB problem with buffer librars is then equivalent to the following integer linear program:

maximize Stc1 9(T)fr (ILP3)

10

subject to

>TeT T[T(V) fr <1, YweSuS

Stet (Spep(Tr(rf) + T (r)))sizeb)) fr < c(r), vreR

fr € {0,1}, VT eT

E. The Generalized MTMCF ILP

Note that (ILP1-ILP3) are already strict generalization of previous integer edge-capacitated mul-
titerminal multicommodity flow formulations used for VLSI global routing [19], [1], since they
impose capacities on vertices and/or specific sets of vertices. In this subsection we formulate a
common generalization of the integer linear programs (ILP1)—(ILP3), referred to getleeal-
ized multiterminal multicommodity floleMTMCF) ILP, which allows (1) capacities on arbitrary
sets of vertices, and (2) arbitrary vertex weights saying how much capacity is used by a tree visiting
the vertex.

Given:

e netsNg, k=1,...,K, with importance coefficientg;

a routing graplG = (V, E) for the nets;

arbitrary sets], of Steiner trees for each ni;

a family,V, of subsets o¥ such thafv} € V for everyve SUS;

a functions:V — R, such thas(v) = 1 for everyv € SUS; and

« afunctionc:V — Z, such that({v}) = 1 for everyv € SUS;
the generalized multiterminal multicommodity flow ILP is:
maximize Stc1 9(T)fr (GMTMCEF ILP)

subject to

dTeT T (X) fr < C(X), vXeV

fr € {0,1}, VT eT

11
whereT = UL Ty, 9(T) = gk for everyT € Ty, and
T (X) =Y T (V)S(V)
2

foreveryT € T andX e V.

It is not difficult to see that (ILP1)—(ILP3) are special cases of the GMTMCEF ILP. Thus, (ILP1)
is obtained withs = 1 by including inV, besides singleton sets corresponding to sources and
sinks, all setsX, = {r’,r"}, r € R, and settingc(X;) = c(r). Similarly, (ILP2) is obtained with
s=1 by including inV singleton sets corresponding to sources and sinks, as well as the sets
Xi={r',r"|reR}, i=1,...,p, withc(X) = c(R). Finally, (ILP3) is obtained for a family/
containing singleton sets corresponding to sources and sinks together with te=s¢tg,r;, | b e
B}, r € R for whichc(X;) = c(r). In this cases(v) = 1 if vis a source or a sink, arstv) = sizgb)

if ve {ri,ry |r e R}
I1l. A PPROXIMATING THE GMTMCF LP RELAXATION

Our two-step approach to the GRBB problem and its extensions is to (1) solve the fractional
relaxations of (ILP1)—(ILP3), obtained by replacing integrality constrdints {0, 1} with fr >0,
and then (2) use randomized rounding to get integer solutions. In this section we give an algorithm
for approximating within any desired accuracy the fractional relaxation of the GMTMCEF ILP,
which subsumes (ILP1)—(ILP3). The algorithm relies on a subroutine for finding minimum weight
feasible Steiner trees, the details of this subroutine are given in Section IV.

The fractional relaxation of the GMTMCF ILP, which we refer to as ge@eralized multiter-
minal multicommodity flow linear prografMTMCF LP), can be solved exactly in polynomial
time using, e.g., the ellipsoid algorithm. However, exact algorithms are highly impractical. On the
other hand, the GMTMCEF LP is packing LR and can thus be efficiently approximated within
any desired accuracy using the recent combinatorial algorithm of Garg anenkénn [9]. We
give a significantly faster approximation algorithm based on a speed-up idea originally proposed
by Fleischer [8] for approximating the maximum edge-capacitated multicommaodity flow (MCF).

Our algorithm simultaneously finds feasible solutions to the GMTMCF LP andvuis linear
program The dual LP asks for an assignment of non-negative weighXg to everyX € V

such that the weight of every tree € T is at least 1, where the weight df is defined by
weight(T) = TlT) 3 e\ T (X)w(X):

12

minimize 3. w(X)c(X) (GMTMCF Dual)

subject to

rln 3wy Tr(X)w(X) > 1, VT eT

w(X) >0, VX eV

In the following we assume that migy : k= 1,...,K} = 1 (this can be easily achieved by scaling)
and denote mabgx : k=1,...,K} byT.

The algorithm (Figure 2) starts with weightg§X) = 6 for everyX € V, whered is an appro-
priately chosen constant, and with a GMTMCF LP solutfoz 0. While there is a feasible tree
whose weight is less than 1, the algorithm selects such ateeed incrementdt by 1. This in-
crease will likely violate the capacity constraints for some of the set;ifeasibility is achieved
at the end of the algorithm by uniformly scaling down &lls. Wheneverft is incremented, the
algorithm also updates each weightX) by multiplying it with (1+ €1 (X) /c(X)), for a fixede.

