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ABSTRACT

We characterize multiple-access interference for cellular mobile networks, in which users
are assumed to be Poisson-distributed in the plane and to employ frequency-hopped spread-
spectrum signaling with a transmitter-oriented assignment of frequency-hopping pattems.
Exact expressions for the bit error probabilities are derived for binary coberently demodulated
systems without coding. Approximations for the packet error probability are derived for
coherent and noncoherent systems and these approximations are applied when forward-error-
control coding is employed. In all cases, the effects of varying interference power are accu-
rately taken into account according to some propagation law.

Numerical results are given in terms of bit error probability for the exact case and
throughput for the approximate analyses. Comparisons are made with previously derived
bounds and it is shown that these tend to be very pessimistic.
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1 INTRODUCTION

Research in the areas of communication networks and spread-spectrum com-
" munications has failed to combine the two; the use of spread-spectrum tech-
 niques with networking techniques in order to provide enhanced multi-user

capabilities and a higher degree of resistance to interference, whether hostile

or-benign. . A

Moreover many of the spread-spectrum network models proposed in the
past have lacked precision in their descriptions of the effects of spread-

~ spectrum techniques on network performance. The general practice in pa-
pers like [1] and [3] has been to model the effects of spread-spectrum tech-
niques via the use of some threshold (a number of users beyond which com-
municatjon is not possible) or via some processing gain. Unfortunately, this
is not generally considered to be an accurate model, and the results obtained
may be optimistic or pessimistic, depending upon assumptions made. In ad-
dition, these analyses do not accurately account for data modulation and
forward error-control coding.

In [1), 2 model was presented for a frequency-hopped (FH) spread-
spectrum multiple access (SSMA) digital cellular telephone network and an
expression was derived for throughput. Notable features of that model were
the characterization of user mobility in terms of a two-dimensional Poisson
process and the treatment of transmitter power attenuation with distance.
This model superceded that of [18].

In [2], the authors described and analyzed a digital cellular mobile net-
work using some of the techniques of [1]. While adding to the model the in-
terference due to users in other cells, the authors left out the spatial Poisson
model and did not account explicitly for power attentuation with distance.
Spatial Poisson modeling was also used in [3], in which the authors modeled
spread-spectrum multihop networks. In [4], a more precise approach was
taken to the spread-spectrum multihop network problem, while using some
similar network features in the analysis.

In this paper, the modeling techniques described above are combined
with a precise characterization of the effects of frequency hopping for the
purpose of modeling frequency-hopped digital cellular networks. This anal-
ysis also incorporates different data modulation types (coherent and nonco-
herent) and forward error-control coding. Also, unlike several of the previous
analyses, some of the techniques presented here allow for the computation of
bit/symbol or packet error probability, as desired. In addition to modeling
a cell of a FH/SSMA cellular mobile radio network, this also corresponds



to a more accurate analysis of communications in the presence of secondary
multiple-access interference in that it accounts for varying powers for differ-
ent interferers according to their distances from the receiver (compare for
example, to [11] and [19]).

An overview of the contents of this paper is as follows. In Section II,
the network model is presented. Section III contains analyses of the model
for coherent and non-coherent modulation/demodulation using approxima-
tion techniques. Section IV provides an exact analysis for coherent systems
using a characteristic function method. In Section V, numerical results are
presented and compared with previously derived results. Section 6 contains
the concluding remarks. ‘



2 NETWORK MODEL

The network model used is in this paper similar to the one found in [1].
Users transmit packets to other users via fixed relay (or “base”) stations.
As is the case with (1], we will focus on the user-to-station channel. Analysis
of the station-to-user channel would then proceed in a similar fashion.

Let the number of users per unit area and hop be Poisson distributed with
parameter A. Also, let M = (z,y) represent a position on the plane. Denote
the origin by 0 = (0,0); this will be assumed, without loss of generality, to
be the position of the fixed station.

Systems like this generally offer voice and data service. In the case of
voice service, a steady stream of information must be transmitted and delay
can not be tolerated; however, moderate error rates can be tolerated. In
the case of data service, traffic is bursty and large delays can be tolerated
but small error rates are necessary. In this paper, it is assumed that voice
(telephone) service is predominant. ’

Slotted ALOHA is taken to be the channel access protocol and the sys-
tem is assumed to utilize (slow) frequency hopping as the means of spreading
the spectrum. Transmitter-oriented assignment of hopping patterns is also
assumed. Each mobile has its own frequency-hopping pattern for transmis-
sion and reception; the base station has a list of all of the patterns and can
listen to several of them simultaneously. We restrict our attention to the
case of mobile-to-base communication. We consider the situation in which a
mobile station has already established communication with the base station
at the center of the cell and now communicates in the presence of secondary
(or multiple-access) interference from other mobile. It is assumed that only
the other terminals in the cell of interest may interfere, which reflects the
use of other frequency bands in all adjacent cells, and that frequencies are
only reused in cells distant enough so that the effects are negligible.

Synchronization at the packet level is assumed feasible for all users.
Thus, uncertainties in the timing between different users can be small rela-
tive to packet duration; however, since they might not be small relative to
the dwell time of the frequency hopper, we opt for a general asynchronous
frequency hopping system.



