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Abstract

The Intel Paragon is a mesh-connected distributed memory parallel com-
puter. It uses an oblivious and deterministic message routing algorithm: this
permits us to develop highly optimized schedules for {requently needed com-
munication patterns.

The complete exchange is one such pattern. Several approaches are available
for carrving it out on the mesh. We study an algorithm developed by Scott.
This algorithm assumes that a cornmunication link can carry one message at a
time and that a node can only transmit one message at a time. It requires global
synchronization to enforce a schedule of transmissions. Unfortunately global
synchronization has substantial overhead on the Paragon. At the same time the
powerful interconnection mechanism of this machine permits 2 or 3 messages to
shate a communication link with minor overhead. It can also overlap mnultiple
message tranusmission from the same node to some extent.

We develop a generalization of Scott’s algorithmn that executes complete
exchange with a prescribed rontention. Schedules that incur greater contention
require fewer synchronization steps. This permits us to tradeoff contention
against synchronization overhead.

We describe the performance of this algorithm and compare it with Scott’s
origiinal algorithm as well as with a naive algorithm that does not take inter-
connection structure into account.

The Bounded contention algorithm is always better than Scott’s algorithm
and ontperforms the naive algorithm for all but the smallest message sizes.
The naive algorithm fails to work on meshes larger than 12 x 12. These results
show that dve consideration of processor interconnect and machine performance
parameters is necessaty to obtain peak performance from the Paragon and its
successor mesh machines.
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1 Introduction

Interprocessor communication overhead is a major factor that limits the performance
of distributed memory parallel computer systems. Ail machines, no matter how pow-
erful their interprocessor cornmunication mechanism. suffer from this overhead. Com-
munication overhead is exacerbated by node and link contention. Node contention
arises when a node attempts to transmit or receive several messages simultaneously.
Link contention is caused by the sharing of a cornmunication link by two or more
messages. Clontention arises in all but the simplest communication requirements. In
some cases. contention can be minimized or eliminated by carefu] scheduling of mes-
sages. However this requires that all processors in the system synchronize themselves
at specific points in time—thereby incurring synchronization overhead.
The parallel algorithm designer is thus faced with the following dilemma:

e A completely contentiorn-free schedule will incur substantial synchronization
overhiead.

o A completely synchronization-free schedule will result in heavy contention over-
head.

Clearly there is a need o find a balance between the two types of overhead in order
to minimize the overall execution time of the parallel algorithm.

The complete exchange is an interprocessor communication pattern that arises
in a number of important applications. It requires each processor to send a distinct
message to every ot her processor in the system and is thus the heaviest communication
requiremnent that can be imposed on a parallel computer. ('amplete exchange has been
extensivelv studied and a number of algorithms are known for its efficient execution
on various intercopnection networks.

We describe a study of the complete exchange on mesh connected paraliel ma-
chines. We start with an algorithm to execute the complete exchange on meshes
that was developed by David Scott. We develop a generalization of this algorithm
that perinits us to decrease synchronization overhead by increasing contention. We
describe our experiments with this approach on the 512-node Intel Paragon mnesh at
Caltech. It is seen that the generalized algorithm can be used to balance contention
and svnchronization overhcad and thus obtain significant reduction in the time re-
quired to execute the complete exchange. The generalized algorithm is also shown to
give better performance than a natve algorithm that does not take the interconnect
of the I‘aragon into account.

Our results deronstrate that careful consideration of parallel machine inteccon-
nect and performance characteristics is needed in order to obtain the best perfor-
tance. As an extreme example, the naive algorithm (which does not take the inter-
connect into account) fails to execute on Paragon meshes of size Jarger than 12 x 12,
because the operating syvstem cannot allocate enough memory for the large amount
of communication traffic required. For such meshes we have no choice bhut to use an
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Figure 1: The mesh interconnect of a 4 x 4 Paragon. The circles represent compute nodes
while the squares show special purpose hardware for communication. Message routing is
done via the “row coluinn™ algorithin explained in the text. The figure shows two pairs of
processors communicating and contending for a cingle edge. Such link contention can lead
to substantial overhead.
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algorithm that carefully schedules communications. such as Scott’s algorithm or its
generalization (described in this paper).