According to the Garg and ¢fiemann’s approximation algorithm [9] each iteration must incre-
ment the variabldt corresponding to a tree with minimum weight among all treek irFinding
this tree essentially requirds minimum-weight feasible Steiner tree computations, one for each
netNx. We reduce the total number of minimum-weight feasible Steiner tree computations during
the algorithm by extending a speed-up idea due to Fleischer [8]. Instead of always finding the
minimum-weight tree inl , the idea is to settle for trees with weight within a factor(bft €)
of the minimum-weight. This speeds-up the computation since multiple vari&plesn now be
incremented, possibly more than once each, in a single iteration. As shown in next section, the
faster algorithm still leads to an approximation guarantee similar to that of Garg@mehiann.

In each iteration the algorithm cycles through all nets. For each net, the algorithm repeatedly
computes minimum-weight feasible Steiner tree until the weight becomes largédthantimes
a lower-boundx on the overall minimum weight, m{nveigh(T) : T € T }. The lower-bound is
initially set tod/I', and then multiplied by a factor ¢fL + €) from one iteration to another (note
that no tree inl has weight smaller thafl + €)a at the end of an iteration, 4.+ €)a is a valid
lower-bound for the next iteration).

The scheme used for updatingfully determines the number of iterations in the outer loop of

the algorithm. Note that the lower-bounds at most(1-+¢€) in the last iteration (since it increases

13

Input: Nets Ny, ..., Nk, coefficients ga,...,dk, routing graph G = (V,E), family V of subsets of V, weights
c(X), X eV, and s(v),veV
Output: GMTMCF LP solution fr,TeT

ForeveryTeT, fr «0
For every X e V, w(X) < &
a<«d/f /I a'is at all times a lower-bound on miweight(T) : T €T }
Fori=1tot= [Iogl+£ (1EE)FJ do
Fork=1to K do
Find a minimum weight feasible Steiner tree T in Ty
While weight(T) < min{1,(1+¢)a} do
frefr+1
Forall X € V, w(X) < w(X)(1+ emer (X) /c(X))
Find a minimum weight feasible Steiner tree T in Ty
End while
End for on k

a+ (1+g)a

End for onii

Forevery TeT, fr « fiﬂm)r
10914 ¢ 5

Output f, TeT

Fig. 2. The algorithm for finding approximate solutions to the GMTMCEF LP.

by a factor of(1+ €) each time, and in the iteration before the last there is at least one tree of

weight less than 1). Thus, since= 8/ in the first iteration, the number of increasesios no

larger than log, . (H;)r, and the final value dfis Llogl% (1+65)rJ .

A. Runtime and Performance Analysis

The two main loops of the algorithm (erand onk) are both repeated a fixed number of times,

{Iog1+€ (”;)rJ andK, respectively. However, this does not immediately determine the runtime of

the algorithm because of the variable number of iterations in the inner while loop. The following

lemma gives an upper-bound on the runtime.

Lemma 1:Overall, the algorithm in Figure 2 requir@(KIogHS@> minimum-weight

feasible Steiner tree computations.

14

Proof. First, note that the number of minimum-weight feasible Steiner tree computations that

(1+€)l
o

for each net\y, there is exactly one minimum-weight feasible Steiner tree computation revealing

do not contribute to the final fractional solutiorkis[log1 te J . Indeed, in each iteration, and

thatminy .1, weight(T) > (1+¢)a, all other computations trigger the incrementation of sdine
We claim that the number of minimum-weight Steiner trees that lead to variable incrementations

is at mosKlog (1?”. To see this, note that the weight of the &gf} € V is updated whenever

avariableft, T € Ty, isincremented. Moreover({sc}) is last updated when incrementifig for
a treeT € Ty of weight less than one. Thus, before the last updatés}) < T -weight(T) < T.
Sincerir ({sc}) = c({s}) = 1, the weight of{ s} is multiplied by a factor of %-€ in each update,
including the last one. This implies that the final valuengfsc}) is at most(1+€)I. Recall-
ing thatw({s¢}) is initially set tod, this gives that the number of updateswf{s}) is at most

logy ¢ (1+§)r. The lemma follows by summing this upper-bound over all nets. 0

Lemma 2:The algorithm in Figure 2 computes a feasible solution to the GMTMCF LP.

Proof. We need to show that the valuésreturned by the algorithm satisfy the inequality

Tgr T (X) fr < ¢(X) - 109y, ¢ (128)r

for everyX € V. Consider an arbitrary set € V. Every time the variabldy is incremented by

X €
o(X)

1+ye > (1+¢)Y for 0 <y <1, we get that every sequence of updates Witk = c(X) increases

one unit, the weight oX is also increased by a factor <31+) , wherex; = 1 (X). Using that

the weight ofX by a factor of at least

M

i %

Let M = Stc1 T (X) fr. Since the initial weight oK is , from the previous inequality we get

X

that the final weight oK is at Iea36(1+s)%.

Now, the last update of(X) is done when incrementinfy for a treeT € Ty of weight less than
one. Thus, the weight of is at mosig(T) -weight(T) < I before last update, and at mostt)
after. Combining this upper-bound on the final weighXodvith the lower-bound above gives that

B(1+€)%0 < (1+e)T, iie.,
(1+¢)r

M < C(X) Iogl+€ 5

15

Finally, we show that, for an appropriate value of the paran&tére feasible solution found

by the algorithm is close to optimum.