3 APPROXIMATIONS AND BOUNDS ON PACKET
ERROR PROBABILITY AND THROUGH-
PUT '

Our approximation methods are developed below. These can be used for
coherently and noncoherently modulated systems with or without forward
error-control coding.

3.1 Analysis Based on Gaussian Approximation Techniques

We begin with noncoherent signaling. In this case, the system is assumed
to utilize M-ary frequency-shift keying (MFSK); binary FSK is a special case
of MFSK, and therefore the analysis holds for this, as well. Noncoherent
demodulation is used at the receiver.

The signal transmitted by the k-th mobile user is of the form

sk(t) = V2PRo¥(1) cos {2 [fc + bi(t)A + fi(t)]t + 6k(1)}, (1)
where Py is the transmitted signal power and is assumed to be the same
for all mobile stations; bi(t) = {2b$,k)}, where b € {1,2,...,M} is the
k-th sequence of M-ary information symbols of duration T each; ¥(t) is a
pulse-shaping waveform; 6x(t) is the sum of phase shifts due to modulation
and frequency hopping generated by the k-th transmitter; f. is the carrier
frequency; 2A is the spacing between any two consecutive tones out of the
M different tones; and fi(t) is the k-th hopping sequence.

In our analysis, we consider the attenuation of signal power with dis-
tance. Let P(M) denote the received power of a signal originating at the
mobile station located at the point M of the plane and received at the origin.
We will assume that P(M) is given by

_ Po‘l'aa, if IOMI S To
P(M) = { PolOM|-2, if [0M| > ro, 2)

where [0M] denotes the Euclidean distance between M and the origin 0, 7o
is some small radius within which P(M) is assumed to be approximately
constant, Py is the transmitted power, and a is a constant that reflects the
speed of attenuation. 1o is necessary because, as M is brought arbitrary
close to 0, |0M|~® approaches infinity. A particular signal arriving at the
receiver (and originating from Mj) has the form

re(t) = /2P(Me)¥(2) cos {2r [f. + (A + fi)]t +6(t)},  (3)
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where \/2P(M}) represents the received signal amplitude and 6 (t) is the
total phase shift. Since the system under consideration is a multiple-access
one, the received signal has the form

r(t) = Z Tk(t — %) + n(t), (4)
k
where each r(t) is given by (3), 7% is 2 random delay, and n(t) is zero-mean
additive white Gaussian noise (AWGN) with two-sided spectral density —0-
Fig. 1 shows the receiver for the ¢-th signal in a binary FSK system; the
M-ary receiver similar in form but with M branches. The ith signal is the
signal of interest. r(t) is dehopped and the dehopper output is given. by

) = $ {\/ PO ot ), i) Wt~ )
k

X cos [27 [fe + bk(t = Tk)A] + ¢x(1)]} + na(1). (5)

Here fi(:) and fi(-) represent the k-th and ith hopping sequences, respec-
tively; ng(t) is a zero-mean Gaussian random process with spectral density
%9-; b(u,v) = 1,if u = v, and 0, otherwise; and ¢x(?) represents the
total phase shift of the signal after dehopping. The sufficient statistics k2,
are computed as shown. Were it not for the multiple-access interference,
the computation of the probability of error would be straightforward, as for
example in [10]. However, this difficulty can be overcome by means of condi-
tioning the error probability on the potential number of interfering users and
the actual number of interfering users causing hits on the desirable received
signal; recall that a hit occurs when fi(t — 7) = fi(t) (refer to [5] and [6)).
To evaluate the conditional symbol-error probability just described, we use
the Gaussian approximation technique, as developed in [5] and [6], where
the Z.m and Z,,, were approximated by zero-mean Gaussian random vari-
ables with the same second-order moments. Given this, the symbol error
probability can be derived (see {5] or [6]) and is given by

M-1 _1ym m
- () ol ] 0

m=1

in which 6% is the variance of Z,,, and Z,,, and is given by

52 = [2%g(|OM¢I)log2M]— (,OMl)gg(IOMkl)ok, (7)



In (7), By = PoT is the transmitted signal energy; o7, is the variance of
the interference with the i-th sngna.l due to the k-th sxgnal and g(|0M]) =
oM |~ if |OM| > 7o, and rg5“, if |0M| < rq, which follows from (2).

Regarding the effects of full and partial hits, their independent consider-
ation may result in a mathematically intractable expression, if we attempt
to use (6) and (7) in subsequent expressions. In order to circumvent this
problem, we make the assumption that all hits are full hits. Note that this
causes the result to be pessimistic, since we assume that the interference
caused by any hit is that of a full hit, while the probability of a hit is the
sum of the probabilities of full and partial hits. Under this assumption (7)
becomes

-2 Eb . -t
% = [pxtotomion |+l %uomn )
in which a} is used to denote the variance of interference under the assump-
tion that any hit that occurs is a full hit (note that this is independent of
which of the other signals is interfering). Expressions for a} can be found in
(5], in which it is also shown that, for random FH patterns, 03 = my /M.
For a rectangular shaping waveform ¥(t), my, = 1/3; for a sine shaping
waveform, my = (15 + w2)/1272