2 The Paragon Mesh

The mesh has long been a popular choice for interconnecting parallel computers.
Currcntly. the most powerful example of the mesh is the Intel Paragon'. The spe-
cific tnachine on which the experiments described in this paper were carried out is
located at the Center for Advanced Computing Research at Caltech?. It is rnade
up of 312 compute nodes organized in a 16 « 32 array. Each node is composed of
two Intel 1360 processors. Onc serves as a compuie processor and the other as a
communication processor. In addition there is special hardware for interfacing with
the intercommunication network. The interprocessor comnmunication network is a
mesh with *row-column” routing (Figure 1). A message traveling from source s to
destination t first travels along the tow in which s lies. until it reaches wne column
in which ¢ lies; it then travels along the column to t. Two messages traveling si-
multancously between two different source-destination pairs imay need to traverse the
same communication link, as illustrated in Figure 1, and will incur link contention

‘http: //www .s8d. intal.com/paragon. htnl
“http://uweww.cacr.caltech. edu
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Figure 2: Explanation of node and Link contention on chains of processors. Node contention
equals the number of messages that a processor atternpts to transmit simultaneously. Link
contention is given by the maximum number of messages passing through any communica-
tion link in the chain.

overhead.

The routing mechanism on the Paragon is oblivious (the paths between all source-
destination pairs are statically defined) and deterministic (a single route exists be-
tween every source-destination pair). As a result. it is possible to accurately predict
the time required for a communication step. provided no contention is taking place.

A message passing through a node en route to its destination dnes not impact
the computation occuring at that node as the routing 1s carried out by special hard-
ware. The i860s run at H0 MHz and are capable of 75 MFlops. This machine has 32
Megabyvtes of memory per node of which about 24 Megabytes are available for user
prograrmns. Measured performance parameters of the Paragon are given in Table 1.
The communication expression in this table is obtained by using the specific com-
munication scheme employed in subsequent experiments with the complete exchange
and thus differs from the expressions reported elsewhere [2. 5).

Table 1: Performance Parameters for the Paragon

Svrichronization 1 X n processors | 27. Hog,n — 131 psec
} (Communication, message m > 8640 bytes | 231 4 0.022m psec !

[igure 2 clarifies the concepts of node and link contention. as applied to chains
of processors. The interpretation of these concepts for meshes is very similar though
difficult to explain in a simple diagram.

The successor machine to the Paragon is the Intel ASCI (Acceleraced Strate-
gic Computing Initiative) Teraflop®{12]. which is currently being installed at Sandia
Lahoratories®. This mechine also has a mesh interconnect and the techniques de

Shttp://eww.ssd. intel , com/t1lop .html
ihttp://wev.cs.nandia. gov/terutlop. html
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Figure 3: Complete Exchange on 4 Processors. To change storage fiom column order (a)
to row orde r (¢). each processor must send a distinct message to every other processor (b).

scribed in this paper should be applicable to the new machine as well.

¢  +he Complete Exchange

Un  uistributed memory parallel computer. the complete ezchange requires each of
A processors to send a distinct m byvte block to each of the remaining N = 1 proces-
sors. This comrnunication pattern, which is also known as all-to-all personalized, is
at the heart of rnany important multicomputer algorithms such as matrix transposi-
tion. matrix-vector multiply, Fast Fouricr Transforms and the Alternating Directions
Implicit { ADT) method for solving partial differential equations. To undecrstand the
data movement required by this pattern refer to Figure 3 which shows a 4 x 4 block
matrix stored on 1 processors. In part (a) of this Figure the matrix is stored in col-
umn order. In part {c) the layout has been chaunged to row order. It is clear that to
change from (a) to (c), each processor must transmit a block of data to every other
processor. This is shown in part {(b) which is a complete directed graph of four nodes.

In general. complete exchange on ¥ processors can he represented by a complete
directed graph of .V nodes. It is thus the densest possible communication require-
ment and the time required by a distributed rnemory multicomputer to execute it
is an important performance paramete:. At the same time. it is a challenge for the
algorithm designer to develop good algorithms for complete exchange on different
parallel architectures.