Theorem 1:For everye < 0.15, the algorithm in Figure 2 computes a feasible solution to the
GMTMCEF LP within a factor of ¥(1+ 4¢) of optimum by choosing = (1+¢€)I ((1+ s)LF)*%;
the runtime of the algorithm for this value ofis O(S%K(IogLHogF)'l}ree). Here,L is the
maximum number of vertices in a feasible tree, agpgk is the time required to compute the

minimum weight feasible Steiner tree for a net.

Proof. Our proof is an adaptation of the proofs of Garg arahErnann [9] and Fleischer [8]. We
show that the solution computed by the algorithm is within a factor/¢1 % 4¢) of the optimum
objective valuef3, of the dual LP. The claimed approximation guarantee follows, since, by LP
duality theory3 is an upper-bound on the optimum objective value of the GMTMCF LP.

Let a(w) be the weight of a minimum weight tree from with respect to weight function
w:V — Ry, and letD(w) = ¥ o W(X)c(X). A standard scaling argument shows that the dual
LP is equivalent to finding a weight functiom such thatD(w)/a(w) is minimum, and tha =
min {D(w) /o(w)}.

For everyX € V, letw;(X) be the weight of seX at the end of théth iteration andvp(X) = &
be the initial weight of seX. For brevity, we will denotex(w;) andD(w;) by a(i) andD(i), re-
spectively. Furthermore, Ieﬂ‘r be the value oft at the end ofth iteration, andy = 1.7 9(T) fiT
be the objective value of the GMTMCEF LP at the end of this iteration.

When the algorithm increments by one unit, each weight(X) is increased byerer (X)w(X) /c(X).

Thus, the incrementation df increase®(w) by

e Y Tr(X)w(X)=¢eweight(T)g(T)
xeV

If this update takes place in thi#h iteration, therweightT) < (1+¢€)a(i — 1). Adding this over

all fr’s incremented inth iteration gives

D(i) — D(i — 1) < g(1+€)a(i — 1)(h —hi_y)

16

which implies that

D(i)~D(0) <e(1+8) Y alj—1)(h —hy 1)
=1

Consider the weight functiow; —wp, and notice thaD(w; —wp) = D(i) — D(0). Since the mini-
mum weight tree w.r.t. weight functiom — wp has a weight of at most(w; —wp) + L& w.r.t. w;,

a(i) < a(w; —wp) 4+ L&. Hence, ifa(i) — Ld > 0, then

D(w; —Wp)

D(i)~D(0) _ &(1+€) 3 10(i=D(hj—hj-1)
o (W, —Wp)

= ai)—Ls = a(i)—Ld

<

Thus, in any case (whem(i) — L& < 0 this follows trivially) we have

218 & (- 1)(hy — hy)

=

a(i) < L5+

Note that, for each fixed the right-hand side of last inequality is maximized by settig) to its

maximum possible value, say(), for every 0< j < i. Then, the maximum value offi) is

i—1
Qi) = L5+ “Lﬁgla'u-l)(hj—hj_l) + e 1))
g(1+¢)

= o'(i-1) <1+ 5 (hi—hi1)>

g(1+e
< Gl(i _1)e(;)(hi*hi—l)

where the last inequality uses that Xk < €* for everyx > 0. Using thai’(0) = L9, this gives

e(l+e)

a(i)y<Lée B

Lett be the last iteration of the algorithm. Sineé&) > 1,

g(1+e)
1<Lde B "

and thus

B < e(l+e¢)

he = In(Ld)~1
Lety= %Iog1 te (1+65)r be the ratio between the optimum dual objective value and the objective

value of the GMTMCF LP solution produced by the algorithm. By substituting the previous bound

on3/h; we obtain

g(1+¢e)logy o LT g(14g)in e

V=TTt T (@t e)in(le)

17

._‘

Ford= (1+¢)l ((14+¢)LT) =,

—

1
B

N30 n(ateLr): lin(d+elr) 1
L) n(14eLr) i En(L+elln) 1-¢

and thus
g(1+¢) g(1+¢) (1+¢)
~(1-¢)in(l+e) ~ (1—¢)(e—¢€2/2) — (1—¢)?

Here we use the fact that(lh+€) > £ — €2/2 (by Taylor series expansion of(th+-€) around the

origin). The proof of the approximation guarantee is completed by observinglhat)/(1—
£)? < (14 4e) for everye < 0.15. The runtime follows by substitutinyin the bound given by

Lemma 1. 0

IV. COMPUTING MINIMUM -WEIGHT FEASIBLE STEINER TREES

The key subroutine of the approximation algorithm given in the previous section is to compute,
for a fixedk and given weightsv(X), X € V, a feasible tred € Ty minimizing weight(T) =
WlT) Yoy T (X)W(X). Define a weight function/ on the vertices of the routing gra@= (V, E)
by settingw/(v) = WlT) Y yexeV WX), and letw'(T) = Jyey ()W (V) be the total vertex weight
w.r.t. w of T. ThenweightT) = w/(T), and the problem reduces to finding a tiee Ty with
minimum total vertex weight w.r.t/.

