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Abstract—To implement high-performance global interconnect without impacting the placement and per-

formance of existing blocks, the use of buffer blocks is becoming increasingly popular in structured-custom

and block-based ASIC methodologies. Recent works by Cong, Kong, and Pan [5] and Tang and Wong [21]

give algorithms to solve thebuffer block planningproblem. In this paper, we address the problem of how to

perform buffering of global multiterminal nets given an existing buffer block plan. We give provably good and

heuristic algorithms for this problem based on a recent approach of Garg and K̈onemann [9] and Fleischer [8]

(see also Albrecht [1]). Our method routes connections using available buffer blocks, such that required upper

and lower bounds on buffer intervals are satisfied. In addition, our algorithms allow more than one buffer

to be inserted into any given connection and observe upper bounds and parity constraints on the number of

buffers per connection. Most importantly, and unlike previous works on the problem [5], [21], we take into

account (i) multiterminal nets, (ii) multiple routing layers, (iii) simultaneous buffered routing and compaction,

and (iv) buffer libraries. Our method outperforms existing algorithms for the problem [5], which are based on

2-pin decompositions of the nets, and has been validated on top-level layouts extracted from a recent high-end

microprocessor design.
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I. INTRODUCTION

Process scaling leads to an increasingly dominant effect of interconnect on high-end chip perfor-

mance. Each top-level global net must undergo repeater insertion (among other optimizations; see

[4], [13], [16]) to maintain signal integrity and reasonable signal delay.1 Estimates of the need for

repeater insertion range up to 106 repeaters for top-level on-chip interconnect when we reach the

50nm technology node. These repeaters are large (anywhere from 40� to 200� minimum inverter

size), affect global routing congestion, can entail non-standard cell height and special power rout-

ing requirements, and can act as noise sources. In a block- or reuse-based methodology, designers

seek to isolate repeaters for global interconnect from individual block implementations.

For these reasons, abuffer blockmethodology has become increasingly popular in structured-

custom and block-based ASIC methodologies. Two recent works by Cong, Kong, and Pan [5] and

Tang and Wong [21] give algorithms to solve thebuffer block planningproblem. Their buffer block

planning formulation is roughly stated as follows: Given a placement of circuit blocks, and a set

of 2-pin connections withfeasible regionsfor buffer insertion,2 plan the location ofbuffer blocks

within the available free space so as to route a maximum number of connections.

In this paper, we address the problem of how to perform buffering of global netsgiven an existing

buffer block plan. (Hence, our work is compatible with and complements the methods in [5], [21].)

We give a provably good algorithm based on a recent approach of Garg and K¨onemann [9] and

Fleischer [8]. Our method routes the nets using the available buffer blocks, such that required

upper and lower bounds on repeater intervals—as well as length upper bounds per connection—

are satisfied.3 Our algorithm allows more than one buffer to be inserted into any given connection

and observes upper bounds on the number of buffers per connection. In addition, our algorithm

observesrepeater parity constraints, i.e., it will choose the number of inverters in any routing path

according to the source and destination signal parity. The authors of [5], [21] assumed that global

nets have been already decomposed into 2-pin connections; unlike these works our model takes

into accountmultiterminal nets.

1Following the literature, we will use the termsbufferandrepeaterfairly interchangeably. When we need to be more precise: a

repeater can be implemented as either an inverter or as a buffer (= two co-located inverters).
2In [21] only a single buffer per connection is allowed.
3For example, global repeater rules for a high-end microprocessor design in 0.25µm CMOS [12] require repeater intervals of at

most 4500µm. The number of buffers needed for a given connection depends strongly on the length of the connection; as noted in

[12], the repeater interval is not only required for delay reduction, but also for crosstalk noise immunity and edge slewtime control.
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Our basic problem is informally defined as follows.

Given:

� a planar region with rectangular obstacles;

� a set of nets in the region, each net having:

– a single source and multiple sinks;

– a non-negative importance (criticality) coefficient;

� each sink having:

– a parity requirement, which specifies the required parity of the number of buffers (inverters)

on the path connecting it to the source;

– a timing-driven requirement, which specifies the maximum number of buffers on the path

to the source;

� a set of buffer blocks, each with given capacity; and

� an interval[L;U ] specifying lower and upper bounds on the distance between buffers.

Global Routing via Buffer Blocks (GRBB) Problem: route a subset of the given nets, with

maximum total importance, such that:

� the distance between the source of a route and its first repeater, between any two consecutive

repeaters, respectively between the last repeater on a route and the route’s sink, are all between

L andU ;

� the number of trees passing through any given buffer block does not exceed the block’s

capacity;

� the number of buffers on each source-to-sink path does not exceed the given upper bound

and has the required parity; to meet the parity constraint two buffers of the same block can be

used.

If possible, the optimum solution to the GRBB problem simultaneously routes all the nets. Oth-

erwise, it maximizes the sum of the importance coefficients over routed nets. The importance co-

efficients can be used to model various practical objectives. For example, importance coefficients

of 1 for each net correspond to maximizing the number of routed nets, and importance coefficients

equal to the number of sinks of the net correspond to maximizing the number of connected sinks.

We also consider the following extensions of the basic GRBB problem:
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� Multi-Layer GRBB. The basic GRBB formulation imposes the sameL=U bounds on the

length of all buffer-to-buffer, source-to-buffer, and buffer-to-sink wire segments. Themulti-

layer GRBB problemaccounts for the different electrical characteristics (unit-wire resistance

and capacitance) of different routing layers and takes into consideration non-uniform source

driving strengths and sink input capacitances.

� GRBB with Set Capacity Constraints. The basic GRBB problem assumes predetermined

capacities for all buffer blocks. In practice, there is some freedom for transferring capacity from

a buffer block to neighboring buffer blocks by translating circuit blocks. TheGRBB problem

with set capacity constraintscaptures this freedom by allowing constraints on the total capacity

of setsof buffer blocks, instead of only constraining individual buffer blocks.

� GRBB with Buffer Library. To achieve better use of area and power resources, multiple

buffer types can be used. TheGRBB problem with buffer libraryoptimally distributes the

available buffer block capacity between given buffer types and simultaneously finds optimum

buffered routings.

We give integer linear program (ILP) formulations for the basic GRBB problem and its exten-

sions; these formulations generalize the vertex-capacitated integermultiterminal multicommodity

flow(MTMCF) problem. The main contribution of the paper is a provably good algorithm for these

generalizations of the MTMCF problem. Prior to our work, heuristics based on solving fractional

relaxations of integer multicommodity flow formulations have been applied to VLSI global routing

[15], [20], [2], [11], [1]. As noted in [14], the applicability of this approach is limited to problem

instances of relatively small size by the prohibitive cost of solving exactly the fractional relax-

ation. As in the recent work of Albrecht [1], we avoid this limitation by using an approximation

algorithm for solving the fractional relaxations. The approximation algorithm can find solutions

within any desired accuracy; an important feature of the algorithm is that it allows for a smooth

trade-off between runtime and solution accuracy. Our experiments indicate that even low accuracy

fractional solutions give good final solutions for the GRBB problem after rounding.