A number of algorithms have heen developad for executing the complete exchange
on hyperenbes [4. 6. 7. 8. 11] and meshes i1, 9] These algorithms attempt to obtain
high performance by carefully scheduling comrnunications so as to avoid node and
link contention. We can classify these algorithins into two categories. In Direct
algorithms cach block is transmitted once to its ultimate destination: in Storc-and-




forward algorithms a block is combined with others and transmitted in stages via
intermediate processors. Store-and-forward algorithms [7) strive to reduce the impact
of startup time by incurring data permutation and extra transmission overhead. It
has Leen shown that such algorithms perform well foi small message sizes. Direct
algorithms [11. 9], on the other hand, have better performance for large message
8}ZeS.

The time required to execute the complete exchange will depend on the intercon-
nection network and the schedule of data transfers. We shall address the problem
of developing good direct algorithms for mesh connected parallel architectures. The
sparsiiy of the mesh interconnect makes this a difticult endeavor. This is in contrast
with hypercubes. for which optimal direct algorithms (i.e.. those that require N — 1
transmissions for an N processor system) have been known for some time.

4 Scott’s Algorithm

The problem of implementing cornplete exchange on a mesh architecture has been
studied by Scott [9] under the following assurnptions:

¢ A node can send and receive at most one 1nessage at a time.

¢ A cornmunication link can carry at most one message in cach direction at one
time.

¢ Messages are routed according to the “rew-columnn™ algorithm. that is. a mes-
sage frorm processor I,.y; to processor r,.y, frst travels along a row to r,. 1
and then along a column to z;.y,.

Scott shows that. under these assumptions. a square mesh of V' nodes cannot acaieve
the complete exchange in fewer than N3/2/1{ steps, unlike a hypercabe, which requires
N — 1 steps. The intuitive reason for this is the far richer interconnection of the
hypercube which comes, of course. at the cost of a logarithmically increasing node
degree.

Scott goes on to describe a procedure that will generate a schedule of transmissions
that takes exactly N%2/4 steps. for the case where N i5> a multipleof 4. This procedure
is based on composing or “cross-multiplying” pairs of 1-dinensional permutations and
can lead to many different sets of schedules, depending on the choices made when
composing the permutations. Figure 1 show: three permutations out of a set of 123
generated for an 8 » 8 mesh. The cellsin this diagram are assumed to be numbered in
row-major order. A non-blank cell indicates the coordinates of the target to which the
corresponding processor has to transmit. A blank cell indicates that the corresponding
processor docs not transmit anvthing during that permutation. As we increasc the
size of the mesh. the proportion of these idle processors increases becanse the mmesh
interconnect cannot support transmissions by all processors. It is these idle processors
taat lead to the superlincar N7/ 4 expression for run tinue.




1,4(1,211,5|1,3
7,4(7,2 7,817,3
3,6 3,0 ' 3,7]3,1
5,6 &,0 5,7(5,1
2,6 2,0 2,7]2,1
4,6:4,0 4,714,1
, 0,410,2/0,5/0,3
! 16,4]6,2|6,5]6,3 :
(2,112,7 2,0]2,6]
T 4,3]4,5]4,2[4,4
Y7, 7,7 7,0|7,6:
( 1,3!/1,5[1,2]1,4
6,3/ 6,5/6,2]6,4
10,1]0,7 0,0]0,6
| 3,3{3,5/3,2]3,4
5,1]5,7 , 5,01€¢,6
3,5 3,0 13,7 3,2
2,3 2,6 2,1 2,4
6,3 6,6 6,1 6,4
7,5 7,0 7,7 '7,2
10,5 0,0 0,7 0,2
L (1,3 1,6 1,1 1,4,
15,3 5,6 5,1 5,41 |
4,5 4,0 14,7, 14,2

Figure 4: Three out of a set of 128 permutations for an % « & mesh. The cells in this
figure represent processors and are numbered in row-major order. Au erapty cell indicates
an inactive processor. A non-empty cell gives the coordinates of the cell to which that cell
transmit <.
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5 Bounded Contention Algorithm

The permutations generated by Scott’s procedure assume that only one message can
travel over a link in one direction at a time. As a result all nodes cannot, in general,
transmit during any given step. This is evident iu Figure 4. where we see that half
the nodes are alwayvs inactive. If we have a squarc mesh of n x n = N nodes, the
number of steps required is n3/4 = N2 /4 and during each step a fraction 4/n of the
nodes is inactive.