Recall that for the GRBB problem and its extensiohscontains all Steiner trees connecting
the sources, with the sinksti}, .. ,tEk such that the number of intermediate vertices on each tree
path betweers, andtli(has the parity specified b% and does not exced{g. In this case we
can further reduce the problem of finding the tilee Tx minimizingw/(T) to theminimum-cost
directed rooted Steiner tre@RST) problem in a directed acyclic graph, defined as follows.

Let Ly = max{l},...,I X} andv/ =V (G) \ (SUS). Then

V(Dk) = {sc U{vj | veV, 1< j < Lid U{te,.... 4%}
andE(Dy) = E;UE,UE3, where

Er = {(scv1) [VEV' (sV) EE(G)}
E2 = {(ujvjy1) [uveV, 1< <L (uv) € E(G)}
Es = {(upt))lueV,1<h<g,1<j<Il j=al(mod 2),(vt]) € E(G)}

18

For a given directed gragh = (X,U) with costs on arcs, a specified raat X, and a set of termi-
nalsY C X, the directed rooted Steiner tree problem asks to find the minimum cost arborescence
rooted atr and spanning all the verticesYh(in other words should have a directed path to every
vertex inY). It is easy to see that finding a feasible Steiner ree Ty with minimumw/ (T) re-

duces to finding a minimum cost DRST I after assigning to each arc entering vengx € V’,

1< j <Ly, acost ofw (v), and to each arc entering sitﬂ(1< h<q acost ofv\/(tl?).

Unfortunately, the minimum-cost DRST problem is NP-hard, and the factDhas acyclic
does not help since there is a simple reduction for this problem from arbitrary directed graphs to
acyclic graphs. As far as we know, the best result for the DRST problem, due to Charikar et al. [3],
gives O(log? gy)-approximate solutions in quasi-polynomial tir@n3'°9%). Note, on the other
hand, that the minimum-cost DRST can be found in polynomial time for small nets (e.g., in time

O(nM~1) for nets with at mosk sinks, forM = 2, 3,4). Theorem 1 immediately gives

Corollary 1: If the maximum net size iM < 4, the algorithm in Figure 2 finds, for evegy
0.15, a feasible solution to the GMTMCF LP within a factor gf(1+ 4€) of optimum in time
@) (S%Kn'\"—l(lognHogr)).

Since most of the nets in real designs have small size, Corollary 1 justifies the following practical
strategy for finding approximate solutions to the GMTMCF LP: decompose nets with more than 4
pins into nets with 2—4 pins, then apply the approximation algorithm in Figure 2. Another heuris-
tic approach to speed-up the computation, used by Albrecht [1] for edge-capacitated MTMCF
approximation, is to compute (exactly or approximately) a DRST once, then use in each of the
following iterations minimum directegpanningrees (with respect to the updated edge lengths) in
the directed acyclic graph induced b, t?, ... ,tfk, P1,...,Ps} in the metric closure dDy, where
p1,..., Ps are the Steiner points of the original DRST. To find a minimum spanning directed tree
in directed acyclic graphs, one can use a very simple procedure: for each vertex choose a shortest
incoming arc, then, after running this procedure, recursively delete all leaves that are not sinks of
the netNy.

We have implemented both heuristics that use approximate DRSTs instead of optimum DRSTs
and heuristics based on 2-, 3-, respectively 4-pin decompositions; results of experiments comparing

these approaches are reported in Section VII.

19

V. ROUNDING THE FRACTIONAL GMTMCF

In the previous two sections we presented an algorithm for computing near-optimal solutions
to the GMTMCF LP. In this section we give two algorithms based on the randomized rounding
technique of Raghavan and Thomson [18] (see also [14]) for converting near-optimal fractional
GMTMCEF solutions to near-optimal integer GMTMCEF solutions, i.e., to near optimal buffered
routings.

The first algorithm is given in Figure 3. Since the algorithm routes\patith probability fy =
>ter, fr, it follows that, on the average, the total importance of the nets routed by the algorithm
is K gkfk = Stet 9(T) fr. By Theorem 1, this is within a factor of/11 + 4¢) of the optimum
GMTMCEF LP solution, which in turn is an upper-bound on the optimum GMTMCEF ILP solution.

Input: Fractional GMTMCEF solution fr, Te T
Output: Routed trees, Ty € Tk

Foreach k=1,...,K, select net Nk with probability fx = yrcr, fr

Route each selected net N by picking a tree Ty from Ty, where tree T € T is picked with probability fr/fy

Fig. 3. Randomized GMTMCF rounding algorithm.

A potential drawback of the first rounding algorithm is that it requires the explicit representa-
tion of treesT € T with f(T) # 0. Although the approximate GMTMCEF algorithm produces a
polynomial number of trees with non-zefg, storing all such trees is infeasible for large problem
instances. Our second rounding algorithm (Figure 4) takes as input the net ancuedlglated
GMTMCF values fx = y tc1, fr, respectivelyfi(€) = 3 ret,: ece(T) f1, thus usingd(K|E|) space.

Note that the GMTMCF algorithm in Figure 2 can be easily modified to compute these cumulated
GMTMCF values instead oft’s.