The most interesting feature of our algorithm is its ability to work withmultiterminalnets; previ-

ous work on the GRBB problem [5], [21] has considered only the case of 2-pin nets. Experiments

on top-level layouts extracted from a recent high-end microprocessor design validate our algo-

rithm, and indicate that it significantly outperforms existing algorithms for the problem based on

2-pin decompositions.
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The rest of the paper is organized as follows. In Section II we give ILP formulations for the

GRBB problem and its extensions, and introduce a common generalization of these ILPs, referred

to as thegeneralized multiterminal multicommodity flow(GMTMCF) ILP. The fractional relax-

ation of the GMTMCF ILP is a special type ofpacking LP, and can thus be approximated within

any desired accuracy using the algorithm of Garg and K¨onemann [9]. In Section III we give a sig-

nificantly faster approximation algorithm, obtained by extending a speed-up idea due to Fleischer

[8] to this special type of packing LPs. We give the details of a key subroutine of the algorithm—

finding minimum-weight feasible Steiner trees—in Section IV, and present algorithms for round-

ing near-optimal fractional GMTMCF solutions to near-optimal integral solutions in Section V.

In Section VI we describe implementations of several GRBB heuristics, some based on rounding

approximate fractional GMTMCF solutions, and some based on less sophisticated greedy ideas;

Section VII gives the results of experiments comparing these heuristics on test cases extracted from

the top-level layout of a recent high-end microprocessor. Finally, we conclude in Section VIII with

a list of future research directions.

II. I NTEGER LINEAR PROGRAM FORMULATIONS

Throughout this paper we letNk = (sk; t1
k ; : : : ; t

qk
k ), k = 1; : : : ;K, denote the nets to be routed;

sk is the source, and t1
k ; : : : ; t

qk
k are thesinks of net Nk. We denote bygk � 1 the importance

(criticality) coefficient of netNk, and byai
k 2 feven, oddg and l ik � 0 the prescribedparity, re-

spectivelyupper bound, on the number of buffers on the path between sourcesk and sinkt i
k. Let

alsoS= fs1; : : : ;sKg andS0 = ft1
1; : : : ; t

q1
1 ; : : : ; t1

K; : : : ; t
qK
K g denote the set of sources, respectively of

sinks, andR= fr1; : : : ; rng denote the given set ofbuffer blocks. For each buffer blockri , we let

c(ri) denote itscapacity, i.e., the maximum number of buffers that can be inserted inri.

A routing graphfor netsNk, k= 1; : : : ;K, is an undirected graphG= (V;E) such thatS[S0�V.

The set of vertices ofG other than sources and sinks,V n(S[S0), is denoted byV0. Specific routing

graphs are defined in the following subsections for the GRBB problem and each of its extensions.

All vertices in these routing graphs have associated locations on the chip, including those inV0

which are associated with buffer block locations. The edges are defined according to the specific

L=U bounds imposed by each problem. Thus, every Steiner tree inG automatically satisfies the

givenL=U bounds assuming that a buffer is inserted at each Steiner point. To ensure that upper-

bound and parity constraints on the number of buffers on source-to-sink paths are met as well, we
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need to restrict the set of allowable Steiner trees as follows.

A path p= (sk;v1;v2; : : : ;vl ; t i
k), connecting sourcesk to sinkt i

k in routing graphG, is afeasible

(sk; t i
k)-path if

� vi 2V 0 for eachi = 1; : : : ; l ;

� the parity ofl is ai
k; and

� l � l i
k.

A feasible Steiner treefor netNk is a Steiner treeTk in G connecting terminalssk; t1
k ; : : : ; t

qk
k such

that, for everyi = 1; : : : ;qk, the path ofTk connectingsk to t i
k is a feasible(sk; t i

k)-path as defined

above.

We will denote the set of all feasible Steiner trees for netNk by Tk, and letT =
SK

k=1 Tk. Given

importance coefficientsgk = g(Nk) for each netNk, we defineg(T) = gk for each treeT 2 Tk,

k= 1; : : : ;K.

A. ILP Formulation of GRBB

We begin by defining the routing graphG = (V;E) for the GRBB problem. To allow fea-

sible Steiner trees that meet parity constraints by using two buffers in the same buffer block,

we introduce two distinct vertices,r 0 and r 00, corresponding to each buffer blockr, and define

V = S[S0[fr 0; r 00 j r 2 Rg. If d(x;y) denotes the length of the shortest rectilinear path connect-

ing pointsx andy and avoiding all given rectangular obstacles, the edge set ofG is defined by

E = E0[E1, where

E0 = f(r 0; r 00) j r 2 Rg

E1 = f(x;y) j x;y2V, L� d(x;y)�Ug

The GRBB problem is then equivalent to the following integer linear program:

maximize ∑T2T g(T) fT (ILP1)

subject to

∑T2T πT(v) fT � 1, 8v2 S[S0

∑T2T (πT(r 0)+πT(r 00)) fT � c(r), 8r 2 R
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fT 2 f0;1g, 8T 2 T

whereπT(v) is the number of occurrences ofv in T, i.e.,

πT(v) =

8<
:

0; if v =2 T

1; if v2 T

In (ILP1), the variablefT is set to 1 if the feasible Steiner treeT is routed and to 0 otherwise.

Constraints of the first type (corresponding tov2 S[S0) ensure that at most one feasible Steiner

tree is routed for each net; constraints of the second type (corresponding tor 2 R) enforce buffer

block capacities.

B. ILP Formulation for Multi-Layer GRBB

The basic version of the GRBB problem imposes identicalL=U bounds on the length of all

buffer-to-buffer, source-to-buffer, and buffer-to-sink wire segments. This is not appropriate when

routing is done in multiple layers, since different layers have different electrical characteristics

(unit-wire resistance and capacitance). In addition, signal sources typically have non-uniform driv-

ing strengths, and signal sinks have non-uniform input capacitances. Thus, an accurate formulation

of the GRBB problem forz> 1 routing layers must handle:

� layer-dependentlower- and upper-bounds,Li=Ui, i = 1; : : : ;z, on the length of buffer-to-

buffer wire-segments;

� source- and layer-dependentlower- and upper-bounds,Ls
i =U

s
i , s2 S, i = 1; : : : ;z, on the

length of source-to-buffer wire-segments; and

� sink- and layer-dependentlower- and upper-bounds,Lt
i=U

t
i , t 2 S0, i = 1; : : : ;z, on the length

of buffer-to-sink wire-segments.

These additional parameters are taken into account by appropriately modifying the routing graph

graphG= (V;E). The vertex set ofG remains the same,V = S[S0[fr 0; r 00 : r 2 Rg, but we now

defineE = E0[E1[E2[E3, where

E0 = f(r 0; r 00) j r 2 Rg

E1 = f(s; r 0);(s; r 00) j s2 S, r 2 R, 9i 2 f1; : : : ;zg s.t. Ls
i � di(s; r)�Us

i g

E2 = f(r 01; r
0

2);(r
0

1; r
00

2);(r
00

1; r
0

2);(r
00

1; r
00

2) j r1; r2 2 R, r1 6= r2, 9i 2 f1; : : : ;zg s.t.Li � di(r1; r2)�Uig

E3 = f(r 0; t);(r 00; t) j r 2 R, t 2 S0, 9i 2 f1; : : : ;zg s.t.Lt
i � di(r; t)�Ut

i g
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Here, di(x;y) denotes the length of the shortest rectilinear path connecting pointsx and y and

avoiding all rectangular obstacles in layeri.

