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NEW ARCHITECTURES FOR FAST CONVOLUTIONAL ENCODERS

AND THRESHOLD DECODERS
by

David HACCOUN, Pierre LAVOIE, and Yvon SAVARIA

ABSTRACT

Several new architectures for high speed convolutional encoders
and threshold decoders are developed. In particular, we show that new
architectures featuring both parallelism and pipelining are promising
from a speed point of view. These architectures are practical to use for
a wide range of coding rates and constraint lengths. Two integrated
circuits featuring these new architectures have been designed and fabri-
cated in a CMOS 3 micron technology. The two circuits have been tested
and can be used to bﬁild convolutional encoders and definite threshold
decoders operating at data rates above one hundred Mbps. It is shown
that with the new architectures, encoders and threshold decoders could

easily be designed to operate at data rates above one Gigabit/s.



NEW ARCHITECTURES FOR FAST CONVOLUTI!ONAL ENCODERS

AND THRESHOLD DECODERS

by

David HACCOUN, Pierre LAVOIE, and Yvon SAVARIA
1. INTRODUCTION

In modern digital communications systems and especially in satel-
lite communications, the advantages and potential benefits provided by
Forward Error Correction (FEC) are increasingly recognized, and there-
fore channel coding is becoming an essential element in the design of
these systems [1][2]. In FEC éystems the main difficulties usually
reside in the actual realization of powerful decoders that can operate
at high data rates, deliver low error probabilities while being practi-
cal and not unreasonably complex to implement. The problem of designing
and manufacturing fast encoding and decoding devices at the lowest pPos -
sible cost is further compounded as the data rates increase, reaching in
the hundreds megabits per second (Mbps), and even beyond.

The object of this paper is to present the development of new and
fast efficient architectures for implementing convolutional encoders and
threshold decoders. Convolutional codes are codes that are particularly
suitable when the information déta to be transmitted arrive serially
rather than in packets. A convolutional encoder processes the informa-
tion in a continuous fashion, a few bits, or even one bit at a time.

Pipeline and parallel architectures for convolutional encoders
are developed and their complexity analyzed. High speed encoders can be

obtained for any coding rate by combining the two architectures. A one-
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chip pipeline encoder realization is presented. This integrated circuit
is programmable and operates at 25MHz.

Since any decoder for convolutional! codes includes a local
enéoder, then the encoders developed here may be used in conjunction
with any decoding technique, whether powerful and complex such as in Vit
erbi  or sequential decoding, or relatively mbdest and simple such as in
feedback or threshold décoding.

In this paper, only threshold decoding [3] is considered. Even
though threshold decoding achieves smaller coding gains than those pro-
vided by Viterbi or sequential decoding, iis main advantage is that the
decoder is simple to implement. Furthermore this type of decoder is use-
ful on burst error channels (such as HF, troposcatter, and some tele-
phone channels) sinée interleaving and de-interleaving can easily be
included in the encoder and decoder [4]. Therefore developing efficient
architectures for threshold decoders is justified on its own right.
Moreover since the actual decoding algorithm is very similar to the
encoding process, then selecting this type of decoder and applying to it
the architectures developed for the encoder becomes very natural.

A number of factors can further justify the choice of threshold
decoding for practical VLS! implementations. For example, the simplicity
of the threshold algorithm makes it highly suitable for fast processing.
Furthermore, contrarily to Viterbi or sequential decoding, threshold

decoding is also convenient to use with high code rates that require a

smaller bandwidth expansion (e.g. R=2/3, 3/4, 7/8,...). Finally, even
though threshold decoding is far from being optimum in utilizing a con-
voiutional code of given length, it can be used with very long codes

(e.g. good codes) that are well beyond the usual range of the more pow-

erful decoding techniques.



Threshold decoder realizations or prototypes, fabricated either
as LS| custom devices or from standard parts, are usual ly designed spe-
cifically for a particular code [5]-[9]. By contrast the method for
designing threshofd decoders presented in this paper is more general and
systematic: it even encourages fabricating decoders for very long codes
throdgh the use of a.single programmable chip as a building block. With
the new architectures that are developed in this paper, the pin count
required for the programmable chip can be small, and the clock rate of a
decoder can become independent of the length of the code used.