If we relax the constraint that a link only carry one message at a time, it becomes
intere.ting to explore if schedules can be generated in which contention is bounded by
some integer c. The permutations shown in Figure 4 cannot simply be superimposed
because the active nodes in any pair of permutations are not disjoint.

Scott’s generation technique creates permutations that can be executed in any
order to achieve the complete exchange. The set of permutations generated is not
unique. We have developed an algorithm to generate a set of permutations in a special
collapsible order. This generates permutations in such a way that consecutive entries
in the sequence can be collapsed to form a denser permutation {i.e.. one in which
more nodes are active), with greater contention. The collapsibility property is not
true of Scott’s permutations in general.

Figure 3 shows two permutations for an 8 x & mesh that can be collapsed to form
a third. Since each of the constituent permutations has link contention bounded by
1. the contention in the collapsed permutation is bounded by 2. It is also clear that
each node 1s transmitting exactly once.

For the 8 » 8 mesh shown in Figure 3. the fraction of active nodes in the constituent
permutations is 4/n = 1/2. We can combine sets of two permutations each and thus
halve the number of steps required to achieve complete exchange.

We have developed a theory of collapsible schedules for the complete exchange
on meshes. We can show that for a square mesh of n ¥ n = N nodes that permits
contention ¢ on its links, the number of steps required is °/4c. where c is an integer
< n/4 and c divides n/4 (i.e.. »/4c is an integer).

We have imnplemented an algorithm based on this theory and used it to generate
and verify schedules for meshes of size ¢ x 4. 8 < 8, ..., 32 = 32°. Table 2 shows the
improvernent possible as the permitted contention is allowed to increase. For each
mesh size, the minimum steps possible are n? at ¢ = n/4. This is within ] of the
theoretical minimum n? — 1. The blank entrics below the principal diagonal in Table
2 are cansed by the constraint that n/1c be an integer. This table assumes that no
node contention is permitted. i.c.. a node cannot transmit more than one message at
a time.

The schedules generated by this algorithm have the interesting property that they
can be wollapsed to whatever degree is permitted by the rules stated above. Thus the
schedule for 16 x 16 meshes could be collapsed for link contention 2 or 4 by combining

Schedulas for meshes of size 1 x 1, R x & 125 12 and 16 « 16 are available at. ths following site:
t:p://ttp.icase. adu/pudb/cs/shahid




® |© © |0 7o) W O[O |O |0
— i~ SO St inim NI icie
ole ojo (=3 ololojololojo|o
- - A s - W TR T A A A A T
— i~ O < i~ OO NP {O O
—— .- L.vl'Jlll
CRE NES L) |t o | R R R R R R J RN
N I IS I 'S N ol - ol o] al Al el Ta] Tal e
iwn N e~ o o it~ jo |0
NN NN NN [a By ] N ONIN [ NNV NN
™| | — |~ o | e~ ju|dje]o o
ww|wln wlwn 0w wiwvin|v]jv|lvlw|w
ool — olw il |vija]e|o]|e
I I - —
n|lojo|m m|m alm olnjojo|jojonfjo|om
YT L ) al = L Y Aaf ! ®n! ol «! Al «! «
mlwlc ]| i~ o |e ]l |jvlaie]ojo
] - {- -
~ i~ ~ |~ ~ i~~~ ~ 0~ e~ |~~~ |0~ |~
- i o {w© 0w |ov | “wi~clolwlaje oo
i vt e Nl al 4 et [ vt |-t wt vl Jovd od wrd Jed [ vt |l
-~ ol SRR AR S i~ lic||o]o

Figure 3: The first two permutatiors can be collapsed to form the third. This is possible
because the active cells in the first permutation correspond exactly to the inactive cells in
the second and rvice versa. Since the link contention in the first two permutations is 1. the

combined permnutation has link contention 2.
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Table 2: Steps required as contention is allowed to increase.

Mesh size Permitted Link Contention (c)

(n x ﬂj‘! 1 2 3 4 15 6 TE
44 | 16 !
§x 8 128 | 64 :

12 %12 || 432 144

16 » 16 || 1024 ) 512 256

20 % 20 || 2000 { 1000 400

24 x 24 || 3456|1728 | 1152 376

268 x 2R || 5488 ! 784

32 x 32 |l 8192 4096 2048 1024

consecutive sub-sequences of 2 or 4 permutations as shown in Figure 6. If the first
synchronization in part (c¢) of this figure were removed we would have a schedule with
node as well as link contention. Two nodes would be attempting to transmit at a
time while the link contention would be doubled from 4 to & This can lead to further
improvements in run time. as described below.