At this point we use a three-term exponential approximation to P,
the symbol correctness probabilily; an exponential approximation is required
to facilitate the remainder of this analysis. Such an approximation can be
made using techniques like Prony’s method (see [8]), or curve-fitting. A
least-squares curve fit was used to obtain the results shown below; as a

result, we have
P,; = 1-PF. (=)

' 3
~ Z C,e™", (9)
v=1 .

where we define z to be 4. In using curve-fitting for (9), we considered
the range of z to be the interval [0,2]; this was chosen on the basis of the
various parameters characterizing the statistics of user population and the
varying distances from the base station. If we substitute for z in (9) and



substitute (8) for 5%, we get

3 ~1 2 )
E, : gy
P.= C, exp |7, [2— 0M;)) lo M] + —— oM, .
c P v [7 ( NOg(IV SI) B2 g(IOM;I)g:‘g(' kl)
| (10)
Let us now write (10) in the form
. ~ :
P = 3. C H(v,7)e™ ) Lnpi9(OM]) (1)
. v=1 ’
In (11), we have introduced the notation
. E, -1
H(v,7) = exp |7, | 25=9(F)log, M
No
and )
1,05
§,(F) = —
(%) 9(7)
in order to simplify this and subsequent expressions. Also, we have taken
7 = |0M;|, the distance of the “terminal of interest.”

Let us reiterate that the expression given in (11) represents the con-
ditional probability of symbol correctness, which is conditioned on 7 (the
number of potential interferers present), and on the number of hits that ac-
tually occur given the above number of potential interferers. However, since
our ultimate goal is to determine packet throughput, we require a packet
error correctness probability.

The development of the probability expression that corresponds to (11)
above for the coherent case is similar to the one carried out above for the
noncoherent case. In this case, the system is assumed to utilize binary phase-
shift keying (BPSK) with coherent demodulation. The signal transmitted
by the kth mobile station is of the form

sk(t) = V2Pobk()¥(1) cos[2r [fo + fu(t)] ¢ + Ok (1)), (12)

in which all quantities are as above, except that b € {-1,+1}. We now
have information bits rather than M-ary symbols. From (12) we obtain the
following expression for the k-th received symbol

r(t) = \/2P(Me)b()9(t) cos [2r [fe + fiu®)]t +8u(t)] . (13)
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The received signal, given by (4), goes through the same dehopper and
the dehopper output is given by ‘

ra(t) = Z {”ﬂ-gl—k)ﬁ [fk(t - Tk), f‘(t)] bk(t — Tk)\I’(t - Tk)

k
cos [27 fot + dk(D)]} + na(2). (14)

This is fed into a coherent demodulator and the sufficient statistic for the
reception of the Ith bit of the ith transmitted signal is given by

(I+1)T
7 = / ra(1)¥(1) cos(2r ft)dL. (15)
T

Assuming that the receiver is synchronized to the ith signal, Z; can be
rewritten as

Z; = -}lg—lﬂ'f bf‘) + Z f—(-%l-‘—c—)-T ILii + 7, (16)
ary

where I ; represents the normalized interference caused by the kth signal
to the reception of the ith signal and # is a zero-mean Gaussian random
variable with variance NoT'/16.

The decision process is concerned with determining whether the current
bit is +1 or —1. The test is, therefore, to determine whether Z; > 0 or
Z; < 0. This allows some further manipulation of Z;. Z,-, the modified test
statistic after we divide by Py, is of the form

Zi = \JoloMR? + T +\/9(10Ml) ks + 7, (17)

: k#i

where i is a Gaussian random variable with variance No/2Eb2E;, where
Ey, = PoT is the transmitted bit energy. We utilize the Gaussian approx-
imation technique, namely we approximate Z; by a zero-mean Gaussian
random variable with variance 022,, which denotes the variance of Z;. This
is the coherent analog to the Gaussian approximation found in [5] and [6].
Given this approximation, the conditional symbol (bit) error probability is

Pc‘- = lerfc.[_‘g_(lﬁii_] y (18)



in which erfc(-) is the usual complementary error function. ;From our earlier
expressions, it can be shown that
1[E? ' '
% =3l + 5> aloati)et (19)
1}

where ak ; is the variance of Ii ;. If we once agam -assume that all hits that
occur are full hits, we find that

Ey
o}, = 5[%] sz#' g(IOMkD (20)

where o’f is the variance of the interference terms under the assumption that
any hit that occurs is a full hit. It can be shown, using the results of [5],
that a? = my, where my, is as discussed above.

At this point we use a three-term exponential approximation to F,; to
obtain

1
Poi = 1-Pyj=1-3
3
~ Y G (21)
v=1

where we define z to be 2022/g(|0M;|). Again we use [0, 2] as the range of
z. If we substitute for z in (21) and substitute (20) for 02 , we get

3 Eb -1
Py = Y C,exp (’Yu [(9(|0Mil)m)

r=1

2m¢

H(v,#) and 6v(F) are given by
-1
H(v,7) = exp [w (99 5) ]

and



This completes the development of the conditional coherent bit correctness
probability. '

As mentioned earlier, in order to compute packet throughput we need a
probability of packet correctness or error. We would like to get an expected
packet error probability with respect to ¥ and the number of users. We do
this by taking a known error probability expression and substituting it in
our result, Such probability expressions can be found in or adapted from
expressions found in many sources (e.g. [9]). Expectations are then taken
with respect to 7, the number of users, and the number of hits. This method
is demonstrated below for the cases of uncoded packets and RS(n,k)-coded
(encoded with a Reed-Solomon code of length n and rate k/n) packets; the
development is the same for other coding schemes.