The novel architectures feature pipelining and parallelism, and
might be of interest for very high data rate applications. Pipelining
occurs in a line of several processors where each processor performs a
fraction of the processing and passes partial results to the next one in
the line. In a pipelined machine, the data rate is thus no longer |im-
ited by the time required to fully process one data element. Parallelism
used in conjunction with pipelining allows a further increase of the
data rate by increasing the bandwidth of the machine. In practice the
cost of this expansion is transliated as a greater number of components,
or as a larger chip area.

In this paper, each new novel architecture is illustrated by an
example showing an implementation for a particular code. For simplicity
and with no loss of generality, the same code is used for all the
examplesl Architectures for encoders are presentedvin section |l., where
both the pipeline and the parallel approaches are developed. An actual
implementation of a fast encoder that has been designed and fabricated
in a‘CMOS 3 micron technology is described in section I11. Preliminary
testing shows that an encoder built with a number of these chips could

achieve a data rate higher than 150 Mbps. Development of original archi-
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tectures for threshold decoding is presented in section IV. Following a
description of threshold decoding, a new pipeline architecture for
implementing a fast threshold decoder is presented. The modifications
required to implement feedback decoding are described. In section V, a
parallel architecture for threshold decoding is presented and an actual
implementation of a fast threshold decoder is described in section VI.
The 5500-transistor chip has been designed and fabricated iﬁ the same 3
micron CMOS technology as the encoder. It is programmablie and can be

used as a building block for more complex and/or faster parallel decod-

ers.

Il. A PARALLEL ARCHITECTURE FOR CONVOLUT IONAL ENCODERS
A. Preliminary considerations

A typical non-systematic convolutional encoder of coding rate
R=1/V and memory M may be represented by a shift register of M delay
units connected to V modulo-2 adders [2]. The connections between the
shift register and the V modulo-2 adders specify the code. At each clock
cycle, one information bit enters the shift register, and the outputs of
the V modulo-2 adders are sampled and transmitted in the channel. The V
encoded symbols are called a codeword, and cleariy the coding rate is R=
1/V bit/code symbol .

A convolutional code is said to be systematic if the first of
each V-symbo! codeword is the actual information bit that generated that
codeword. Consequently in a systematic convolutional encoder of rate
R=1/V, only (V-1) modulo-2 adders are required, and the V-symbol

codeword corresponding to the information bit iy entering the encoder at



time t consists of iy and the (V-1) parity symbols, denoted pin),
n=1,2,...,(V-1), delivered by the (V-1) modulo-2 adders. A systematic
encoder of rate R=1/2, and memory M=6 is shown in figure 1.

A more generaf encoder of coding rate R=U/V may be viewed as a
linear finite state macﬁine receiving U information bits at each clock
cycle, and delivering V encoded symbols, V>U. A conveniént way to
implément such an encoder involves U shift registers side by side,
connected to the V modulo-2 adders. The memory M of such an encoder is
again the sum of all delay units in the encoding machine. For general
rate U/V codes the U shift registers may not have all the same length.
In order to simplify the design and provide uniform operation it is more
convenient to consider all the shift registers to be of the same length
L, chosen to be that of the longest shift register. Of course, any delay
unit that may be added to extend the length of a shift register to L
will not be connected to any of the V modulo-2 adders. The length L is
called the basic /ength of the encoder, and for codes of rate 1/V this
basic length is equal to the constraint length of the code.

Clearly with such an approach the complexity of a general rate
U/V encoder varies proportionally to the length L of the encoder rather
than the memory /M of.the code. As for the error performance of convolu-
tional codes, it can be shown that the error probability decreases expo-
nentially as the memory M increases and/or the coding rate R decreases
[2].

A straightforward implementation of an encoder as described above
leads to problems with implementing the modulo-2 adders, especially it
high data rates are required. Indeed a direct implementation of a multi-
input modulo-2 adder is not practical and a tree structure of 2-input

XORs is usually preferred. Unfortunately, an increase of the number of



inputs on a modulo-2 adder increases with it the depth of the XOR tree.
Since the time necessary to compute a parity digit is determined by that
depth, the targer the number of inputs on a modulo-2 adder, the slower
" an implementation inspired by figure 1 will be. Fortunately this problem
can be circumvented by the use of a speed-oriented architecture: such an

approach is described next.
B. A pipeline architecture

Moving the XORs inside the shift registers leads to pipeline pro-
cessing of the information digits. In that case a shift register does
not shift delayed information digits anymore, but rather partially com-
putes the parity digits. This approach has been proposed by Massey ts].
A pipeline encoder example that implements the same code as in figure 1
is shown in figure 2. Note that the connections must be inverted in
order to obtain the same output sequence from the pipeline decoder és
from the conventional encoder.