The multi-layer GRBB problem is then equivalent to (ILP1) for the modified routing graphG.

C. ILP Formulation for GRBB with Set Capacity Constraints

Our basic formulation of the GRBB problem assumes predetermined capacities for all buffer

blocks. In practice, buffer blocks are placed in the free space available after compaction, when

some of the circuit blocks can still be moved within certain limits, thus transferring capacity from

a buffer block to neighboring buffer blocks (see Fig. 1). This freedom is captured by upper-bounds

on the total capacity of entiresets of buffer blocks, rather than individual buffer blocks.

BB1 BB2 BB1 BB2

M M

Fig. 1. Two buffer blocks BB1 and BB2 that share capacity: if the circuit block M moves right, then the

capacity of buffer block BB1 is increasing while the capacity of buffer block BB2 is decreasing. In

this example it is the sum of capacities of BB1 and BB2, rather than their individual capacities, that is

bounded.

Assume that, as the result of compaction, we have identified subsetsR1; : : : ;Rp of R (some of

which may consist of a single buffer block) such that there is a positive upper-boundc(Ri) on the

total capacity of eachRi . Assuming further that circuit block movements are so small compared

to the givenL=U bounds that we can ignore changes in buffer block positions, it follows that the

GRBB problem with set-capacity constraints given byc(R1); : : : ;c(Rp) is equivalent to the follow-

ing integer linear program, in which the underlying routing graph is defined as in Section II-A.

maximize ∑T2T g(T) fT (ILP2)
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subject to

∑T2T πT(v) fT � 1, 8v2 S[S0

∑T2T
�
∑r2Ri

(πT(r 0)+πT(r 00))
�

fT � c(Ri), 8i 2 f1; : : : ; pg

fT 2 f0;1g, 8T 2 T

D. ILP Formulation for GRBB with Buffer Library

The basic GRBB problem formulation implicitly assumes the use of a single buffer type. In

practice, better use of area and power resources may be achieved by using more than one type

of buffer. In this subsection we give an integer program formulation for the GRBB problem with

buffers chosen from a given buffer library. This version of the problem allows buffered routings of

the nets using any mix of buffers from the given library, and also allows buffers of different types

(and hence, of different sizes) be placed in the same buffer block, up to the capacity of the block.

Let B be the set of buffer types in the library. We assume to be given the size,size(b), for each

buffer typeb 2 B, as well as lower- and upper-boundsL(s;b)=U (s;b), L(b;b0)=U (b;b0), respectively

L(b;t)=U (b;t), on the length of each wire segment connecting sources2 S to a buffer of typeb, a

buffer of typeb to a buffer of typeb0, respectively a buffer of typeb to sinkt 2 S0. To ensure that

the available buffer block capacity is optimally distributed between the given buffer types and also

allow feasible Steiner trees that use more than one buffer in the same buffer block, we introduce

2jBj vertices corresponding to each buffer blockr. Formally, the routing graphG = (V;E) has

vertex setV = S[S0[fr 0b; r
00

b j r 2 R; b2 Bg and edge setE = E0[E1[E2[E3[E4, where

E0 = f(r 0b; r
00

b) j r 2 R, b2 Bg

E1 = f(r 0b1
; r 0b2

);(r 0b1
; r 00b2

);(r 00b1
; r 0b2

);(r 00b1
; r 00b2

) j r 2 R, b1;b2 2 B, b1 6= b2g

E2 = f(s; r 0b);(s; r
00

b) j s2 S, r 2 R, b2 B, L(s;b) � d(s; r)�U (s;b)g

E3 = f(r 0b1
;q0b2

);(r 0b1
;q00b2

);(r 00b1
;q0b2

);(r 00b1
;q00b2

) j r;q2 R, r 6= q, b1;b2 2 B, L(b1;b2) � d(r;q)�U (b1;b2)g

E4 = f(r 0b; t);(r
00

b; t) j r 2 R, b2 B, t 2 S0, L(b;t) � d(r; t)�U (b;t)g

The GRBB problem with buffer libraryB is then equivalent to the following integer linear program:

maximize ∑T2T g(T) fT (ILP3)
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subject to

∑T2T πT(v) fT � 1, 8v2 S[S0

∑T2T
�
∑b2B(πT(r 0b)+πT(r 00b))size(b)

�
fT � c(r), 8r 2 R

fT 2 f0;1g, 8T 2 T

E. The Generalized MTMCF ILP

Note that (ILP1-ILP3) are already strict generalization of previous integer edge-capacitated mul-

titerminal multicommodity flow formulations used for VLSI global routing [19], [1], since they

impose capacities on vertices and/or specific sets of vertices. In this subsection we formulate a

common generalization of the integer linear programs (ILP1)–(ILP3), referred to as thegeneral-

ized multiterminal multicommodity flow(GMTMCF) ILP, which allows (1) capacities on arbitrary

sets of vertices, and (2) arbitrary vertex weights saying how much capacity is used by a tree visiting

the vertex.

Given:

� netsNk, k= 1; : : : ;K, with importance coefficientsgk;

� a routing graphG= (V;E) for the nets;

� arbitrary sets,Tk, of Steiner trees for each netNk;

� a family,V , of subsets ofV such thatfvg 2 V for everyv2 S[S0;

� a functions : V ! R+ such thats(v) = 1 for everyv2 S[S0; and

� a functionc : V ! Z+ such thatc(fvg) = 1 for everyv2 S[S0;

the generalized multiterminal multicommodity flow ILP is:

maximize ∑T2T g(T) fT (GMTMCF ILP)

subject to

∑T2T πT(X) fT � c(X), 8X 2 V

fT 2 f0;1g, 8T 2 T
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whereT = [K
k=1Tk, g(T) = gk for everyT 2 Tk, and

πT(X) = ∑
v2X

πT(v)s(v)

for everyT 2 T andX 2 V .

It is not difficult to see that (ILP1)–(ILP3) are special cases of the GMTMCF ILP. Thus, (ILP1)

is obtained withs� 1 by including inV , besides singleton sets corresponding to sources and

sinks, all setsXr = fr 0; r 00g, r 2 R, and settingc(Xr) = c(r). Similarly, (ILP2) is obtained with

s� 1 by including inV singleton sets corresponding to sources and sinks, as well as the sets

Xi = fr 0; r 00 j r 2 Rig, i = 1; : : : ; p, with c(Xi) = c(Ri). Finally, (ILP3) is obtained for a familyV

containing singleton sets corresponding to sources and sinks together with the setsXr = fr 0b; r
00

b j b2

Bg, r 2R, for whichc(Xr) = c(r). In this case,s(v) = 1 if v is a source or a sink, ands(v) = size(b)

if v2 fr 0b; r
00

b j r 2 Rg.

III. A PPROXIMATING THE GMTMCF LP RELAXATION

Our two-step approach to the GRBB problem and its extensions is to (1) solve the fractional

relaxations of (ILP1)–(ILP3), obtained by replacing integrality constraintsfT 2 f0;1gwith fT � 0,

and then (2) use randomized rounding to get integer solutions. In this section we give an algorithm

for approximating within any desired accuracy the fractional relaxation of the GMTMCF ILP,

which subsumes (ILP1)–(ILP3). The algorithm relies on a subroutine for finding minimum weight

feasible Steiner trees, the details of this subroutine are given in Section IV.