For a general uncoded packet of length L we have

P.oxt = 1-PL,

Since P.(7, K) in (11) is dependent on #, on the number of potential inter-
ferers, and on the number of hits given K, we must take expectations over
all of these. Thus,

T)-c,pkt =1- EfEKEh{PcL(i’ K)} (23)

The inner expectation in (23) requires some explanation. The probability
of having k hits, when there are in addition to the user i, K other users
I’f P,'f(l — P,)X~* where P, is the probability of a
full hit. As discussed in [7}, for stationary Markov random hopping patterns
Py is given by

present, is given by

-

1 1

where ¢ is the number of different frequencies and N, the number of symbols
per hop. As discussed in (7], for moderately large values of ¢, (24) either
bounds or approximates the hit probabilities for memoryless random hop-
ping patterns and Reed-Solomon periodic hopping patterns. Thus (24) is a
good general expression for most purposes.

Suppose now that the summation in the exponent in (11) can be decom-
posed into collections of interferers having equal g(|0M|). We would then
have

T g(oMl) = 3 kig;, (25)

k#i j=1
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where k; is the number of interferers with g(|0M|) = g;.

Let us consider some planar region A and a partition of A given by
{A;}?_, such that for all mobile users located in 4;, g(|0M|) = g;. Let
N(A;) denote the number of such mobile users. We now have a total number
of users with a given attenuation and a probability that, out of a given
population of K potential interferers, there are k hits. Then one may take
K; = N(Aj;) to be the population in that probability expressxon

LFrom (11) we get by expandmg the trinomial

PLFK) = zz( )( )clﬂa A" [Call 2,P)]

m=0 {=0

x [C3H (3, 7)]F"™ " exp [méy (7) + i62(F)
+(L~-m-— i)%(ﬂ]ZQ(IOMijl : (26)
k#i

Considering this, the discussion of Ex{-}, and the fact that C:’,-(F) = C;H(i,7),
we remit (23) as

o - 1 £5(2)(7)

XEFEKEh {CT(F)éé(f)éal'”m—i(f)
x exp ([méby(F) + i62(F) + (L — m — i)63(F)]

£
22( )(7)

x Ex {CM(F)CYHCE(7)

XEK{fIZ ( ) *1(1_Ph)1\ Y

=1k,=0
X exp ([méy () + 162(F) + (L — m — 1)85(F)]
xg;ik;)}}

- x5 () ()

11



x Bz {CP(CYFHICE ™ ()

xEk {ﬁ [Phe[m& (F)+i82(F)+(L-m—i)b3(7)]s;

+1—jj:,,]":'}}
- =28 (0)(7)

xEr {CT(FICYHCT™(F)

XEg {zﬂ: K;In [Py exp ([méy(F) + 162(F)

=1

H(L - m - i)s(F] g;) +1 - Pal}). (27)

Ek{-} is taken by following a technique used in [1]. For any partition of
A, say {A;}}-,, and constants {a;}7_,,

E {exp [i N(Aj)aj] } = exp [/\iS(Aj) (e* — 1)} , (28)

i=1 i=1

where S(A;) denotes the area of A;. Because Kj = N(A;), (27) and (28)
can be combined to yield

o+ 55 (2)(7)

m=0 =0

x Ex { CP(FCH(FICE™(7)

X exp [A zn: S(A;) (Pn[exp ([mé1(F) + i62(F)

=1
+(L —m — i)b3()] 9;) — 11} - (29)

Generally, g(J0M|) can be considered to be a limit of step functions, which
allows P,y to be written as

o = 5 (4)(7)

xEz {CT(ACHACE™(7)

12



X exp [,\ /A (Pi [exp ([méy (7) + i63(7)
+(L — m - 1)b5(7)] g(JOM|)) - 1))]} (30)

where [,(-)d®M denotes the integral over the surface A. This completes the
analysis because E#{-} is simply an expectation over the entire area A under

consideration.
We now consider RS(n,k)-coded packets with error-only correction de-
coding. The applicable error probability expression is given by

P.ps = 1-— }ij ( ;f )P:—f(l - P, (31)

£=0

where t = |n — k/2] is the error correction capability of the code. This
can also be expressed as

Pans = 303 ( )(i)(—l)mP:-‘“". (32)

=0 m=0

With respect to the required expectations, this can be treated exactly like
the uncoded finally packet error probability expression. Therefore, we obtain

P - R EEE(1) (4)(0)

m=0 =0 j=0
" ( j ) (~)m B {CIHERC™ T (7)

X exp [A/A (Pr fexp ([£6:1(F) + 762(7)
+(n — £+ m — i — j)é3(7)] g(0M]))
1)) M|} (33)

It should be noted that in the case of coherent BPSK, the three-term expo-
nential approximation must approximate P}, rather than P.; when consid-
ering Reed-Solomon codes. The m noted here refers to the number of bits
in BPSK per Reed-Solomon symbol; for example, if RS(32,16) code is used,
m = 5. It should also be noted, when discussing Reed-Solomon codes, that
the signal-to-noise ratio is normalized by the code rate.