6 Implementation Considerations

The nx message passing library was used for our experiments on the Paragon. This li-
brary has its origins in the Intel iPSC-860 hypercube which has two types of messages:
FORCED and UNFORCED. FORCED messages are transmitted from source to destination
under the assumption that a receive has already been posted (i.e.. buffer space for
reception has been specified) at. the destination. If an arriving message does not fir.d
a recejve posted, it is discarded. UNFORCED messages do not require a receive to be
posted beforehand. Before an UNFORCED message is transmitted there is an exchange
of control messages betwcen source and destination to allocate ¢perating system buffer
space for the message. This leads to additional overh:ad in communication (hecause
of the control messages). extra memory requirements, and the penalty of copving
from operating system buffers to user areas [3]. Further details of the communica-
tion overhead on th: Paragon appear in {2]. Shirley et al. [10] discuss how operating
svstern timer imverrupts complicate performarnce measurement and prediction on this
machine.

On the Paragon, FORCED and UNFORCED messages are supposed to perform iden-
ticallv. It has been our experience that operating system space is allocated for all
pocsible arriving messages n addition to anv user memiory locations that mayv he
set aside by explicitly posted receives. The user can specify the amount of memory
buffers that the operating system is to sct aside for this purpose. Despite this, when
large numbers of large-sized messages are expected. the operating sy stem can run
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Figure 6: :a) The first ® {of 1024) members of a collapsible schedule for a 16 » 16 mesh.
Active nodes are indicated by square blocks. When alternate synchronizations are removed
(X). pairs of successive perimutations collapse as shown iu part (b) giving a schedule with
maximum link contention 2. Repeating this process jesults in a schedule with link contrntion
1 (¢). Further removal of svnchronization steps res:!te in increasing node contention.
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out of resources thereby causing the machine to hang. Needless to say, FORCED mes-
sages should only be used if comrnunication requirements are well understood and
receives can be posted before anyv messages are launched. Deadlocks can develop if
this requirement is not satisfied.

The Bounded contention complete exchange algorithm that we have developed has
a completely determined comraunication requirement and we could thus use FORCED
messages. To compare the performance of the Bounded contention algorithm against
an algorithm that does not take the topology of the mesh into account, we imple-
mented a naive algorithm to carry out the complete exchange. This algorithm simply
transmits blocks of data from each processor to the remaining processors without
regard for link or node contention. We were unable to get the naive algorithm to
function reliably bevond 12 x 12 precessors because the large numbers of outstanding
receives required could not be accommodated by the operating system.

Each node of the Paragon has an i860 processor dedicated to in.erprocessor com-
munication. This processor takes over a considerable portion of the overhead of
starting a data transfer. We have found that asynchronous receives and sends vield
much better performance because the compute processor can spawn a task on the
cominunication processor and carry on with its work without having to wait for the
yperation to complete. This. in fact. is how the machine manages to perform well
under node contention.

Memory access and thus data comrnunication on the Paragon is heavily affected
bw the starting address of a transfer. In our experiments we have aligned all arrays
to 4k boundaries {the page size of the machine) to minimize this impact.

7 Experimental Results

When impleraenting Bounded contention complete exchange on the Paragon. several
spects of the machine performance had to be taken into account.

1. The amount of contention in a schedule can only be controlled by global svn-
chronization. The ot :rhead of this operation is substantial (Tahle 1).

2. While the machine can tolerate node and link contention, there is nop-zero
overhead associated with such contention.

3. Overicads for node and link contention are heavily dependent on the tvpe of
communication being carried out. It is very difficult to obtain siniple expressions
for thewe overheads. For example. measurernents taken of the l-dimensional

commmunication parterns in Figure 2 do not applv to 2-dimensional commuui-
cations.