The fractional relaxation of the GMTMCF ILP, which we refer to as thegeneralized multiter-

minal multicommodity flow linear program(GMTMCF LP), can be solved exactly in polynomial

time using, e.g., the ellipsoid algorithm. However, exact algorithms are highly impractical. On the

other hand, the GMTMCF LP is apacking LP, and can thus be efficiently approximated within

any desired accuracy using the recent combinatorial algorithm of Garg and K¨onemann [9]. We

give a significantly faster approximation algorithm based on a speed-up idea originally proposed

by Fleischer [8] for approximating the maximum edge-capacitated multicommodity flow (MCF).

Our algorithm simultaneously finds feasible solutions to the GMTMCF LP and itsdual linear

program. The dual LP asks for an assignment of non-negative weightsw(X) to everyX 2 V

such that the weight of every treeT 2 T is at least 1, where the weight ofT is defined by

weight(T) = 1
g(T) ∑X2V πT(X)w(X):
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minimize ∑X2V w(X)c(X) (GMTMCF Dual)

subject to

1
g(T) ∑X2V πT(X)w(X)� 1, 8T 2 T

w(X)� 0, 8X 2 V

In the following we assume that minfgk : k= 1; : : : ;Kg= 1 (this can be easily achieved by scaling)

and denote maxfgk : k= 1; : : : ;Kg by Γ.

The algorithm (Figure 2) starts with weightsw(X) = δ for everyX 2 V , whereδ is an appro-

priately chosen constant, and with a GMTMCF LP solutionf � 0. While there is a feasible tree

whose weight is less than 1, the algorithm selects such a treeT and incrementsfT by 1. This in-

crease will likely violate the capacity constraints for some of the sets inV ; feasibility is achieved

at the end of the algorithm by uniformly scaling down allfT ’s. WheneverfT is incremented, the

algorithm also updates each weightw(X) by multiplying it with (1+ επT(X)=c(X)), for a fixedε.

According to the Garg and K¨onemann’s approximation algorithm [9] each iteration must incre-

ment the variablefT corresponding to a tree with minimum weight among all trees inT . Finding

this tree essentially requiresK minimum-weight feasible Steiner tree computations, one for each

netNk. We reduce the total number of minimum-weight feasible Steiner tree computations during

the algorithm by extending a speed-up idea due to Fleischer [8]. Instead of always finding the

minimum-weight tree inT , the idea is to settle for trees with weight within a factor of(1+ ε)

of the minimum-weight. This speeds-up the computation since multiple variablesfT can now be

incremented, possibly more than once each, in a single iteration. As shown in next section, the

faster algorithm still leads to an approximation guarantee similar to that of Garg and K¨onemann.

In each iteration the algorithm cycles through all nets. For each net, the algorithm repeatedly

computes minimum-weight feasible Steiner tree until the weight becomes larger than(1+ε) times

a lower-bound̄α on the overall minimum weight, minfweight(T) : T 2 T g. The lower-bound̄α is

initially set toδ=Γ, and then multiplied by a factor of(1+ ε) from one iteration to another (note

that no tree inT has weight smaller than(1+ ε)ᾱ at the end of an iteration, so(1+ ε)ᾱ is a valid

lower-bound for the next iteration).

The scheme used for updatinḡα fully determines the number of iterations in the outer loop of

the algorithm. Note that the lower-bound̄α is at most(1+ε) in the last iteration (since it increases
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Input: Nets N1; : : : ;NK , coefficients g1; : : : ;gK , routing graph G= (V;E), family V of subsets of V, weights

c(X), X 2 V , and s(v), v2V

Output: GMTMCF LP solution fT , T 2 T

For every T 2 T , fT  0

For every X 2 V , w(X) δ

ᾱ δ=Γ // ᾱ is at all times a lower-bound on minfweight(T) : T 2 T g

For i = 1 to t =
j
log1+ε

(1+ε)Γ
δ

k
do

For k= 1 to K do

Find a minimum weight feasible Steiner tree T in Tk

While weight(T)< minf1;(1+ ε)ᾱg do

fT  fT +1

For all X 2 V , w(X) w(X)(1+ επT(X)=c(X))

Find a minimum weight feasible Steiner tree T in Tk

End while

End for on k

ᾱ (1+ ε)ᾱ

End for on i

For every T 2 T , fT  
fT

log1+ε
(1+ε)Γ

δ
Output fT , T 2 T

Fig. 2. The algorithm for finding approximate solutions to the GMTMCF LP.

by a factor of(1+ ε) each time, and in the iteration before the last there is at least one tree of

weight less than 1). Thus, sincēα = δ=Γ in the first iteration, the number of increases ofᾱ is no

larger than log1+ε
(1+ε)Γ

δ , and the final value ofi is
j
log1+ε

(1+ε)Γ
δ

k
.

A. Runtime and Performance Analysis

The two main loops of the algorithm (oni and onk) are both repeated a fixed number of times,j
log1+ε

(1+ε)Γ
δ

k
andK, respectively. However, this does not immediately determine the runtime of

the algorithm because of the variable number of iterations in the inner while loop. The following

lemma gives an upper-bound on the runtime.

Lemma 1:Overall, the algorithm in Figure 2 requiresO
�

K log1+ε
(1+ε)Γ

δ

�
minimum-weight

feasible Steiner tree computations.



14

Proof. First, note that the number of minimum-weight feasible Steiner tree computations that

do not contribute to the final fractional solution isK
j
log1+ε

(1+ε)Γ
δ

k
. Indeed, in each iteration, and

for each netNk, there is exactly one minimum-weight feasible Steiner tree computation revealing

thatminT2Tk
weight(T)� (1+ ε)ᾱ, all other computations trigger the incrementation of somefT .

We claim that the number of minimum-weight Steiner trees that lead to variable incrementations

is at mostK log1+ε
(1+ε)Γ

δ . To see this, note that the weight of the setfskg 2V is updated whenever

a variablefT , T 2 Tk, is incremented. Moreover,w(fskg) is last updated when incrementingfT for

a treeT 2 Tk of weight less than one. Thus, before the last update,w(fskg)� Γ �weight(T)< Γ.

SinceπT(fskg) = c(fskg) = 1, the weight offskg is multiplied by a factor of 1+ε in each update,

including the last one. This implies that the final value ofw(fskg) is at most(1+ ε)Γ. Recall-

ing thatw(fskg) is initially set toδ, this gives that the number of updates tow(fskg) is at most

log1+ε
(1+ε)Γ

δ . The lemma follows by summing this upper-bound over all nets.

Lemma 2:The algorithm in Figure 2 computes a feasible solution to the GMTMCF LP.