Our second rounding algorithm routes Ngt= (sk;t|}, . ,tl‘j'k) with the same probability as the
first rounding algorithm and thus, as argued above, the total importance of the routed nets is within
a factor of ¥(1+ 4¢) of optimum. The difference is in how each chosen net is routed: to route
netNg, the algorithm performbackward random walksom each sink ofNk until reaching either
the sources, or a vertex already connected to the source. The random walks are performed in the

directed acyclic graphBy, with probabilities given by the normalizefg(e) values.

Ensuring that no set capacity is exceeded can be accomplished in two ways. One approach

20

Input: Net- and edge-cumulated GMTMCF values, fx = Y1, fr and fu(€) = Yret,: ece(r) fro k=1,... K,
ec E(Dk)
Output: Routed trees Ty € Ty

For each k=1,...,K, select net Nx with probability fy
Route each selected net N, as follows:
T {s}
For each sink | in Ng do
P«0, vt
While v ¢ Ty do
Pick arc (u,v) with probability %
P+~ Pu{(uv)}, v<«u
End while
Tk < TxUP
End for

Fig. 4. Random walk based GMTMCF rounding algorithm.

is to solve the GMTMCF LP with set capacities scaled down by a small factor; this guarantees
that the rounded solution meets tbaginal capacities with very high probability (see [14] for

an application of this approach to VLSI global routing). A simpler approach, extending the so-
calledgreedy-deletion algorithrf6] to multiterminal nets, is to repeatedly drop routed nets pass-
ing through over-used sets until feasibility is achieved. We implement a modified version of the
greedy-deletion algorithm in which, instead of dropping an entire tree, we drop only the sinks

using paths through over-used sets.

VI. IMPLEMENTED ALGORITHMS
In this section we describe the implemented algorithms for the GRBB problem.

Greedy Routing Algorithms

We have implemented four greedy algorithms for the GRBB problem, all of them based on
the generic greedy routing algorithm given in Figure 5. All four greedy algorithms route nets
sequentially. For a given net, the algorithms start with a tree containing only the net’s source, then
iteratively add shortest paths from each sink to the already constructed tree. The only difference
is in whether or not net decomposition is used, and in the size of the decomposed nets. The first
three algorithms—referred to as 2TG, 3TG, and 4TG, respectively—start by decomposing larger

21

Input: Graph G with K nets Ny, ...,Nk, vertex capacities c(v)
Output: Fully or partially routed feasible Steiner trees Ty € Ty

Foreachk=1,...,K, do

T {s}

For each sink | in Ng do
Using a backward BFS search, find a shortest path P from t|i< to Tk in G using only vertices v with

c(v) > 0; if no such path exists let P=0

Tk < TxUP
For each vertex vin P, c(v) « c(v) — 1

End for

End for

Fig. 5. The generic greedy routing algorithm.

multiterminal nets into 2-, 3-, respectively 4-pin nets, and then apply the algorithm in Figure 5 to
this decompositioft. The fourth algorithm—which we refer to as MTG—is simply the algorithm

in Figure 5 applied to the original (undecomposed) nets.

GMTMCF Rounding Algorithms

We have implemented four GMTMCF rounding algorithms, all of them based on the generic
schema given in Figure 6. The first three algorithms—referred to as G2TMCF, G3TMCF, and
G4TMCEF, respectively—start by decomposing larger multiterminal nets into 2-, 3-, respectively
4-pin nets, and then apply the generic GMTMCEF routing algorithm to this decomposition. Since
the optimum DRST can be efficiently computed for nets of these sizes, the three algorithms do
not need to resort to the DRST approximations suggested at the end of Section IV. The fourth
algorithm—henceforth referred to as GMTMCF—applies the flow rounding schema in Figure 6
to the undecomposed nets, using shortest-path trees as approximate DRSTs in the GMTMCF ap-

proximation step.

VIl. | MPLEMENTATION EXPERIENCE

All experiments were conducted on a SGI Origin 2000 with 16 195MHz MIPS R10000 pro-
cessors (only one of which is actually used by the sequential implementations included in our

4We remark that 2TG is essentially the algorithm suggested in [5], except that in [5] shortest paths are computed in the forward
direction, from sources toward sinks, and not from sinks toward sources as in Figure 5. It has been experimentally observed [7] that
backward shortest paths give slightly better results than forward shortest paths.

22

Input: Graph G with K nets Ny, ...,Nk, vertex capacities c(v)

Output: Fully or partially routed feasible Steiner trees Ty € T

Find an approximate GMTMCF using the algorithm in Figure 2

Round the approximate GMTMCF using the algorithm in Figure 4

Use greedy deletion to find a feasible integer solution

Use the MTG algorithm in Figure 5 on the unrouted nets to find a maximal routing

Fig. 6. The generic GMTMCF-based routing algorithm.