There are several advantages for using this pipeline architecture
(10]. First, a pipeline encoder can, at a modest cost, become very
easily progfammable. Figure 3 shows a convenient arrangement where the
connections are loaded serially in a separate register before encoding
begins. Moreover, the time required to encode one codeword is indepen-
dent of the length L of4the encoder, and is approximately equal to the
delay of a single XOR gate. Therefore an encoder using this architecture
can operate at a very high speed, regardiess of the memory ofAthe code.

One further advantage is that a pipeline encoder can readily be
segmented in several! parts, should, for example, a multi-chip implemen-.

tation be required or preferred. In that case, only a partially computed



parity digit, which is already available at the end of one segment of
the encoding pipeline, needs to be transterred to the input of the next
segment. Of course this transfer can slow down the encoding process if
it takes too long a time. However the encoding speed wili not keep on
decreasing when the number of segments exceeds 2, since all inter-
segment transfers occur concurrently according to the pipeline effect.
| A universal pipeline encoder for-codes of rates U/V can now be
~developed. Clearly, since the delayed information digits are no longer
available, then a rate 1/V encoder requires V separate shift registers
to generate V. parity digits. Moreover if U>1, then U shift registers are
necessary for each parity digit. A general pipeline encoder for codes of
rate U/V is shown in figure 4.

In practice, the speed of a pipeline encoder will probably be
limited not so much by the speed of the encoding circuitry, as by the
time necessary to input and retrieve signals from a chip. Furthermore in
order to increase further the data rate of the encoder, a wider band-
width at the input and output of the encoder is necessary. A new paral-

lel architecture which can provide a speed increase is described next.
C. A parallel! architecture

The encoding architecture presented above allows only one codew-
ord to be generated per clock cycle. It is however possible, with an
original paraliel architecture, to design an encoder capable of generat -
ing an arbitrary number of codewords at each clock cycle. The following
simple example illustrates this idea.

Figure 5 shows our usual encoder of figure 1 at two different

times, denoted t and t+1. Since the coding rate is equal to 1/2, each



codeword is two digits long and, obviously, two clock cycles are thus
necessary to generate the codeword; (iy.pt) and (it+1.Pt+1)-

By contrast, figure 6 shows a parallel realization of the encoder
in.figure.s, using the same code and producing identical output
sequences. Note that at each clock cycle, the parallel encoder accepts
two consecutive information digits ana delivers the two corresponding
codewords. Therefore, for the same clock frequency, the parallel encoder
generates the codewords at a data rate twice that of the conventional
encoder .

For simplicity, but without loss of generality, the parallel
encoder of figure 6 was limited to two codewords per clock cycle. How-
ever, for all coding rates, there exists a parallel encoder that can
generate an arbitrarily large number Y of codewords per clock cycle. Y
is called the parallelism coefficient. Furthermore, the parallel and
pipeline architectures can be combined to produce a fast parallel pro-
grammable encoder.

The number of components and interconnections of a device is
referred to as the area complexity and denoted A. Similarly the amount
of time T required to produce a certain amount of processing is called
-the time complexity. The overa/) complexity AT is thus the product of
both the area and the time complexities. In thé evaluation of T, the
machine is assumed to be synchronous, or in other words, the propagation
delay on wires is assumed not to increase significantly with the size of
the machine. Using shift registers all of equal basic length L the
complexities of the programmable paralle!l-pipeline encoding architecture
for non-systematic convolutional codes are given by:

A

O(LUVY) . (1)

T 1

it

o((uy)™ ) (2)
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Note that while the number of encpding pipelines is proportional
to Y2, the length of each pipeline is approximately shortened by a
coefficient 1/Y, which explains why A is only proportional to Y. Finally
the use of a systematic code would reduce the area complexity of the
encoder to:

A = O(LU(V-U)Y) , (3)

Note that the area complexity grows only linearly with the length
L of the code, and that the time compliexity is not only independent of
that length, but inversely proportional to U. The most striking result,
however, is that the overall complexity AT is independent of the paral -
lelism coefficient Y, and therefore it is possible through parallelism

to trade efficiently the area for a higher data rate.
I11. IMPLEMENTATION OF A FAST CONVOLUT!ONAL ENCODER

A fast one-chip programmable encoder has been designed, fabri-
cated and tested [10]. It implements a basic building block composed of
six encoding cells. Many such chips can be connected together to imple-
ment a rate 1/V encoder for long memory codes. Furthermore, if external
XOR circuits are supplied, any code of rate U/V can be generated. The
chip can also be used to buiid a parallel-pipeline encoder for very high
data rates.