Proof. We need to show that the valuesfT returned by the algorithm satisfy the inequality

∑
T2T

πT(X) fT � c(X) � log1+ε
(1+ ε)Γ

δ

for everyX 2 V . Consider an arbitrary setX 2 V . Every time the variablefT is incremented by

one unit, the weight ofX is also increased by a factor of
�

1+ xiε
c(X)

�
, wherexi = πT(X). Using that

1+yε� (1+ ε)y for 0� y� 1, we get that every sequence of updates with∑i xi = c(X) increases

the weight ofX by a factor of at least

∏
i

�
1+

xiε
c(X)

�
�∏

i
(1+ ε)

xi
c(X) = (1+ ε)

∑i xi
c(X) = 1+ ε

Let M = ∑T2T πT(X) fT. Since the initial weight ofX is δ, from the previous inequality we get

that the final weight ofX is at leastδ(1+ ε)
M

c(X) .

Now, the last update ofw(X) is done when incrementingfT for a treeT 2 Tk of weight less than

one. Thus, the weight ofX is at mostg(T) �weight(T)< Γ before last update, and at most(1+ε)Γ

after. Combining this upper-bound on the final weight ofX with the lower-bound above gives that

δ(1+ ε)
M

c(X) � (1+ ε)Γ, i.e.,

M � c(X) log1+ε
(1+ ε)Γ

δ
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Finally, we show that, for an appropriate value of the parameterδ, the feasible solution found

by the algorithm is close to optimum.

Theorem 1:For everyε < 0:15, the algorithm in Figure 2 computes a feasible solution to the

GMTMCF LP within a factor of 1=(1+4ε) of optimum by choosingδ = (1+ ε)Γ((1+ ε)LΓ)�
1
ε ;

the runtime of the algorithm for this value ofδ is O
�

1
ε2K(logL+ logΓ)Ttree

�
. Here, L is the

maximum number of vertices in a feasible tree, andTtree is the time required to compute the

minimum weight feasible Steiner tree for a net.

Proof. Our proof is an adaptation of the proofs of Garg and K¨onemann [9] and Fleischer [8]. We

show that the solution computed by the algorithm is within a factor of 1=(1+4ε) of the optimum

objective value,β, of the dual LP. The claimed approximation guarantee follows, since, by LP

duality theory,β is an upper-bound on the optimum objective value of the GMTMCF LP.

Let α(w) be the weight of a minimum weight tree fromT with respect to weight function

w : V ! R+, and letD(w) = ∑X2V w(X)c(X). A standard scaling argument shows that the dual

LP is equivalent to finding a weight functionw such thatD(w)=α(w) is minimum, and thatβ =

minwfD(w)=α(w)g.

For everyX 2 V , let wi(X) be the weight of setX at the end of theith iteration andw0(X) = δ

be the initial weight of setX. For brevity, we will denoteα(wi) andD(wi) by α(i) andD(i), re-

spectively. Furthermore, letf i
T be the value offT at the end ofith iteration, andhi = ∑T2T g(T) f i

T

be the objective value of the GMTMCF LP at the end of this iteration.

When the algorithm incrementsfT by one unit, each weightw(X) is increased by(επT(X)w(X)=c(X).

Thus, the incrementation offT increasesD(w) by

ε ∑
X2V

πT(X)w(X) = ε weight(T)g(T)

If this update takes place in theith iteration, thenweight(T) � (1+ ε)α(i�1). Adding this over

all fT ’s incremented inith iteration gives

D(i)�D(i�1)� ε(1+ ε)α(i�1)(hi�hi�1)
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which implies that

D(i)�D(0)� ε(1+ ε)
i

∑
j=1

α( j�1)(hj �hj�1)

Consider the weight functionwi �w0, and notice thatD(wi �w0) = D(i)�D(0). Since the mini-

mum weight tree w.r.t. weight functionwi �w0 has a weight of at mostα(wi �w0)+Lδ w.r.t. wi ,

α(i)� α(wi �w0)+Lδ. Hence, ifα(i)�Lδ > 0, then

β�
D(wi �w0)

α(wi �w0)
�

D(i)�D(0)
α(i)�Lδ

�
ε(1+ ε)∑i

j=1α( j�1)(hj �hj�1)

α(i)�Lδ

Thus, in any case (whenα(i)�Lδ� 0 this follows trivially) we have

α(i)� Lδ+
ε(1+ ε)

β

i

∑
j=1

α( j�1)(hj �hj�1)

Note that, for each fixedi, the right-hand side of last inequality is maximized by settingα( j) to its

maximum possible value, sayα0( j), for every 0� j < i. Then, the maximum value ofα(i) is

α0(i) = Lδ +
ε(1+ ε)

β

i�1

∑
j=1

α0( j�1)(hj �hj�1) +
ε(1+ ε)

β
α0(i�1)(hi�hi�1)

= α0(i�1)

�
1 +

ε(1+ ε)
β

(hi �hi�1)

�

� α0(i�1)e
ε(1+ε)

β (hi�hi�1)

where the last inequality uses that 1+x� ex for everyx� 0. Using thatα0(0) = Lδ, this gives

α(i)� Lδe
ε(1+ε)

β hi

Let t be the last iteration of the algorithm. Sinceα(t)� 1,

1� Lδe
ε(1+ε)

β ht

and thus
β
ht
�

ε(1+ ε)
ln(Lδ)�1

Let γ = β
ht

log1+ε
(1+ε)Γ

δ be the ratio between the optimum dual objective value and the objective

value of the GMTMCF LP solution produced by the algorithm. By substituting the previous bound

on β=ht we obtain

γ�
ε(1+ ε) log1+ε

(1+ε)Γ
δ

ln(Lδ)�1 =
ε(1+ ε) ln (1+ε)Γ

δ
ln(1+ ε) ln(Lδ)�1
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For δ = (1+ ε)Γ((1+ ε)LΓ)�
1
ε ,

ln (1+ε)Γ
δ

ln(Lδ)�1 =
ln((1+ ε)LΓ)

1
ε

ln((1+ ε)LΓ)�1+ 1
ε
=

1
ε ln(1+ ε)LΓ)

1�ε
ε ln(1+ ε)LΓ)

=
1

1� ε

and thus

γ�
ε(1+ ε)

(1� ε) ln(1+ ε)
�

ε(1+ ε)
(1� ε)(ε� ε2=2)

�
(1+ ε)
(1� ε)2

Here we use the fact that ln(1+ ε)� ε� ε2=2 (by Taylor series expansion of ln(1+ ε) around the

origin). The proof of the approximation guarantee is completed by observing that(1+ ε)=(1�

ε)2 � (1+4ε) for everyε < 0:15. The runtime follows by substitutingδ in the bound given by

Lemma 1.

IV. COMPUTING MINIMUM -WEIGHT FEASIBLE STEINER TREES

The key subroutine of the approximation algorithm given in the previous section is to compute,

for a fixedk and given weightsw(X), X 2 V , a feasible treeT 2 Tk minimizing weight(T) =

1
g(T) ∑X2V πT(X)w(X). Define a weight functionw0 on the vertices of the routing graphG= (V;E)

by settingw0(v) = 1
g(T) ∑v2X2V w(X), and letw0(T) = ∑v2V(T)w

0(v) be the total vertex weight

w.r.t. w0 of T. Thenweight(T) = w0(T), and the problem reduces to finding a treeT 2 Tk with

minimum total vertex weight w.r.t.w0.