Once one has obtained an expression for packet error probability, the
expected throughput can be obtained by subtracting it from one and mul-

tiplying by the offered traffic load, which is given by Gi,y = AnS(4),

13



S(A) being the area of the region of concern. In the cases presented here, a
bandwidth expansion factor must also be introduced.

3‘ = Gtot(l —TC)B. (34)
B, the bandwidth expansion factor, is given by
B = %Rc, (35)

where ¢ is the number of hop frequencies and R, the code rate R, is 1, for
uncoded packets, and k/n, for RS(n, k) coded packets.

3.2 Bounds

Error probabilities have been upper bounded giving lower bounds on system
throughput. These will be presented here for the purpose of comparison.
The probability of a symbol error at the receiver p,(K), when K users
transmit, can be upper-bounded as

ps('K) S 1- (1 - PO)(l - Ph)K—la (36)

where Py is the error probability for a single user system in the presence
of AWGN with or without fading, and Py is the probability of a hit from
a single other user; expressions for P, can be found in [7]. For random
frequency-hopping patterns, we can use P, = (1 + log, M/Ny) %, where N,
denotes the number of bits per dwell time and ¢ is the number of frequencies.

Let us discuss now the calculation of throughput when the total number
of users (packets) transmitting in a slot (a packet slot, which is L symbols
long in the uncoded case) is K. Let s(K) and P.(K) denote the average
number of packets received successfully and the average probability of failure
(erroneous reception) of a typical packet, respectively, when K packets are
transmitted. This gives use s(K) = K — KP.(K).

Let K be Poisson-distributed on an area A with average intensity A
(packets per unit area). Let 3.(G) and P.(G) denote the averages of the
quantities s(K) and P.(K) defined in the previous paragraph with respect
to the Poisson distribution p(K) = e~ ¢GK/K! where E{K} = M = G
(the offered load). Then P(G) = 1-73.(G)/G = E{KP.(K)}/G and
the normalized throughput is given by 7(G) = G/q [1 - ?C(G)] .

We can actually show that P.(G) = E {P.(K +1)}. Since the packet
error probability P.(K) is, through the symbol error probability P,(L), a

14



function of K —1 (the number of interfering packets), P.(G) is a function of -
K and not of K — 1. This implies that in the calculation of the throughput,
instead of working with the total number of transmitted packets, we can
equivalently work with the number of interfering packets and treat that as
being Poisson-distributed with the same parameter G. This argument also
justifies the assumption that the number of interfering users in Poisson-
distributed with parameter G.
We can now write

PG) = 1-PG) = E{l-p(K + D)
e{[a- Py - Py]"}
(1 - Po)PeCl=0=Pu, (37)

IA

where L is the number of M -ary symbols or bits transmitted in a packet
L = 1 can be used to bound the bit error probability. The throughput can
be then lower-bounded as

26)2 (1 - Ryyte-cb-t-m] (38)

If the system employs error-control coding, we can follow the analysis
in {11]. The analysis will be shown for a Reed-Solomon (RS) errors-only
correction scheme; other schemes, such as RS with side information, have
been analzyed similarly.

The probability of a symbol error p,(K) is upper-bounded in a way sim-
ilar to that in REF(36), where P} is the probability of a hit for an RS sym-
bol, consisting of m. m-ary symbols; thus, we must use m.log, M instead
of log, M in the expression that provides the probability of a hit. When
the RS(n, k) code errors-only correction is employed and one codeword per
packet is transmitted, the probability of correct reception of a codeword is

given by ,
P(K)2 Y ( " ) [P KOV [1 = pa (K0, (39)

where t = [n — k/2] is the error-correction capability of the code and
P,(K) < 1= (1—P)*~1. Finally, we can get an expression for the aver-
age probability of correct packet reception ?C(G) that allows us to write
the following expression for the normalized throughput (per frequency slot)

15
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oo e~

K _t F
WG) 2 TEY S (M - (- B (- PO
an K=0 © j=0

x [(1~ Po)™<(1 - P)K]

t

= ‘G‘gzz ( j ) ( Jz ) (~1)¥(1 ~ Poyme(nti=e-Gl-(1-Fu)™!{7{))

7 20i=0
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4 ACCURATE EVALUATION OF BIT ERROR
PROBABILITY

If coherent modulation is employed, the resulting system can be analyzed
by means of a characteristic function method, as will be demonstrated below.