The chip has been fabricated in a 3 micron CMOS technology with
one metallization and one polysiiicon layers. It has been tested and
showed to encode correctly a random input sequence at clock frequencies
up to 25 MHz, implying that the design is probably /0 limited. For
example, at that frequency and using a parallelism coefficient Y=3,

rates 2/3 and 3/4 encoders could operate at 2 X 3 X 25 = 150 Mbps, and 3
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X 3 X 25 = 225 Mbps respectively.

The length of the encoding pipeline on the test chip has been
voluntarily limited to 6. Since this particular implementation features
parallel loading of the shitt regisier}s conténts, the number of pins
required grows rapidly. However, this feature is not essential and,‘as
can be seen on figure 7, the encoding circuitry covers a very small sil-
icon area. In fact, with the same 3 micron technology, a larger 9 X 9
mm2 die could contain a programmable pipeline encoder of length L=2000.

Pipeline encoding chips could readily be fabricated in a faster
CMOS technology and operate at clock frequencies above 100 MHz. Increas-
ing the coding rate or using parallelism could then bring forth encoder
realizations with data rates above 1Gbps. It should be pointed out how-
ever that the VY output digits exiting the encoding pipelines must be
time-multiplexed if they are destined to be transmitted over a serial
channel. Fortunately 1.5 Gbps multiplexers and demultiplexers are
readily available [11]. The architecture for high speed encoding sug-
gested here appears to be very cost-effective since all the encoding
- process is implemented in a cheap CMOS technology, and only the multi-
plexers components need to be fabricated in an expensive high-speed

technology such as GaAs.
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IV. A PIPELINE ARCHITECTURE FOR THRESHOLD DECODING
A. General description of threshold decoding

The encoders described above may be used in any decoder implemen-
tation for convolutional codes, whether complex and power ful (Viterbi,
sequential) or simple and modest (feedback, threshold), since regardless
of the decoding technique, a decoder always requires a local encoder. Of
the many decoding algorithms for convolutional codes, threshold decoding
is the least complex, and consequently the easiest to implement. Fur-
thermore a very close similarity exists between the actual threshold
decoding algorithm and convolutional encoding. Therefore the architec-
ture developed above to improve the speed and complexity of the encoder
may be directly applicable to a threshold decoder.

Threshold decoding is baged on the concept of an orthogonal par-
ity check and has been first proposed by Massey [3]. Assuming systematic
codes of rate R=1/2 and memory M, at any time t an estimate ﬁt of the
transmitted parity digit pt is constructed by encoding the corresponding
received information bit ir,t‘ A syndrome digit sy is then formed by
adding (modulo-2) the estimated parity digit 5t to the corresponding
received parity digit Pr,t- M such syndrome digits are accumulated in a
shift register properiy connected to a majority logic unit. A number J,
J<M, of syndrome digits are used by that unit to compute an estimate
Ni.y of the noise digit at time (t-M), which added to i, .y yields an
estimate of the information bit Ty.4. This estimate T{-p is accepted
as the decoded information bit at time (t;ﬂ) and is delivered fo the
user. The operation is illustrated in figure 8 where the communication

system has been divided in three parts: a convolutional encoder, a memo-
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ryless noisy channel and a threshold decoder. For simplicity the channel
has been divided in two sub-channels for the separate transmission of
the information digit iy and the parity digit py, and the same system-
atic rate 1/2, memory 6 code illustrated in figure 1 has been used.

Threshold decoding is applicable only with codes featuring spe-
cial algebraic properties. For simplicity only the so-called self-
orthogonal codes.[a] will be considered here in the devefopment of
architectures for threshold decoders. A large number of good self-
orthogonal codes are known and tabulated [3][5][6][12]. These codes are
widely used in practice, in particular in Single Channel per Carrier
systems used for voice transmission over satellite, where a rate 3/4
sel f-orthogonal code is the standard used by INTELSAT [1].