TABLE |

INSTANCE PARAMETERS

ID || #Nets #Sinks Pins/net L U BB Cap.
hl || 2396 2958 2.23 2000 4000 200
h2 || 2438 3077 2.26 1000 4000 200
h3 || 2448 3099 2.27 500 4000 200
i1 4764 6038 2.27 2000 4000 400
i2 4925 6296 2.28 1000 4000 400
i3 || 4938 6321 2.28 500 4000 400

comparison) and 4 G-Bytes of internal memory, running under IRIX 6.4 IP27. Timing was per-
formed using low-level Unix interval timers, under similar load conditions for all experiments. All
algorithms were coded in C and compiled usyjog version egcs-2.91.66 wit®©4 optimization.

The six test cases used in our experiments were extracted from the next-generation (as of January
2000) microprocessor chip at SGI. We used an optimized floorplan of the circuit blocks and also
optimized the location of the source/sink pin locations based on coarse timing budgets. We used
U = 400Qum, and varied. between 500m and 200Qm. The upper-bounds on the number of
buffers on paths from sourcesto sinkst}, were computed with the formula= d(s,t})/1000. In
all test cases considered the number of nets was large (up to 5000), and the number of buffer blocks
small (50), with relatively large capacity (200—400 buffers per block); such values are typical for
this application. Table | summarizes the parameters for the six test cases.

Tables II-V give the number of routed sinks and the runtime on the six test cases for each
implemented algorithm. The results clearly demonstrate the high quality of solutions obtained
by flow rounding methods. When applied to identical decompositions, flow-based methods yield

improvements of 5-9% in the number of connected sinks over the corresponding greedy algorithm.

23

99 | |
g e
98 - 0 |
e g —
Phaa o el - Fooo¥ x
1 *v,.,.m-e' o i |
< L A;I_ B
= . P
7 96 L |
5 e
S
S 95| P |
¢
"E’ 94 7
°
2 x
°
: | 2TG o i
:) 3TG +
) 4TG o
92 . 4T - 7
G2TMCF -2--
G3TMCF -*-
* GATMCF -¢ - |
‘ GMTMCF -+~
90 ‘ ‘ ‘ ‘ L Il Il Il
0.25 1 4 16 64 256 1024 4096 16384 65536

CPU seconds

Fig. 7. Percent of sinks connected vs. CPU time on test case il.

In fact, significant improvement over the best of the greedy methods is possible even with a very
small increase in runtime, proof that even very coarse MCF/MTMCF approximations give helpful

hints to the randomized rounding procedure.

Furthermore, the experimental results show that even a limited use of multiterminal nets (decom-
position into nets of size 3 or 4) gives improvements over the already very high-quality solutions
found by the flow-rounding algorithm based on 2-pin decompositions. More importantly, these im-
provements are observed even when the same time budget is given to the compared algorithms. To
facilitate such a comparison, Figure 7 plots the solution quality versus the CPU time (in seconds,
excluding I/O and memory allocation) of each algorithm when run on test case i1. The GMTMCF
algorithm proves to be the best among all flow algorithms when the time budget is limited, provid-
ing significant improvements over greedy algorithms without undue runtime penalty. However, the
best convergence to the optimum is achieved by G4TMCF, which dominates all other algorithms

when high time budgets are allowed.

Table VI gives the amount of routing resources (buffers and wire area) used by each algorithm
on test case il. As expected, the amount of routing resources is higher for the algorithms with
higher completion rates. In fact, even when normalizing by the number of connected sinks, the

resource usage is slightly higher for these algorithms. This is at least partly explained by the fact

TABLE Il
PERCENT OF SINKS CONNECTE{BOLDFACE) AND CPUTIME FOR ALGORITHMS BASED ON2-PIN

DECOMPOSITION

ID 27G G2TMCF
£e=064 €=032 £=016 €=0.08 £=0.04
h1 88.3 93.7 95.4 95.4 95.7 95.5
0.33 1.63 5.38 20.29 87.71 357.09
ho 88.7 93.9 95.8 96.8 96.6 96.5
0.37 2.35 5.99 22.78 88.44 349.63
h3 88.4 93.5 95.4 96.5 96.4 95.5
0.37 1.80 6.13 24.87 97.75 392.02
i 90.6 94.8 95.8 96.5 96.6 96.8
0.65 3.26 10.71 39.61 164.85 622.87
i 91.6 96.2 97.1 97.4 97.5 97.6
0.70 3.54 12.34 45.00 171.36 671.72
i3 91.5 96.2 96.9 97.3 97.3 97.5
0.73 3.57 11.84 47.17 172.01 770.51
TABLE Il

PERCENT OF SINKS CONNECTEBOLDFACE) AND CPUTIME FOR ALGORITHMS BASED ON3-PIN

DECOMPOSITION

ID 3TG G3TMCF
£e=064 €£=032 £€=0.16 €=0.08 £€=0.04
hi 90.2 96.2 97.1 97.3 97.7 97.8
0.31 9.16 35.33 127.17 498.34 2090.61
h2 90.1 96.4 98.3 98.6 98.9 98.5
0.34 11.10 41.56 154.76 626.47 2355.66
h3 89.8 96.4 97.7 98.3 98.1 98.0
0.45 12.56 39.65 156.93 639.53 2364.51
i 91.9 95.7 96.8 97.3 97.5 97.6
0.63 15.99 54.94 208.06 814.21 3362.20
i 92.7 97.0 98.0 98.4 98.5 98.6
0.66 20.74 69.33 248.32 964.22 3834.26
i3 92.5 96.8 97.8 98.3 98.4 98.4
0.72 19.07 66.23 251.17 992.41 4164.50