Recall that for the GRBB problem and its extensions,Tk contains all Steiner trees connecting

the sourcesk with the sinkst1
k ; : : : ; t

qk
k such that the number of intermediate vertices on each tree

path betweensk and t i
k has the parity specified byai

k and does not exceedl ik. In this case we

can further reduce the problem of finding the treeT 2 Tk minimizingw0(T) to theminimum-cost

directed rooted Steiner tree(DRST) problem in a directed acyclic graphDk, defined as follows.

Let Lk = maxfl1k ; : : : ; l
qk
k g andV0 =V(G)n (S[S0). Then

V(Dk) = fskg[fvj j v2V 0, 1� j � Lkg[ft
1
k ; : : : ; t

qk
k g

andE(Dk) = E1[E2[E3, where

E1 = f(sk;v1) j v2V 0, (sk;v) 2 E(G)g

E2 = f(uj ;vj+1) j u;v2V0, 1� j < Lk, (u;v) 2 E(G)g

E3 = f(uj ; t
h
k) j u2V 0, 1� h� qk, 1� j � l hk , j � ah

k(mod 2),(v; th
k) 2 E(G)g
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For a given directed graphH = (X;U) with costs on arcs, a specified rootr 2X, and a set of termi-

nalsY � X, the directed rooted Steiner tree problem asks to find the minimum cost arborescence

rooted atr and spanning all the vertices inY (in other wordsr should have a directed path to every

vertex inY). It is easy to see that finding a feasible Steiner treeT 2 Tk with minimumw0(T) re-

duces to finding a minimum cost DRST inDk after assigning to each arc entering vertexvi , v2V 0,

1� j � Lk, a cost ofw0(v), and to each arc entering sinkth
k , 1� h� qk, a cost ofw0(th

k).

Unfortunately, the minimum-cost DRST problem is NP-hard, and the fact thatDk is acyclic

does not help since there is a simple reduction for this problem from arbitrary directed graphs to

acyclic graphs. As far as we know, the best result for the DRST problem, due to Charikar et al. [3],

givesO(log2qk)-approximate solutions in quasi-polynomial timeO(n3logqk). Note, on the other

hand, that the minimum-cost DRST can be found in polynomial time for small nets (e.g., in time

O(nM�1) for nets with at mostM sinks, forM = 2;3;4). Theorem 1 immediately gives

Corollary 1: If the maximum net size isM � 4, the algorithm in Figure 2 finds, for everyε <

0:15, a feasible solution to the GMTMCF LP within a factor of 1=(1+ 4ε) of optimum in time

O
�

1
ε2KnM�1(logn+ logΓ)

�
.

Since most of the nets in real designs have small size, Corollary 1 justifies the following practical

strategy for finding approximate solutions to the GMTMCF LP: decompose nets with more than 4

pins into nets with 2–4 pins, then apply the approximation algorithm in Figure 2. Another heuris-

tic approach to speed-up the computation, used by Albrecht [1] for edge-capacitated MTMCF

approximation, is to compute (exactly or approximately) a DRST once, then use in each of the

following iterations minimum directedspanningtrees (with respect to the updated edge lengths) in

the directed acyclic graph induced byfsk; t1
k ; : : : ; t

qk
k ; p1; : : : ; psg in the metric closure ofDk, where

p1; : : : ; ps are the Steiner points of the original DRST. To find a minimum spanning directed tree

in directed acyclic graphs, one can use a very simple procedure: for each vertex choose a shortest

incoming arc, then, after running this procedure, recursively delete all leaves that are not sinks of

the netNk.

We have implemented both heuristics that use approximate DRSTs instead of optimum DRSTs

and heuristics based on 2-, 3-, respectively 4-pin decompositions; results of experiments comparing

these approaches are reported in Section VII.
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V. ROUNDING THE FRACTIONAL GMTMCF

In the previous two sections we presented an algorithm for computing near-optimal solutions

to the GMTMCF LP. In this section we give two algorithms based on the randomized rounding

technique of Raghavan and Thomson [18] (see also [14]) for converting near-optimal fractional

GMTMCF solutions to near-optimal integer GMTMCF solutions, i.e., to near optimal buffered

routings.

The first algorithm is given in Figure 3. Since the algorithm routes netNk with probability fk =

∑T2Tk
fT , it follows that, on the average, the total importance of the nets routed by the algorithm

is ∑K
k=1gk fk = ∑T2T g(T) fT . By Theorem 1, this is within a factor of 1=(1+4ε) of the optimum

GMTMCF LP solution, which in turn is an upper-bound on the optimum GMTMCF ILP solution.

Input: Fractional GMTMCF solution fT , T 2 T

Output: Routed trees, Tk 2 Tk

For each k= 1; : : : ;K, select net Nk with probability fk = ∑T2Tk
fT

Route each selected net Nk by picking a tree Tk from Tk, where tree T 2 Tk is picked with probability fT= fk

Fig. 3. Randomized GMTMCF rounding algorithm.

A potential drawback of the first rounding algorithm is that it requires the explicit representa-

tion of treesT 2 T with f (T) 6= 0. Although the approximate GMTMCF algorithm produces a

polynomial number of trees with non-zerofT , storing all such trees is infeasible for large problem

instances. Our second rounding algorithm (Figure 4) takes as input the net and edgecumulated

GMTMCF values,fk = ∑T2Tk
fT , respectivelyfk(e)= ∑T2Tk: e2E(T) fT , thus usingO(KjEj) space.

Note that the GMTMCF algorithm in Figure 2 can be easily modified to compute these cumulated

GMTMCF values instead offT ’s.

Our second rounding algorithm routes netNk = (sk; t1
k ; : : : ; t

qk
k ) with the same probability as the

first rounding algorithm and thus, as argued above, the total importance of the routed nets is within

a factor of 1=(1+4ε) of optimum. The difference is in how each chosen net is routed: to route

netNk, the algorithm performsbackward random walksfrom each sink ofNk until reaching either

the sourcesk or a vertex already connected to the source. The random walks are performed in the

directed acyclic graphsDk, with probabilities given by the normalizedfk(e) values.

Ensuring that no set capacity is exceeded can be accomplished in two ways. One approach
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Input: Net- and edge-cumulated GMTMCF values, fk = ∑T2Tk
fT and fk(e) = ∑T2Tk: e2E(T) fT , k= 1; : : : ;K,

e2 E(Dk)

Output: Routed trees Tk 2 Tk

For each k= 1; : : : ;K, select net Nk with probability fk

Route each selected net Nk as follows:

Tk fskg

For each sink t i
k in Nk do

P /0; v t i
k

While v =2 Tk do

Pick arc (u;v) with probability fk(u;v)
∑(w;v)2E fk(w;v)

P P[f(u;v)g; v u

End while

Tk Tk[P

End for

Fig. 4. Random walk based GMTMCF rounding algorithm.

is to solve the GMTMCF LP with set capacities scaled down by a small factor; this guarantees

that the rounded solution meets theoriginal capacities with very high probability (see [14] for

an application of this approach to VLSI global routing). A simpler approach, extending the so-

calledgreedy-deletion algorithm[6] to multiterminal nets, is to repeatedly drop routed nets pass-

ing through over-used sets until feasibility is achieved. We implement a modified version of the

greedy-deletion algorithm in which, instead of dropping an entire tree, we drop only the sinks

using paths through over-used sets.