The threshold decoder shown in figure 8 is said to be definite
[13]. A definite decoder becomes a feedback decoder when the noise
estimate ;t-ﬂ is properly fed back in the syndrome register to improve
the reliability of the syndrome digits. Figure 9 shows how to add the
feedback to the decoder of figure 8, where the syndrome digits of the
teedback decoder are denoted s* instead of s. It can be shown that the
error propagation phenomenon is |limited when self-orthogonal codes are
used [14], and in general feedback decoding is more powerful than defi-

nite decoding [3].
B. A pipeline architecture

This section presents a new pipeline architecture for the imple-
mentation of a fast threshold decoder. The two major components of the
decoder are the encoder and the majority logic unit, and both can oper-

ate in a pipeline fashion.
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A pipeline implementation of the encoder has been presented
above. That same encoder can perfectly fit into the decoder. However we
recall that the'decoder in figure 8 uses the delayed information digit
ir t-6- Since the pipeline encoder does not shift the information
digits; one additional shift register must be provided to make this
delayed information digit available.

The majority logic unit can be implemented as a J-input arithme-
tic adder followed by a comparator connected to an appropriate threshoid
value. However, that configuration suffers from the same problems that
led us to consider pipelining for the encoding process: increasing J
slows down the computation. Fortunately, pipelining can also be used
here, and the speed of the majority logic unit becomes then independent
of L and proportional to the logarithm of (J+1). Pipelining the majority
logic unit, however, is costly. Indeed the sum-of -syndromes (SO0S) pipe-
line must be at least logs(J+1) bits wide in order to process propeély
the partially compu{ed sums of syndromes. Figure 10 shows in detail a

pipeline majority for the same code used in earlier illustrations.
C. Generalization for codes of high and Iow coding rates

The architecture just introduced can be adapted for codes of
rates different from 1/2. The codes most widely used.have a rate (V-1)/Vv
or 1/V, V=2 3,... The adaptation for these rates is presented below.

For systematic codes of rate (V-1)/V (e.g. R=3/4, 4/5, ...) each
codeword contains only one parity digit. Hence there is only one syn-
drome, and thus comparisons with the threshol!d values can be done right
atter each individual SOS pipeline. In fhis particutar case the pipeline

decoder is easy to build as shown in tfigure 11 for an R=3/4 code.
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Generaliiing the pipeliﬁe architecture for codes of rate 1/V is
not immediaté since the majority logic unit accesses (V-1) syndrome
registers instead of only one. A satisfying approach is to use a sepa-
rate SOS pipeline for each syndrome, and to compare to a single thresh-
old value the sum of the (V-1) SOS pipeline outputs. Figure 12 shows a
decoder featuring this solution for a code of rate 1/3.

The architectures for codes of rate (V-1)/V aﬁd 1/V can be
combined to yield a general rate U/V pipeline decoder. Now, in order to
improve the error performance of the pipeline decoder, we examine incor-

porating feedback in its architecture.
D. Feedback decoding

While the addition of feedback to the conventional architecture
is straightfo;ward, such an addition is not an easy task with the pipe-
line architecture. |t is natural to think that the feedback should be
incorporated in the SOS pipeline; that approach has been selected. How-
ever a closer analysis reveals that the cost of the feedback addition
may be substantial.

In the SOS pipeline, each column contains a partial sum ot syn-
dromes digits. Since each syndrome digit can be either 0 or 1, the sum
can be any positive number smaller, or egqual to the number of parity-
check syndrome digits J. At each tapped column, the noise estimate
;t-(L-1) must cancel the effect of n{_(L_1) in only one particular term
of the sum, the target-syndrome of that column. Assuming ;t-(L-1)
equals to 1, it is the value 0 or 1 of the target-syndrome that will

determine if the sum must be increased by 1 or decreased by 1. So each

tapped column of the SOS pipeline needs to access not only the value of



15
;t-(L-1)v but also the Qalue of its target-syndrome. Unfortunately
there are several different target-syndromes and their distribution
along the columns of the SOS pipeline is irregular. This distribution is
a function of the code implemented and cannot be changed.

