
Hardware/Software Organization of A
High Performance ATM Host Interface

MS-CIS-93-27
DISTRIBUTED SYSTEMS LAB 25

Chandler Brendan Stanton Traw
Jonathan M. Smith

University of Pennsylvania
School of Engineering and Applied Science

Computer and Information Science Department

Philadelphia. PA 19104-6389

February 1993

HardwareBoftware Organization of a High Performance ATM Host
Interface

C. Brendan S. Traw (trawaaurora . cis .upenn. edu)
Jonathan M. Smith (jmsacis . upenn . edu)

Distributed Systems Laboratory, University of Pennsylvania
200 South 33rd St., Philadelphia, PA 19104-6389

ABSTRACT

Concurrent increases in network bandwidths and processor speeds have created a perfor-
mance bottleneck at the workstation-to-network host interface. This is especially true for B-
ISDN networks where the fixed length ATM cell is mismatched with application requirements
for data transfer; a successful hardware/software architecture will resolve such differences and
offer high end-to-end performance.

The solution we report carefully splits protocol processing functions into hardware and
software implementations. The interface hardware is highly parallel and performs all per-cell
functions with dedicated logic to maximize performance. Software provides support for the
transfer of data between the interface and application memory, as well as the state management
necessary for virtual circuit setup and maintenance. In addition, all higher level protocol process-
ing is implemented with host software.

I h e prototype connects an IBM RISC Systern/6000 to a SONET-based ATM network car-
rying data at the OC-3c rate of 155 Mbps. An experimental evaluation of the interface hardware
and software has been performed. Several conclusions about this host interface architecture and
the workstations it is connected to are made.

1. Introduction

Generally, the goal of communications networks is to develop distributed applications. Such applications are depen-
dent upon the performance of the communications subsystem, which includes the communications network,
network/host interconnection, and the host itself. A new generation of networks with Gbps bandwidths are becom-
ing available concurrently with very high performance workstations and bandwidth-hungry applications. Unfor-
tunately, such workstations have been optimized for computational tasks. While their 110 architectures are adequate
for disk devices, 10 Mbps Ethernet connections, and more recently 100 Mbps FDDI, the very high bandwidth
environment of B-ISDN poses significant challenges to the communications subsystem.

To properly analyze the problem, it is helpful to decompose the movement of data from application to appli-
cation into a set of logical "layers" which communicate peer-to-peer. This functional decomposition can then be
used to develop an architecture; the architecture is instantiated by a particular implementation in hardware and
software.

1.1. Host Interfaces and Protocol Architectures

Protocol architectures can be viewed as a stack of layers. The IS0 OSI model, for example, consists of seven
layers. When implemented, the protocol layers need not observe the separation of the logical model. The physical
layer must consist of hardware by definition, but the implementor can make hardware versus software implementa-
tion decisions for each succeeding layer.

Software is often used when flexibility or tuning are required. As the behavior of a layer becomes better

Preprinr - Will appear in Feb. 1993 IEEE J . Sel. Areas in Comm.

defined and understood, functionality can, in many cases, be migrated from software to hardware. The benefit is
twofold. First, protocol processing overhead is offloaded from the host. This frees the host to address applications
workload, and provides concurrent processing for data communications functions. Second, the specialized
hardware can often perform functions faster than the host, thus increasing the bandwidth available to applications.
The difficulty is the determination of which functions should be migrated to hardware.

We have consistently chosen to implement the lower level, repetitive data movement and formatting functions
in hardware. Higher level protocol processing functions are implemented in host software.

1.2. Goals and Design Philosophy

The research goals are as follows:

(1) Developing a hardware/software architecture which provides the necessary performance, yet is sufficiently flex-
ible to allow experimentation with portions of the protocol stack.

(2) Focusing on architectural solutions to achieve good cost/performance, so any results scale across technology
choices. This is particularly important in the context of the AURORA project, as the ultimate bandwidth goal is
greater than that attempted in this implementation.

(3) Not using on-board processors to both take advantage of host CPU improvements without redesigning the inter-
face, and maintain low absolute cost.

The resulting host interface meets all three goals.

The design philosophy for our architecture is based on providing a "common denominator" set of services in
dedicated hardware. All per cell activities such as ATM header and adaptation layer creation and processing
(including segmentation and reassembly) are performed by the host interface in hardware. The host is responsible
for all higher level activities. We feel that this is reasonable since we are able to maintain flexibility for higher layer
protocol implementation in exchange for some overhead incurred by host software. Protocol flexibility is important
for the following reasons:

Not all protocols and applications are defined yet.

Services are extremely varied. It would be difficult, for example, to provide support for all possible protocol
stacks in hardware.