VI. I MPLEMENTED ALGORITHMS

In this section we describe the implemented algorithms for the GRBB problem.

Greedy Routing Algorithms

We have implemented four greedy algorithms for the GRBB problem, all of them based on

the generic greedy routing algorithm given in Figure 5. All four greedy algorithms route nets

sequentially. For a given net, the algorithms start with a tree containing only the net’s source, then

iteratively add shortest paths from each sink to the already constructed tree. The only difference

is in whether or not net decomposition is used, and in the size of the decomposed nets. The first

three algorithms—referred to as 2TG, 3TG, and 4TG, respectively—start by decomposing larger
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Input: Graph G with K nets N1; : : : ;NK , vertex capacities c(v)

Output: Fully or partially routed feasible Steiner trees Tk 2 Tk

For each k= 1; : : : ;K, do

Tk fskg

For each sink t i
k in Nk do

Using a backward BFS search, find a shortest path P from t i
k to Tk in G using only vertices v with

c(v)> 0; if no such path exists let P= /0

Tk Tk[P

For each vertex v in P, c(v) c(v)�1

End for

End for

Fig. 5. The generic greedy routing algorithm.

multiterminal nets into 2-, 3-, respectively 4-pin nets, and then apply the algorithm in Figure 5 to

this decomposition.4 The fourth algorithm—which we refer to as MTG—is simply the algorithm

in Figure 5 applied to the original (undecomposed) nets.

GMTMCF Rounding Algorithms

We have implemented four GMTMCF rounding algorithms, all of them based on the generic

schema given in Figure 6. The first three algorithms—referred to as G2TMCF, G3TMCF, and

G4TMCF, respectively—start by decomposing larger multiterminal nets into 2-, 3-, respectively

4-pin nets, and then apply the generic GMTMCF routing algorithm to this decomposition. Since

the optimum DRST can be efficiently computed for nets of these sizes, the three algorithms do

not need to resort to the DRST approximations suggested at the end of Section IV. The fourth

algorithm—henceforth referred to as GMTMCF—applies the flow rounding schema in Figure 6

to the undecomposed nets, using shortest-path trees as approximate DRSTs in the GMTMCF ap-

proximation step.

VII. I MPLEMENTATION EXPERIENCE

All experiments were conducted on a SGI Origin 2000 with 16 195MHz MIPS R10000 pro-

cessors (only one of which is actually used by the sequential implementations included in our

4We remark that 2TG is essentially the algorithm suggested in [5], except that in [5] shortest paths are computed in the forward

direction, from sources toward sinks, and not from sinks toward sources as in Figure 5. It has been experimentally observed [7] that

backward shortest paths give slightly better results than forward shortest paths.
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Input: Graph G with K nets N1; : : : ;NK , vertex capacities c(v)

Output: Fully or partially routed feasible Steiner trees Tk 2 Tk

Find an approximate GMTMCF using the algorithm in Figure 2

Round the approximate GMTMCF using the algorithm in Figure 4

Use greedy deletion to find a feasible integer solution

Use the MTG algorithm in Figure 5 on the unrouted nets to find a maximal routing

Fig. 6. The generic GMTMCF-based routing algorithm.

TABLE I

INSTANCE PARAMETERS.

ID #Nets #Sinks Pins/net L U BB Cap.

h1 2396 2958 2.23 2000 4000 200

h2 2438 3077 2.26 1000 4000 200

h3 2448 3099 2.27 500 4000 200

i1 4764 6038 2.27 2000 4000 400

i2 4925 6296 2.28 1000 4000 400

i3 4938 6321 2.28 500 4000 400

comparison) and 4 G-Bytes of internal memory, running under IRIX 6.4 IP27. Timing was per-

formed using low-level Unix interval timers, under similar load conditions for all experiments. All

algorithms were coded in C and compiled usinggcc version egcs-2.91.66 with-O4 optimization.

The six test cases used in our experiments were extracted from the next-generation (as of January

2000) microprocessor chip at SGI. We used an optimized floorplan of the circuit blocks and also

optimized the location of the source/sink pin locations based on coarse timing budgets. We used

U = 4000µm, and variedL between 500µm and 2000µm. The upper-bounds on the number of

buffers on paths from sourcessk to sinkst i
k were computed with the formulal ik = d(sk; t i

k)=1000. In

all test cases considered the number of nets was large (up to 5000), and the number of buffer blocks

small (50), with relatively large capacity (200–400 buffers per block); such values are typical for

this application. Table I summarizes the parameters for the six test cases.

Tables II–V give the number of routed sinks and the runtime on the six test cases for each

implemented algorithm. The results clearly demonstrate the high quality of solutions obtained

by flow rounding methods. When applied to identical decompositions, flow-based methods yield

improvements of 5–9% in the number of connected sinks over the corresponding greedy algorithm.
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Fig. 7. Percent of sinks connected vs. CPU time on test case i1.

In fact, significant improvement over the best of the greedy methods is possible even with a very

small increase in runtime, proof that even very coarse MCF/MTMCF approximations give helpful

hints to the randomized rounding procedure.

Furthermore, the experimental results show that even a limited use of multiterminal nets (decom-

position into nets of size 3 or 4) gives improvements over the already very high-quality solutions

found by the flow-rounding algorithm based on 2-pin decompositions. More importantly, these im-

provements are observed even when the same time budget is given to the compared algorithms. To

facilitate such a comparison, Figure 7 plots the solution quality versus the CPU time (in seconds,

excluding I/O and memory allocation) of each algorithm when run on test case i1. The GMTMCF

algorithm proves to be the best among all flow algorithms when the time budget is limited, provid-

ing significant improvements over greedy algorithms without undue runtime penalty. However, the

best convergence to the optimum is achieved by G4TMCF, which dominates all other algorithms

when high time budgets are allowed.

Table VI gives the amount of routing resources (buffers and wire area) used by each algorithm

on test case i1. As expected, the amount of routing resources is higher for the algorithms with

higher completion rates. In fact, even when normalizing by the number of connected sinks, the

resource usage is slightly higher for these algorithms. This is at least partly explained by the fact
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TABLE II

PERCENT OF SINKS CONNECTED(BOLDFACE) AND CPU TIME FOR ALGORITHMS BASED ON2-PIN

DECOMPOSITION.

ID 2TG G2TMCF

ε = 0:64 ε = 0:32 ε = 0:16 ε = 0:08 ε = 0:04

h1
88.3

0.33

93.7

1.63

95.4

5.38

95.4

20.29

95.7

87.71

95.5

357.09

h2
88.7

0.37

93.9

2.35

95.8

5.99

96.8

22.78

96.6

88.44

96.5

349.63

h3
88.4

0.37

93.5

1.80

95.4

6.13

96.5

24.87

96.4

97.75

95.5

392.02

i1
90.6

0.65

94.8

3.26

95.8

10.71

96.5

39.61

96.6

164.85

96.8

622.87

i2
91.6

0.70

96.2

3.54

97.1

12.34

97.4

45.00

97.5

171.36

97.6

671.72

i3
91.5

0.73

96.2

3.57

96.9

11.84

97.3

47.17

97.3

172.01

97.5

770.51

TABLE III

PERCENT OF SINKS CONNECTED(BOLDFACE) AND CPU TIME FOR ALGORITHMS BASED ON3-PIN

DECOMPOSITION.