Basically, implementing the feedback involves three modifications
to the pipeline majority. First, the SOS pipeline must be redesigned to
allow in each column the possibility of adding the values -1, 0, +1, or
+2 to the partial sum of syndromes according to several signals. A
global view of the new SOS pipeline and the truth table of one column
processor are shown in figure 13. Note that in that particular exampie,
every column except the right-most one is tapped, but this is not usu-
ally the case, even for optimum codes. Next, a circuit must be added to

' % *
store the individua!l syndromes St,---,St-(L-1) and update them

according to ;t-(L-1)- This is reédily done using the circuit shown in
figure 9. The third modification is the addition of a network allowing
each tapped column of the SOS pipeline to access the value of its own
target-syndrome. This is clearly a very costly modification if the net-
work must be programmable: every column must then be free to select its
own target-syndrome out of (4-1) syndromes. In a non-programmable imple-
mentation the network becomes much simpler: a (J-1) digit-wide bus
carries the syndromes values along the pipeline and the target-syndrome
input of every tapped column is permanently connected to the proper line

of the bus.
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V. A PARALLEL ARCHITECTURE FOR THRESHOLD DECOD ING

Exploiting the close similarities between the threshold decoder
and the convolutional éncoder leads to examine whether parallelism could
also be used to increase the data rate of the decoding process. It will
be shown with an example again, that indeed it is possible to build fast
decoders that match the data rates of the fast encoders described ear-
lier.

Since it is no longer necessary to consider the parallel-only
decoding architecture first in order to understand the more interesting
parallel-pipeline architecture, we will proceed with that architecture
directly. Figure 14 shows a parallel-pipeline decoder for our usual
code. Since the decoder takes two codewords and delivers two decoded
digits at each clock cycle, it can be twice as fast as a pipeline-oniy
decoder. Of course a decoder could be designed to‘process any number Y

of codewords simultaneously.

The complexities of the parallel-pipeline architecture are:

p-3
1]

O(L In((J/Y)+1) U(V-U)Y) (4)

-~
I

o(In((J/Y)+1) (UY) Ty (5)

The factor In((J/Y)+1)) apbearing in every complexity measure
describes the variation of the SOS pipeline width as a function of J and
Y. We recall from section IV.B that for the pipeline-only architecture
an SO0S pipeline featuring J taps had to be at least logpo(J+1) bits wide
in order to properly process the partial sums of syndromes. When paral-
lelism is included, however, we have seen that the S0S pipelines are

shortened approximately by a factor Y and thus each SOS pipeline fea-
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tures on the average, J/Y taps instead of J. The width of each pipeline
can thus be reduced on the average to togo ((J/Y)+1). .

Observing from ;he codes given by Martin [6] and Wu [12] that J
is always small in comparison with L, it follows thét the area complex-
ity A of the decoder grows almost linearly with the length L of the
code: the paraliel-pipeline architecture is thus practical even for very
long codes.-The time complexity, however, is a function'of J. Further
refinement of the architecture by the useof a two-dimensional pipeline
in the SOS logic could yield a time complexity that is independent of J,
but would require a larger silicon area. In practice the use of such an
architecture may not be justified. For examplie, in many implementations
the speed of a pipeline device is not limited by its internal processing
time, but rather by the time required for the signals to enter or exit
the device.

Finally, a properly programmed parallel decoder will generate,
for a given input sequence, an identical output sequence as a non-
parallel decoder. The only difference is that the parallel decoder takes
VY channel digits at a time and delivers UY decoded information digits
simultaneously. Consequently, the use of parallelism in a decoder imple-
mentation involves no additional constraint on the encoder architecture

and vice versa.
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Vi. VLS| IMPLEMENTATION OF A FAST THRESHOLD DECODER

A complete R=1/2, L=40 one-chip definite threshold decoder has
been designed and manufactured with the same 3 micron CMOS process that
has been used for the eﬁcoder fabrication [15]. The 5500-transistor chip
fits on a 2250 X 4507 square micron die shown in figure 15. The code,
majority connections and threshold values can be loaded through a scan
chain prior to operation. Most of the area of the chip is covered by a
5-bit wide SOS pipeline.

Many chips can be connected end to end ‘o increase L but the
number of taps on the whole SOS structure must not exceed (25-1)=31.
That number seems sufficient since, for example, a rate 1/2 code with
J=30 features a length L=841. In future implementations, the width of
the SOS pipeline could easily be increased should the need arises.
Decoders for codes of rate U/V or parallel decoders can be built with a
number of chips, or rows of chips connected side by side. However for
rates different from 1/2, 2/3, 3/4, or when parallelism is used, a few
external logic circuits must be supplied.