4.1 Analysis Based on Integrating the Characteristic Func-
tion of the Interference

In this case, the system will be assumed to utilize binary phase-shift keying
(BPSK) with coherent demodulation. The signal transmitted by the kth
mobile station is of the form given in (12). We assume here that Rayleigh
fading may or may not be present. We modify (13) to get

ri(t) = Fe/2P(M)be()U(t) cos[2r[f. + fr(t)]t + Gx(2)], (41)

where Fj is a Rayleigh fading factor, if fading is assumed to be present and
all other quantities are as previously described.
The dehopper output, r4(t) which is used in (15) is now given by

() = 3 {Fk PO 1t = i), SO it = )t = 72)
k
X cos [27 ft + ¢r(t)]} + na(t). (42)

We proceed until we again have a modified test statistic Z; of the form given
in (17). Our goal is to derive expressions for the probability of error and
the expected throughput 7. Since a coherent receiver is being used here, the
characteristic function method, described in {13] and simplified to the case
where the signature sequences are identically 1, will be used to derive the
desired probability expression.

The computation of the error probability involves the characteristic func-
tion of the noise #, which, in our case, is ®;(u) = exp (—u?/2- No/2E, ),
and the characteristic function of the interference process, which is the mid-
dle term in (17). This will be derived here for the synchronous case and for
the asynchronous case, both with and without Rayleigh fading.

In the synchronous frequency-hopping case, we have 7, = 0 for
all k. The k-th signal interferes with the i-th signal if and only if the two
signals are exactly superimposed upon each other; this suggest that user k&
interferes with user 1 if there is afull hit, when two signals are sent in the
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same frequency “bin” at the same time. Thus, if ¢ denotes the number of
different frequency bins, the probability of a hit is 1/4.

A result used in [1] can now be adapted to give an expression for &(u),
the characteristic function of the interference process. The result used in (1]
is that, if the interference process can be written as I = Y, X h(My) for a
random process {X} with pdf px(-) and, if the number of users is Poisson
distributed on the area A with parameter (mean intensity) A, then

®r(u) = exp [AL ([/ px(:z:)e"“’h(M)d:z] - 1) d2M] , (43)

in which [, f(M)d?M denotes a surface integral and A represents the area
of the cell (area of concern). This, however, is not the exact form that must
be used here, since the interference process in our problem has the form of
the middle term of (17) and the probability of hits must also be taken into
account. As a result, the characteristic function of the interference process
takes the form

®r(u) = exp{fl\- /A [@ (u\/g_(_|51\l—|)) - 1] dzM}, (44)

where , )
T
O(u) = 5 / exp(iucos8)df = Jp(u). (45)
0
In (45), the cos@ term was obtained by considering (43) and (17), letting
7x = 0 and assuming uniformly distributed random phase processes (8 is

uniform on the interval [0,27)); Jo(-) is the Bessel function of the first kind
and zeroth order.

If we consider our region of concern to be a disk of radius R, then the
integral in (44) can be easily computed. Let us denote by r the radial
distance |OM| and consider the annulus (7, + dr). Then we can write that
N [Jo (u\/gHOMIi) - 1} &M = [R orxr [Jo (u\/g{ri) - 1] dr, where g(+)
is as in (17). This expression can be evaluated using formulas found in [14]
to yield series solution.

Let us consider the same model with Rayleigh fading. This is accounted
for by means of F; in the expressions above. The Fj are assumed to be
independent and identically distributed with a Rayleigh parameter b%. As a
result of the addition of fading, (45) becomes

o] 1 2=
o(u) = / Pp(y)——/ exp(tuy cos §)dody
0 27 Jo
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2U2
= exp(-"o) (46)

In (46), Pr(y) = y?/b%exp (—y?/2b%) is the Rayleigh density function
with parameter b2. Since the product of a Rayleigh random variable and
the sine or cosine of a uniform on [0, 2x] random variable yields a Gaussian
random variable, G = Fcosf has pdf pe(n) = 1/v2nbexp (—5?/2b?)
and the right-hand equality is derived by performing the integration with
respect to 7. '

If the circular region model mentioned above is used, (44) becomes

®(u) = exp {2— /OR (exp [—g(r)b;uz] - 1) 27rrdr}

: exp {% ([e"B(")’t)-lx - 1] Ty

+ /rj [e‘B(")’_a - 1] 27rrdr)} (47)

where B(u) = b*u?/2. A closed-form result can be obtained using a formula
from [16], if @ is known. If the typical value & = 3.51is used, (47) becomes

1l

@s(u) = exp {'2 (”3[6‘3(")’0—3'5 —~1] - w[R* -1}

+ |Tre Bz | al
B(u)

6 e 6 N k 1 . r=R~35
+ g(-—l)kﬁ 5[—Bgu)]k+1+ )I k]] s ) } * (48)

We now focus on the asynchronous frequency-hopping case. It will
be assumed that the 74 in (42) are independent and identically uniformly
distributed on the interval [0,7}). As a result of these delays, there are three
possible interference scenarios for a signal transmitted in a given frequency
bin: no hit, partial hit, or full hit. These must all be accounted for in the
computation of the characteristic function of the interference process.
Since the interference term in (17) is a sum of independent random
variables, the overall characteristic function can be seen as a product of the
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individual characteristic functions, that is,

E {I‘[ @(*-O(u)}

k#i

& r(u) '

E{H [1-P + P ) + P,,,ng")(u)]} (49)
k#i

In (49), F denotes expectation with respect to the number of interfering
users, Py is the probability of a full hit, P, is the probability of a partial
hit, 1 — P = 1 - P; — P, is the probability of no hit occurring, and Q(jk")(u)
and Q;k’i) (u) are the characteristic functions of I, given that a full hit or
a partial hit has occurred. Note that for the case of no hit, Ix; = 0, which
results in a characteristic function equal to 1. The validity of the second
equality in (49) was proven in [13].