ID 3TG G3TMCF

ε = 0:64 ε = 0:32 ε = 0:16 ε = 0:08 ε = 0:04

h1
90.2

0.31

96.2

9.16

97.1

35.33

97.3

127.17

97.7

498.34

97.8

2090.61

h2
90.1

0.34

96.4

11.10

98.3

41.56

98.6

154.76

98.9

626.47

98.5

2355.66

h3
89.8

0.45

96.4

12.56

97.7

39.65

98.3

156.93

98.1

639.53

98.0

2364.51

i1
91.9

0.63

95.7

15.99

96.8

54.94

97.3

208.06

97.5

814.21

97.6

3362.20

i2
92.7

0.66

97.0

20.74

98.0

69.33

98.4

248.32

98.5

964.22

98.6

3834.26

i3
92.5

0.72

96.8

19.07

97.8

66.23

98.3

251.17

98.4

992.41

98.4

4164.50
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TABLE IV

PERCENT OF SINKS CONNECTED(BOLDFACE) AND CPU TIME FOR ALGORITHMS BASED ON4-PIN

DECOMPOSITION.

ID 4TG G4TMCF

ε = 0:64 ε = 0:32 ε = 0:16 ε = 0:08 ε = 0:04

h1
90.8

0.31

97.9

56.16

98.3

305.70

98.9

1187.99

98.9

4881.40

99.2

19083.50

h2
90.5

0.34

98.2

75.98

99.0

364.02

99.6

1629.60

99.8

6520.44

99.8

24779.28

h3
90.1

0.33

97.7

75.26

98.8

392.30

99.5

1619.30

99.6

6378.52

99.3

25136.72

i1
92.6

0.60

97.1

153.46

98.1

782.65

98.6

3354.75

98.8

13910.05

98.8

56530.93

i2
93.0

0.71

98.3

191.14

98.7

1038.84

99.4

4550.27

99.6

17888.36

99.4

71636.67

i3
92.8

0.69

98.2

195.40

98.6

1062.71

99.3

4507.83

99.3

18438.52

99.3

73712.45

TABLE V

PERCENT OF SINKS CONNECTED(BOLDFACE) AND CPU TIME FOR ALGORITHMS OPERATING ON

UNDECOMPOSED NETS.

ID MTG GMTMCF

ε = 0:64 ε = 0:32 ε = 0:16 ε = 0:08 ε = 0:04

h1
92.2

0.30

96.7

2.33

97.4

11.21

97.5

47.11

97.6

223.96

97.4

946.78

h2
92.3

0.33

97.6

2.87

98.9

13.84

99.2

53.31

99.3

226.13

99.3

868.25

h3
92.1

0.33

97.3

2.86

98.2

12.66

98.5

53.74

98.8

219.20

98.7

876.63

i1
93.5

0.59

96.3

4.98

97.4

24.33

97.5

102.57

97.7

420.24

97.7

1865.81

i2
93.6

0.64

97.7

5.38

98.1

26.39

98.2

111.32

98.3

452.82

98.4

1827.98

i3
93.3

0.70

97.7

5.43

98.1

26.54

98.1

121.55

98.2

454.84

98.2

1833.17
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TABLE VI

USAGE OF ROUTING RESOURCES ON TEST CASE I1 (6038SINKS TOTAL). THE MTG∞ COLUMN GIVES

RESOURCE USAGE FOR THEMTG ALGORITHM WHEN RUN WITH INFINITY CAPACITY FOR EACH BUFFER

BLOCK.

Greed G2TMCF G3TMCF G4TMCF GMTMCF

2TG 3TG 4TG MTG MTG∞ ε = 0:64 ε = 0:04 ε = 0:64 ε = 0:04 ε = 0:64 ε = 0:04 ε = 0:64 ε = 0:04

#Conn. Sinks 5469 5547 5592 5645 6038 5725 5842 5779 5896 5864 5965 5813 5897

%Conn. Sinks 90.6 91.9 92.6 93.5 100 94.8 96.8 95.7 97.6 97.1 98.8 96.3 97.7

WL (meters) 42.26 41.99 42.21 42.22 47.89 45.18 47.80 44.48 47.66 44.48 47.90 45.33 47.51

WL/Sink (µm) 7727 7570 7548 7479 7931 7891 8182 7697 8083 7585 8031 7798 8057

#Buffers 9240 9053 9076 9037 10330 9860 10676 9591 10610 9546 10730 9860 10647

#Buffers/Sink 1.69 1.63 1.62 1.60 1.71 1.72 1.83 1.66 1.80 1.63 1.80 1.70 1.81

that higher completion rates can only be achieved by routing a larger percentage of “difficult” nets,

which may otherwise be ignored. Note for example the increase in wirelength and average number

of buffers per routed sink for the MTG algorithm when the completion rate is boosted by increasing

buffer block capacities (columns MTG and MTG∞ in Table VI).

VIII. C ONCLUSIONS ANDFUTURE DIRECTIONS

In this paper, we addressed the problem of how to perform buffering of globalmultiterminal

nets given an existing buffer block plan. We gave a provably good algorithm based on a novel ap-

proach to GMTMCF approximation inspired by recent results due to Garg and K¨onemann [9] and

Fleischer [8]. Our GMTMCF algorithm outperforms existing algorithms for the problem [5], and

has been validated on top-level layouts extracted from a recent high-end microprocessor design.

Ongoing work is aimed at increasing the space of methodologies to which our new techniques

apply. As presented here, our work is clearly targeted to very early global wireplanning activity.

In other words, the application domain is pre-synthesis chip planning: prescribed repeater inter-

vals are driven only by coarse estimates of Miller coupling factors, repeater sizing, and source

impedance or sink capacitance. The presented formulation also does not address timing criticali-

ties or budgets except via net weighting; this is fortunately fairly common for initial wireplanning

that breaks the “chicken-egg” problem of budgeting between-block and within-block paths in pre-

synthesis RTL planning with aggressive global wire optimization.5 We are presently extending

5In other words, maximal repeater insertion allows maximum timing budgets for within-block timing paths, and this permits



27

our approach to achieve better handling of timing criticality and budgets by improved use of net

ordering and weighting during rounding, and post-processing of the solution to eliminate unneeded

repeaters.

Further, we seek practical algorithms for handling routing congestion, i.e., simultaneously en-

forcing buffer blockandchannel capacities. By inserting “virtual” nodes corresponding to chan-

nels, the problem becomes a generalized type of integer GMTMCF in a vertex capacitated graph.

However, computing minimum-weight feasible Steiner trees in this graph now entails finding

minimum-weightlength-restrictedpaths between buffer blocks. Although the latter problem is

NP-hard, it can be approximated arbitrary close [10], [17] and it is still possible to apply our

GMTMCF schema.

Finally, we note that actual applications would likely iterate the GRBB solution with incre-

mental modification of buffer block locations, pin placements, and both channel and buffer block

capacities. Adapting the GMTMCF approach and its runtime/quality profile for use in an iterative

environment is challenging, and is the subject of ongoing collaboration with industry.
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