The full-custom chip has been designed by students of a project-
oriented VLS| graduate course at Ecol/e Polytechnique de Montreal. The
design methodology was basically inspired by the structured approach of
Mead and Conway [16]. Since the SOS pipeline is the most area-consuming
and time-critical part of the chip, it deserves special attention.

Each cell of the SOS pipeline consists of a dynamic eight-
transistor flip-flop, a three-transistor pseudo-nMOS XNOR gate, a NAND
gate, and aﬁbinverter. The logic and transistor diagrams of the cell are
shown in figure 16. The right input at the top of each row is the con-

nection input and must be set to Gnd if there is a connection and to Vdd
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otherwise. The cell measuring only 62 X 210 square microns has been
carefully optimized for compactness and speed. By a natural coincidence,
the cell can be used to build the encoding pipeline without any modifi-
cation.

Power buses and clock lines run on the single metal layer to
reduce voltage drops and propagation delays. SPICE simulations led to
expect a 20 MHz clock frequency, meaning for example, that the data rate
of a R=3/4 decoder featuring Y=2 parallelism would be 3 X 2 X 20 = 120
Mbps. Such a decoder would require at least 3 X 22 = 12 rows of L/40 X
1/2 = L/80 chips each.

Testing the chip unveiled two minor routing bugs. The errors
occurred at the layout step of the design process. Fortunately ihdivid-
ual sections of the chip could be tested individual]y even it the chip
itself did not work properly. In particular the S0S pipeline could be
partially tested and showed to perform as expected. The two bugs have
now been fixed and the chip has been re-submitted for fabrication. When
new samples become available, they will be tested to confirm our speed
expectations.

At this point it would be very interesting to compare an hypoth-
etical threshold decoder using the parallel-pipeline architecture with a‘
decoder recently impiemented in Japan using the soft-decision Viterbi
decoding algori}hm [17]. This particular one-chip Viterbi decoder uses a
code with constraint length K=7, and provides a coding gain of 4.7 db at
a bit-error-rate of 10'5. It contains 121000 transistors and operates at
a typical data rate of 20 Mbps.

With the same number of transistors (121000), catlculations show
that it wou}d have been possible to ftabricate a programmable feedback

threshold decoder for a self-orthogonal code of length K=841, with a
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coefficient of parallelism Y=2. Based on our computer simulations, at
the bit-error-rate of 10'5 such a decoder would yield a coding gain of
2.7db, that is 2 db lower than the coding gain of the Viterbi decoder.
Most of that difference can be attributed to the fact that the threshold
decoder processes hard-quantized channel symbols whereas the Viterbi
decoder uses soft-quantization.

If the data rate of the Viterbi decoder is |limited by the operat-
ing speed of its add-compare-select modules, the pipeline architecture
of the threshold decoder, in turn, would rather be limited by the small
delay necessary to enter and retrieve signals from the VLS| chip. Since
the technology used for fabricating the Viterbi decoder would certainily
aliow operation at a clock rate of 100MHz, the threshold decoder featur-
ing a coefficient of parallelism Y=2 would deliver decoded information
bits at a data rate of 200Mbps, that is one order of magnitude faster
than that provided by the Viterbi decoder, above. Therefore the archi-
tectures presented in this paper appear to be attractive principally for

fabricating very fast decoders for applications requiring moderate cod-

ing gains.

VIil. CONCLUSION

Motivated by a growing demand for efficient FEC systems operating
at high data rates, several new architectureé for convolutional encoders
have been developed. In particular, new architectures featuring both
parallelism and pipelining are promising from a speed point of view.

Indeed the data rates of encoders featuring these architectures
are not influenced by the memory length of the implemented code. Fur-

thermore, we have shown that, for a given technology, the data rate of



21
an encoder could be arbitrarily increased by the parallelism factor Y.
Remarkably this data rate increase appears to be quite affordable since
it involves an area enlargement which is only proportional to the same
factor Y. Finally, we have shown that the new architectures could be
used together with any high or low rates U/V codes.