The above aspects coupled with the use of virtual mernory on the machine and
the complex effects of operating svstent interrupts '10] make it extremely diflicult to
predict the communication performance of this machine under varying amounts of
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39220
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Pigure 7: Naive algorithm (“+") compared with Bounded contention algorithm on a 4 x 1
Paragon. The naive algorithm run times. which do not vary with contention, have been
chown as a series of sitips for clarity.

rode and link contention. This in turn also makes cecision of the level of contention
to bie used difficult.

Our approach is to evaluate the algorithm for various levels of permitted con-
tention and empirically decide on the best level for a given mesh size. This is easily
done once a collapsible sequence has been generated for a mesh: simply insert bar-
rier synchronizations in the sequence. modulo the permitted contention. Thus. for a
32 w 32 mesh we would insert barners after every 1. 2, 4 or 8 permutations. For ex-
ample. inserting barriers after every 4 permutations causes each group of 4 to collapse
into one permutation with contention 4.

Figures 7. §, 9 and 10 compare the perforinance of the naive and Bounded con-
tention algorithms on meshes of size 4 » 1. & » 8, 12 x 12 and 16 x LG respectively.
for varyving amounts of contention and message sizes. The z-axes of these plots are
labeled with the pairs (node contention. link contention i, as clarified in Figure 2. The
petformance of the naive algorithm. which does not vary with contention. is shown
as a series of strips so that the surface of the Bounded algorithm can be seen clearly.

The small size of the 4 » 4 mesh does not perimit a collapeible schedule to be
gencrated (see Table 2). Despite this. there is an improvement in performance as
contention increases. because the number of ~ynchronization steps required is reduced.
Furtherimore, node contention also results in slight decreases in time as launching two
or tuore messages in quick succession permits the utilization of intranode parallelism
due - a separate communication processor.

.ures 8 and 9 show much more interesting results obtained from experiments
on & « % and 12 < 12 meshes. Here. the performance of the Bounded algorithm
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bigure 9: Comparicon of the two algorithms on a 12 x 12 Paragor.
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Figure 10: Performance of Bounded contention algorithm on a 16 x 16 Paragon. The
naive algorithm fails to work on this mesh and the Bounded algorithm fails at contention
{256.1024 ) because of operating system limitations.

is initially much poorer than the naive algorithm but improves ve.y rapidly with
increasing contention. The initial steep drop it due to the col'apsing of the schedule.
(which increases link contention but not node contention) anc to the large reduction
in svnchronizafion steps. As contention increases, further improvernents are obtained
because of reduction in synchronization and because of the concurrent operation of the
commupication processor. However the improvemnent is arrested at node contention
= 16 when the decrease in synchronization steps can no longer offset the overhead
due to node and link contention. Aftei this point the time starts increasing.

The performance of the Bounded algorithm for 16 x 16 meshes is shown in Figure
10. The Paragon failed to execute the naive algorithm for this mesh size. This is
because the operating system could not allocate enough resources to accommodate
the 256 reccives required by the algerithm. The Bounded algorithm itself could not
be he tested for thi< mesh size for node contention == 236 for the same reason.

The relative performance of the two algorithms is clear in Figure 11 which shows
contours that indicate the percentage inprovement of Bounded over naive. These
contours show that improvements of greater than 25% are possible on 8§ x 3 and 12 x 12
nieshes for most rnessage sizes, provided the contention level is chosen carefully. The
contours help us pick the hest contention level for a given message size.

To study our experimental results in greater detail we provide slices. at message
size 15232 hyvtes. through the surfaces of Figures 7. %, 9 & 10.

The solid curves in these figures show the measured time to execute Bounded con-
tention complete exchange. This measured thineis compared with the predicted time.
obtained by adding synchronization and communication time taken from Table 1.
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Figure 12: A slice through the surface for a 4 » 4 Paragon.

Figure 12 shows a slice through the surface for a 4 > 4 mesh (Figure 7). Three
aspects of this figure are noteworthy.

e The agreement between predicted and measured times is good.

o [he communication time fraction of the total predicted time is constant. This
i« because in a 4 x 4 mesh schedule there are no idle processors. Thus. even
when we increase perritted contention. the schedule cannot collapse becauce of
the lack of “holes” in the permutations.

e The increase in performance comes about because of reduction in synchroniza-
tion overhead.