The quantity inside the expectation in (49) can be written in the form
exp {}:k# In [1 - P+ P;‘D(fk")(u) + Ppégk")(u)]}. Let us consider a step
function ¢(|OM|) = Yo7y g; 1a;(M), where {A;}7_, is a partition of the
region A; Ig(M) is 1, if M € B, and 0 otherwise; and g(|OM|) = g; for
all M € A;. If we denote by N(A;) the number of users in the area A;, we
obtain that

®/(u) = F {exp (2": NAj))In[1-P+ P;®;(u\/g;) + PPQP(u\/g'J’)]) } ,

(50)
in which ®;(u,/g;) and ®,(u,/g;) denote the characteristic functions of the
interference due to any particular user located in A; for the cases of full hits
and partial hits, respectively. Then the expectation can be written as

®s(u) = exp{f\PfZ":S(Aj) [25(uy/T5) ~ 1]

+ ’\PpiS(Aj)[q’p(“\/g—j)“l]}- (51)

i=1

In the general case, g(|OM]) is a limit of step functions, implying that

& ;(u/g(JOMY)) and ®,(u\/g(JOM])) are such limits, too, and the overall
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characteristic function becomes

®r(u)- = éxp{)\Pf / [q», (u'\/m)— 1] *M
+ AP, / [ (u g(lOMl))—l] d"’M}. (52)

Expressions for Py and P, were given in [13] for first-order Markov ran-
dom hopping patterns, for memoryless random hopping patterns, and for
Reed-Solomon periodic hopping patterns. Following [13] for the case in
which the signature sequence is identically 1, we obtain that

O5(u) = —;— /OT Jo (-;L:[R¢(T)+R¢(r)]) dr

8,(u) = 5% /OT [Jo (-;‘-,R.p(r)) + Jo (-;’;R,ﬁ(r))} dr,  (53)

in the absence of fading, and

®(u) = % [ exp{-f’f—3 [RW(T)+R\1:(T)]}

%W = 5 [ {exp [——R (r)]
+ exp [—b—z—iR (r)}} (54)

in the presence of Rayleigh fading. In (53) and (54), the functions Ry and
R, are the partial autocorrelation functions of the shaping waveform %(2)
and are defined by Ry(s) = fsT Y()Y(t — s)dt and Ry(s) = Ry(T — s).

The relationship in [13], which expresses the bit error probability of the
receiver as an integral involving the characteristic functions of the noise and
the interference process (see [6]), can be modified to depend on the position
of the “transmitter of concern” in the following way

R(loM)) = Q(y/2Bso/No)

2 [ B gy - e, 5)

s u

where |OM| represents the distance between the receiving (base) station and
the “transmitter of concern” (the ith user in the analysis above), Q(z) is the
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complementary error function given by Q(z) = 712-; 2 exp (-y%/2) dy,
and ®;(u) was defined earlier. ®;(u) is given by (44) for synchronous sys-
tems, by (45) for no fading, and (46) for Rayleigh fading. For asynchronous
systems; it is given by (52) and (53) for no fading and by (54) for Rayleigh
fading. ,

The result in (55) is useful because it gives us a measure of the correctness
of each individual bit. Unfortunately, to evaluate the throughput one needs
the packet error probability P.(|OM|), which can not be expressed as an
explicit function of P,(|OM|). The error probability of each one of the L
bits in a packet depends on the number of interfering users and their received
power at the base station. Therefore, one should first derive the bit error
probability given the number of interfering users; from that one should derive
the packet error probability, given again the number of interfering users, and
then finally average the latter with respect to the Poisson distributed number
of interfering users. As a result, the best that can be done using this method
for packets (coded or uncoded ones) is an approximation:

5 NUMERICAL RESULTS

In discussing our numerical results, we must note several things. First, we
take A to be a circular region of radius R and then we set R = 1. This can
be viewed as a normalization and the results can be generalized to regions
of larger or smaller size; this is especially evident if one considers that the
expected number of users in A is given by N = ArR? and that our results
are indexed by N (and therefore by A).

A brief discussion of the issue of normalizing the radius R of the cell
is in order here. We assume that in the mobile-to-base mode of opera-
tion, all mobiles transmit with the same signal-to-noise ratio Ej/Ng, which
is such that the signal-to-noise ratio received at the base from a mobile
at a distance r, given by E{/Ny = (Eu/No)g(r), is at least as large as
Ey/No = (Ey/No)g(R), the received energy from a mobile at the periph-
ery of the cell. Therefore, if E} /No is set at the minimum acceptable level
for reliable communications, the transmitted signal-to-noise ratio for all mo-
biles is given by Ey/Ny = (—E_b/No) /9(R);if R =1, Ey/No = E4/No,
while if R > 1, g(R) can be computed and used to i:ompute Ey/Ng from the
above formula, while using R = 1 for all other calculations.