Encoders designed with the new architectures might be used in any
decoders for convolutional codes, whether powerful (as Viterbi or
sequential'decoders), or mode modest (as‘threshold decoders). Moreover,
because the threshold decoder shares many similarities with the encoder,
pipelining and parallelism can.be used not oniy in its local encoder,
but also in the actual decoding circuitry. The architectures developed
for the encoder can thus be used also in the design of fast and afford-
able threshold decoders. The simplicity of these decoders makes thresh-
old decoding an attractive alternative to Viterbi or sequential decoding
in some applications.

Two integrated circuits, an encoder and a threshold decoder , have
been designed, fabricated and tested to determine the cost of implement -
ing those architectures in a CMOS 3 micron technology. A noteworthy fea-
ture of both designs is that the circuits can be used as building blocks
to construct encoders or decoders for Iong.codes of any coding rate, and
using any parallelism factor Y. Since the encoding and decoding logics
do not use a Iargebsilicon area, it follows that‘eﬁcoders or decoders
for codes of veryrlarge memory - length (e.g. 1000) could be built with
only a few integrated circuits. Finally we also showed that CMOS encod-
ers and decoders with a sufficiently large parallelism factor Y could
operate at very high data rates, in the Gigabits/second range. These new
architectures appear to be very attractive for.high speed FEC realiza-

tions applicable in both terrestrial and space communications systems.
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FIGURE CAPTIONS

A convolutional encoder for a systematic rate 1/2, memory 6

code.

A pipeline encoder for the same code as in figure 1. The speed
of the encoder is no longer related to the nu&ber of taps on
the register. However the register contains partially computed

parity digits instead of delayed information bits.

A programmable pipeline encoder for the same code as in figure

1.

A general pipeline encoder for rates R=U/V codes.

The encoder of figure 1 shown at two different times.

An Y=2 parallel encoder for the systemat}c rate 1/2, memory 6
code. For the same input sequence it produces exactly the

same output sequence as the encoder of figure 1.

Photomicrograph of a pipeline encoder of basic length 6. This

encoder operated as expected at a 25 MHz clock frequency.

A complete encoder/decoder system for the systematic rate 1/2,

memory 6 code, using a definite threshold decoder.
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Addition of feedback in the syndrome register of the decoder

illustrated in figure 8.

A detailed view of the pipeline majority for the decoder
illustrated in figure 8. Each column of the SOS pipeline con-
tains a partially computed sum of syndromes. Since each sum
can take a value from 0 to 4, each column must be three cells
high to process the binary representation of a sum with no

risk of overflow.

Logic diagram of one basic cell of the SOS pipeline.

An R=3/4 pipeline threshold decoder. It can be viéwed as three
R=1/2 pipeline threshold decoders (in dotted boxes) sharing
one modulo-2 adder.

An R=1/3 pipeline threshold decoder.

An SOS pipeline including feedback for the usual systematic

rate 1/2, memory 6 code.
One processor of the pipeline where i, j, and k are inputs for
the connection, the target-syndrome value, and the noise esti-

mate respectively.

Truth table of the processor.
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An Y=2 parallel-pipeline threshold decoder for the usual rate
1/2, memory 6 code. The parallelism factor Y can be increased
indefinitely, allowing even faster decoders.
Photomicrograph of an L=40 pipeline threshold decoder .

Logic diagram of one basic cell of the SOS pipeline.

Transistor'diagram of the same cell.
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Fig. 1. A convolutional encoder for a syslematic rate 1/2, memory 6

code.
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A pipeline encoder for the same code as in figure 1. The
spéed ol the encoder is nol related any more lo the number
of taps on the register. However the register contains par-
tially computed parity digits insiead of delayed information

bits.
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encoder operated as-expected at a 25 MHz clock frequency.
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Illustrated in figure 8.
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A detailed view of lhe pipeline majority for the decoder

illustrated in figure 8. Each column ot the SOS pipeline con-

tains a partially computed sum of syndromes. Since each sum

can take a value from 0 to 4,

each column must be three cells

high to process the binary represeniation of a sum with no

risk of overflow.
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Fig. 13a. An SOS pipeline including feedback for the usual systematic

rate 1/2, memory 6 code.
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An Y=2 parallel-pipeline threshold decoder for the usual rate

1/2, memory 6 code. The parallelism factor Y can be increased

indefinitely, allowing even fasler decoders.



Fig. 15. Photomicrograph of an L=40 pipeline threshold decoder.
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Fig. 16b. Transistor diagram of the same cel!.