The stice of the 8§ x & surface /Figure [3) brings out several interesting issues.
To circumvent the difficulty of predicting performance we have inserted upper and
lower bounds for time to execute complete exchange in this and subsequent figures.
The lower bound gives the sum of communication and synchronization times as given
in. Table 1. Note that the communication time is halved going from link contention
1 to 2. This is because. as shown in Table 2. the number of communication steps
drops from 128 to 64 for an 8 x & mesh. Since the lower bound does not include the
overheads of node and link contention. the measured time should not drop helow this
crrve,
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Figure 13: A slice through the surface for an 8 x & Paragon.

The Bounded contention algorithm increases permitted contention by deleting
barriers. This removes control over the launching of messages: a processor ¢ n fire
off the next message in its schedule without waiting for synchronization. Some mes-
sages. may be launched along paths already in use, thereby increasing contention.
The impact of this contention is very difficult to estimate because the communica-
tion patterns of the Rounded algorithm are complex and their contention cannot be
characterized sunply.

The upper bound curve gives the sum of synchronization and communrication
times, assuming that all 128 nessage steps arc executed serially. We would expect
the rmeasired times to lie between the two bounds. The closer the mcasured time is
to the lower bound, the greater is the success of the Bounded approach. On the other
hand, the measured curve would approach the upper bound when the contention
overheads exceed the reduction in communication and synchronization time.

In Figure 13 we see that the measured time is close to the lower bound for link
contention 1. 2 & 4. Bevond 4 the measured time starts deviating significantly,
reaching a minitnwm at link contention 16. Similar cominents apply to the slices for
12 v 12 and 16 x 16 meshes (Figures 14 & 13). In the latter it is noteworthy that the
measurcd time almost touches (but does not cross) the upper bound at contention
(128.512). (Recall that this experiment conld not be run for the last contention value
of (236.1024) because of operating system limitations.) This shows that onr algorithm
is robust in the sense that the measured time remains bonnded by the time to execute
the individua! communication steps.
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Figure 14: A slice through the surface for a 12 x 12 Paragon.

16118 meih, M 286300 8i7¢ 15232 bytes

T T

16 }‘ - v
14 {
A
] .
2+ 1
I3
1- \ E
‘\
\\
08+ N _
\
L upper bound
o7 d \ o e N
’ el measured e ——T
A - e
04 r o |
'-,gyv\avomxam
lower Bound
027 LS ot er s e e ]
communcalian
|
o _A__J y— A e i 4 A A A
1 12 14 28 16 AR 16¢e

node Iink contention

32128 64206 120.512 256.1024
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Figures 13. 14 and 15 show that a careful choice . _oi.-ontion levels is necessary to
obtain the best performance. It is not enough to blindly remove all synchronization
steps.

8 Conclusions

Complete exchange is an important communication requirement that is difficult to
execute efficiently on meshes. We have developed a new Bounded contention algo-
rithmn that, takes advantage of the high performance communication mechanism on
the Paragon to achieve good timings. The performance of this algorithm has been
measured to be better than that of a naive algorithm that does not take network
topology into account. Our experience appears to contradict the commonly held be-
lief that topology does not have to be considered when designing parallel algorithms
for modern parallel computer systems.

Our results are applicable to all meshes in which, like the Paragon, the rate at
which data can be transmitted across the interconnect is higher than the rate at which
data can be injected tnto the interconnect. The successor to the Intel Paragon is the
ASCI Teraflop machine with a dual mesh interconnect [12]. ‘T'his machine can take
advantage of our results in an interesting fashion. Our algorithm essentially “slices™
the complete exchange communication pattern into a series of sub-patterns. each
with a bounded contention. These sub-patterns can be alternately assigned to the
two meshes permitting us to take full advantage of the ASCI'c ~owerful interconnect.
These results are also applicable 10 3-d meshes because Scott .. hasic algorithin can
be extended to higher dimensions.

Aninteresting area of further research would e to combine the Bounded algorithm
which is optimal for large message sizes, with the multiphase algorithm [4] which has
been shown to be applicable to the Paragon [5], and gives the best performance for
stnall message sizes.

Perhaps the most crucial conclusion to be drawn from our experiments is the
importance of synchronization time in determining the overall execution time of a
communication step. Our results indicate that investment in an improved synchro-
nizatior: mechanism. perhaps relying on a network distinet from the network used f{or
data communication. would yicld handsome dividends in terms of improved commu-
nication performance.
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