TABLE IV
PERCENT OF SINKS CONNECTE{BOLDFACE) AND CPUTIME FOR ALGORITHMS BASED ON4-PIN

DECOMPOSITION

ID || 4TG G4TMCF
£=064 £=032 £=016 £=0.08 £ =0.04
|| 908 97.9 98.3 98.9 98.9 99.2
0.31 56.16 305.70 1187.99 4881.40 19083.50
o || 905 98.2 99.0 99.6 99.8 99.8
0.34 75.98 364.02 1629.60 6520.44 24779.28
ha || 901 97.7 98.8 99.5 99.6 99.3
0.33 75.26 39230 1619.30 6378.52 25136.72
4| 928 97.1 98.1 98.6 98.8 98.8
0.60 | 153.46 782.65 335475 13910.05 56530.93
o || 930 98.3 98.7 99.4 99.6 99.4
0.71 | 191.14 1038.84 455027 17888.36 71636.67
5 | 928 98.2 98.6 99.3 99.3 99.3
0.69 | 19540 1062.71 4507.83 1843852 73712.45

TABLE V
PERCENT OF SINKS CONNECTE{BOLDFACE) AND CPUTIME FOR ALGORITHMS OPERATING ON

UNDECOMPOSED NETS

ID MTG GMTMCF
£=064 £=032 £€=0.16 €=0.08 £=0.04
hi 92.2 96.7 97.4 97.5 97.6 97.4
0.30 2.33 11.21 47.11 223.96 946.78
ho 92.3 97.6 98.9 99.2 99.3 99.3
0.33 2.87 13.84 53.31 226.13 868.25
h3 92.1 97.3 98.2 98.5 98.8 98.7
0.33 2.86 12.66 53.74 219.20 876.63
i1 93.5 96.3 97.4 97.5 97.7 97.7
0.59 4.98 24.33 102.57 420.24 1865.81
i 93.6 97.7 98.1 98.2 98.3 98.4
0.64 5.38 26.39 111.32 452.82 1827.98
i3 93.3 97.7 98.1 98.1 98.2 98.2
0.70 5.43 26.54 121.55 454.84 1833.17

26

TABLE VI
USAGE OF ROUTING RESOURCES ON TEST CASHE (6038SINKS TOTAL). THE MTG. COLUMN GIVES
RESOURCE USAGE FOR THEMTG ALGORITHM WHEN RUN WITH INFINITY CAPACITY FOR EACH BUFFER

BLOCK.

Greed G2TMCF G3TMCF G4TMCF GMTMCF
2TG 3TG 4TG MTG MTG, |e =0.64 € =0.04|¢ =0.64 £ =0.04|¢ = 0.64 £ =0.04|¢ =0.64 £ =0.04

#Conn. Sinks|| 5469 5547 5592 5645 6038 5725 5842 5779 5896 5864 596% 5813 5897
%Conn. Sinkg 90.6 91.9 92.6 935 100 94.8 96.§ 95.7 97.6 97.1 98.§ 96.3 97.1
WL (meters) |42.26 41.99 42.21 42.22 47.89 45.18 47.80 44.48 47.66 44.48 4790 4533 4751
WL/Sink (um)|| 7727 7570 7548 7479 7931 7891 8182 7697 8083 7585 8031 7798 8057
#Buffers 9240 9053 9076 9037 10380 9860 1067¢ 9591 1061 9546 1073 9860 10647
#Buffers/Sink|| 1.69 1.63 1.62 160 1.71 1.72 1.83 1.66 1.8(1.63 1.8(1.70 1.81

that higher completion rates can only be achieved by routing a larger percentage of “difficult” nets,
which may otherwise be ignored. Note for example the increase in wirelength and average number
of buffers per routed sink for the MTG algorithm when the completion rate is boosted by increasing
buffer block capacities (columns MTG and ML@ Table VI).

VIIl. CONCLUSIONS ANDFUTURE DIRECTIONS

In this paper, we addressed the problem of how to perform buffering of giobkiterminal
nets given an existing buffer block plan. We gave a provably good algorithm based on a novel ap-
proach to GMTMCF approximation inspired by recent results due to Garg andridann [9] and
Fleischer [8]. Our GMTMCF algorithm outperforms existing algorithms for the problem [5], and
has been validated on top-level layouts extracted from a recent high-end microprocessor design.

Ongoing work is aimed at increasing the space of methodologies to which our new techniques
apply. As presented here, our work is clearly targeted to very early global wireplanning activity.
In other words, the application domain is pre-synthesis chip planning: prescribed repeater inter-
vals are driven only by coarse estimates of Miller coupling factors, repeater sizing, and source
impedance or sink capacitance. The presented formulation also does not address timing criticali-
ties or budgets except via net weighting; this is fortunately fairly common for initial wireplanning
that breaks the “chicken-egg” problem of budgeting between-block and within-block paths in pre-

synthesis RTL planning with aggressive global wire optimizafionle are presently extending

5In other words, maximal repeater insertion allows maximum timing budgets for within-block timing paths, and this permits

27

our approach to achieve better handling of timing criticality and budgets by improved use of net
ordering and weighting during rounding, and post-processing of the solution to eliminate unneeded
repeaters.