It is also important to consider the computational requirements of our
results. Looking at (30) or (33), one can see that there are multiple levels
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of summations and integrals involved in the computation of each value of
the packet error probability (note that Ez{-} is an integral). In computing
the results shown here, we sought to avoid this last expectation over ¥ and
explored two alternative methods.

The first method was to set 7 equal to some value such that a given
probability of acceptable communication is maintained. As discussed in {1],
it can be shown that in this case, # = /PR, where P is the probability
of acceptable communication to be maintained. If one considers values of P
close to one—as would be the range of values one might like to examine-one
can see that the results obtained will be overly pessimistic.

As a result of the pessimistic nature of the first method, we have opted
to use another method, namely to set 7 equal to a value such that an average
value of g(7) is obtained; then 7 = [E,{g(r)}]"*/%, where a and g(.) are as
in (2). We find that the expectation is given by

r2—a
EAor)) = Bt (8 - B0 = 0. (59)

The value of this method is due to the fact that the probability of symbol
or packet correctness is usually a convex N function of g(r) in part of the
range of . In this range, we can use Jensen’s inequality

EA{P:(g9(r)} £ PAE(9(r))} = P(g(7)) (57)

to obtain the upper bound on the right-hand side which depends only on
g(7). In the range of r in which the function P, is not convex N in 7, we can
still use P.(g(7) as an approximation.

Fig. 2 compares the results using the Gaussian approximation tech-
nique, described in Section III-A, with the bound presented in Section III-B
for the case of coherent signaling and RS(32, 16) coding with error-only cor-
rection decoding. This demonstrates that the bound tends to be extremely
pessimistic. On the other hand, the Gaussian approximation tends to be
moderately optimistic for most of the range of N (the average number of
neighbors). This last argument is justified as follows: Gaussian approxima-
tions tend to be usually optimistic when applied to multiple-access problems
(refer to [5] and [6]). However, the assumption that all interfering users cause
full hits is pessimistic. Furthermore, the use of g(7) results in pessimistic
values of the probability of correct reception for part of the range of . Thus
overall the Gaussian approximation used here is expected to be moderately
optimistic. This can be actually verified through a comparison to the exact
expressions in Fig. 6 and 7 below. - °
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Fig. 3 deals with the coherent case and demonstrates the decrease in
throughput with decreasing Reed-Solomon code rate. As one might expect,
throughput is proportional to code rate due to the normalization by the
code rate. However, the RS(32,8) code provides a bit more than half of the
RS(32,16) throughput when N = 150, which is explained by an improve-
ment in the expected probability of error. In both Fig. 2 and 3, the values
of the throughput for large N (larger than 150) are optimistic and should
not be considered fully dependable.

We now move on to the noncoherent case (32-ary FSK with noncoherent
demodulation). Fig. 4 corresponds to Fig. 2. Once again it is demonstrated
that the bound is very pessimistic and the Gaussian approximation overly
optimistic for large N.

Fig. 5 presents results using RS(32, 16) and RS(32, 8) coding. The same
observations that were made regarding Fig. 3 should be made here.

Fig. 6 demonstrates the relationships among the exact expression devel-
oped in this section and the Gaussian approximation and bound presented
in Section III. The bound tends to be very pessimistic. The Gaussian ap-
proximation, on the other hand, tends to be somewhat pessimistic for low to
moderate values of N (the average number of neighbors), while it provides
a closer approximation and even becomes slightly optimistic for moderate
to large values of N. This reflects on the previous throughput results: for
small NV, the approximation is closer to the exact value than the bound but
is pessimistic; for moderate N, it is close to the exact value; for large N,
the results exceed what they should be and this effect is magnified by the
RS coding.

Fig. 7 shows results for synchronous and asynchronous systems. These
results are so close, that the appear as a single curve in the figure. The
closeness of the results for the synchronous and asynchronous cases is due
to the fact that the probability of a hit is P, = 1/q for synchronous systems
and P, = (14 1/Ns)/q for asynchronous systems, whereas my, = 1/3 for
asynchronous systems and my = 1/2 for synchronous systems, thus balanc-
ing out the effect of other-user interference of the two systems. Also shown
is a curve that represents an asynchronous system with Rayleigh fading (pa-
rameter b2 = 0.01). As expected, this system does significantly worse than
its counterpart without fading.
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6 CONCLUDING REMARKS

We presented methods by which error probability and/or throughput can
be computed for FH cellular mobile packet redio networks. These methods
consist of a Gaussian approximation applicable to all systems and an exact
method that we could only apply to coherent systems. It was shown that
the previously derived lower bound on system throughput (upper bound
on error probability) is a loose, pessimistic bound in comparison to the
approximation and the exact results. The approximation was shown to
have satisfactory accuracy for the lower-to-moderate values of the average
number of neighbors, but to be overly optimistic for large values of the
average number of neighbors.

One major problem encountered lay in the computational complexity of
the expressions. In general, each curve in the figures presented required a
considerable amount of CPU time to compute. In-the case of some of the
exact expressions (especially the asynchronous case without fading), this
computation was extremely long. We used basically a VAX 780 computer
and a few hours of supercomputer CPU time. What this indicates is that
this work may very well represent a practical limit as to how precisely one
can characterize these systems and still be able to compute analytically the
various performance measures of interest.
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