Further, we seek practical algorithms for handling routing congestion, i.e., simultaneously en-
forcing buffer blockandchannel capacities. By inserting “virtual” nodes corresponding to chan-
nels, the problem becomes a generalized type of integer GMTMCEF in a vertex capacitated graph.
However, computing minimum-weight feasible Steiner trees in this graph now entails finding
minimum-weightlength-restrictedpaths between buffer blocks. Although the latter problem is
NP-hard, it can be approximated arbitrary close [10], [17] and it is still possible to apply our
GMTMCEF schema.

Finally, we note that actual applications would likely iterate the GRBB solution with incre-
mental modification of buffer block locations, pin placements, and both channel and buffer block
capacities. Adapting the GMTMCF approach and its runtime/quality profile for use in an iterative

environment is challenging, and is the subject of ongoing collaboration with industry.

REFERENCES

[1] C. Albrecht, “Provably good global routing by a new approximation algorithm for multicommodity fIBvg.
ISPD, 2000.

[2] R.C. Carden and C.-K. Cheng, “A global router using an efficient approximate multicommodity multiterminal
flow algorithm”, Proc. DAG 1991, pp. 316-321.

[3] M. Charikar, C. Chekuri, T. Cheung, Z. Dai, A. Goel, and S. Cheung, “Approximation algorithms for directed
Steiner problems’J. Algorithms 33 (1999), pp. 73-91.

[4] J.Cong, L. He, C.-K. Koh and P.H. Madden, “Performance optimization of VLSI interconnect layotajra-
tion 21 (1996), pp. 1-94.

[5] J. Cong, T. Kong and D.Z. Pan, “Buffer block planning for interconnect-driven floorplannrgt. ICCAD
1999, pp. 358-363.

[6] F.F. Dragan, A.B. Kahng, I.I. Midoiu, S. Muddu and A. Zelikovsky, “Provably good global buffering using an
available buffer block plan™Proc. ICCAD 2000, pp. 104-109.

[7] F.F. Dragan, A.B. Kahng, l.I. Miidoiu, S. Muddu and A. Zelikovsky, “Provably good global buffering by multi-
terminal multicommodity flow approximationRProc. ASP-DAC2001, pp. 120-125.

[8] L.K. Fleischer, “Approximating fractional multicommodity flow independent of the number of commodities”,
Proc. 40th Annual Symposium on Foundations of Computer S¢i#888, pp. 24-31.

blocks to go through synthesis, place and route with more aggressive area targets. A strategy of uniform buffering of as many
global nets as possible also helps control signal integrity and delay uncertainty problems.

28

[9] N. Garg and J. khemann, “Faster and simpler algorithms for multicommaodity flow and other fractional packing
problems” Proc. 39th Annual Symposium on Foundations of Computer Sci2868, pp. 300-309.

[10] R. Hassin, “Approximation schemes for the restricted shortest path prohiéath, Oper. Res.17 (1992), pp.
36-42.

[11] J. Huang, X.-L. Hong, C.-K. Cheng and E.S. Kuh, “An efficient timing-driven global routing algoritRnat,.
DAC, 1993, pp. 596-600.

[12] A.B. Kahng, S. Muddu, E. Sarto and R. Sharma, “Interconnect tuning strategies for high-performanBed€s”,
DATE, 1998.

[13] J. Lillis, C.K. Cheng and T.T.Y. Lin, “Optimal wire sizing and buffer insertion for low power and a generalized
delay model”Proc. ICCAD 1995, pp. 138-143.

[14] R. Motwani, J. Naor, and P. Raghavan, “Randomized approximation algorithms in combinatorial optimization”,
In Approximation algorithms for NP-hard problenBoston, MA, 1997), D. Hochbaum, Ed., PWS Publishing,
pp. 144-191.

[15] A.P.-C. Ng, P. Raghavan, and C.D. Thomson, “Experimental results for a linear program global Gater”.
puters and Artificial Intelligenceb (1987), pp. 229-242.

[16] T. Okamoto and J. Cong, “Buffered Steiner tree construction with wire sizing for interconnect layout optimiza-
tion”, Proc. ICCAD 1996, pp. 44—49.

[17] C.A. Phillips, “The network inhibition problem’Proc. 25th Annual ACM Symposium on Theory of Computing
1993, pp. 776-785.

[18] P. Raghavan and C.D. Thomson, “Randomized roundi@gimbinatorica7 (1987), pp. 365-374.

[19] P. Raghavan and C.D. Thomson, “Multiterminal Global Routing: A Deterministic Approximation Scheme”,
Algorithmica 6 (1991), pp. 73-82.

[20] E. Shragowitz and S. Keel, “A global router based on a multicommodity flow mokheggration 5 (1987), pp.
3-16.

[21] X. Tang and D.F. Wong, “Planning buffer locations by network flovi&gc. ISPDQ 2000.