The host interface work at Penn has been centered on developing a high-performance host interface for IBM RISC
System/6000 workstation hosts in the AURORA Gigabit Testbed environment [9]. Our host interface [27] is intended
for the Sunshine-ATM logical topology. ATM provides particular challenges to the host interface architect due to
the small (53 byte) fixed cell size; this is at odds with the variable-size packet traffic generated by most computer
communications applications.

2. Related Work

Several research projects have developed high-performance host interface implementations. A major difference
between these implementations is the number of protocol processing functions which the host interface performs.

Several interfaces have attempted to accelerate transport protocol processing [28]. For example, Kanakia and
Cheriton's [22] VMP Network Adapter Board (NAB) serves as a hardware implementation of Cheriton's Versatile
Message Transaction Protocol (VMTP). The NAB has many design features in common with our work, although its
absorption of transport functions forced a level of complexity (e.g., the NAB contained a microconaoller) we
believe is not required. Abu-Amara, et al. [4], compile specifications of arbitrary protocol layers (to the degree that
they can be precisely specified) with the Psi silicon compiler into a VLSI circuit which is then connected to the host
in some fashion. The Nectar Communications Accelerator Board (CAB) [5] can be programmed with various pro-
tocols. The CAB communicates with the host memory directly, and the programmability can conceivably be used
by applications to customize protocol processing. Cooper, et al. [12], report that TCPIIP and a number of Nectar-
specific protocols have been implemented on the CAB (connected to Sun4 processors). However, it is unclear
whether the entire transport protocol processing function needs to migrate to the interface; Clark, er al. [7] argue
that in the case of TCPfiP the actual protocol processing is of low cost and requires very few instructions on a per-
packet basis, and thus could be left in the host with minimal impact.

Another approach to interface architecture for ATM networks has been explored by Fore Systems, Inc. [I l l ,

Preprinr - Will appear in Feb. 1993 IEEE J. Sel. Areas in Comm.

and Cambridge UniversitylOlivetti Research [20], which puts minimal functionality in interface hardware. This
approach assigns almost all tasks to the workstation host including adaptation layer processing. It has two potential
failings. First, RISC workstations are optimized for data processing, not data movement, and hence the host must
devote significant resources to manage high-rate data movement. Second, the operating system overhead of such an
approach can be substantial without hardware assistance for object aggregation and event management. This is not
to argue that host processing approaches are without merit, as such approaches can take significant advantage of
aggressive workstation technology improvements.

Our ATM host interface is one of two being designed for the AURORA Testbed environment; Davie reports on
an implementation for the w o C h a n n e l bus of the DECstation 5000 workstation [17]. The design relies on two
Intel 80960 RISC microcontrollers to perform the protocol processing and flow control for a trunk group of four
STS-3c lines (622 Mbps). Such powerful off-board processors are attractive in many respects, since they migrate
processing and data movement tasks away from the host CPU. In addition, significant flexibility is gained from the
reprogrammability of the host interface behavior, although it is not clear whether the need for flexibility requires a
general purpose processor, as opposed to a solution using, e.g., programmable logic devices. The approach is
costly, and extremely careful programming is required to achieve tight performance goals, especially when portions
of multiple protocol stacks must be supported. At this time, Davie's interface provides the highest burst perfor-
mance reported for an ATM host interface.

Our interface follows Davie's basic premise [16] of separating data movement and data processing functional-
ity, while exploring a different portion of the hardwarelsoftware design space.

3. Hardware

At the OC-3c data rate of 155 Mbps, a new cell can be transmitted or received every 2.7 ps. At this rate, even the
fastest processors can only execute a few hundred instruction in a cell time. Thus, it would be difficult for a solu-
tion using only host software or an off-board processor to generate and check the CRCs, and then format/evaluate
the ATM header and AAL layers in real time. By implementing these low level functions in hardware, it is possible
to achieve very high performance while avoiding the use of an extra processor in the host interface or relying on the
host's processor to perform these simple but instruction-intensive operations. The use of hardware is also advanta-
geous since it is possible to isolate functional units and implement them so that their operations can be performed
concurrently. A common disadvantage of pipelining is that additional latency can be added to the system. In this
case, the added latency is insignificant in comparison with that added by the host software required for processing
higher layers of the protocol.

We felt that all per cell functions were suitable for implementation in hardware, thus avoiding the need for a
processor in the host interface [17] or heavy reliance on the host processor for cell processing functions [I 11.

3.1. Implementation Technology Choices

We have chosen to implement this architecture with relatively low cost, commercially available memories and high
density programmable logic devices [3]. By avoiding high clock speeds and more exotic technologies such as
emitter coupled logic (ECL) or semi-custom VLSI, the emphasis can be kept on architectural rather than technologi-
cal choices. Re-implementations of this architecture using such technologies should result in significantly higher
performance than reported here.

The host interface, while intended for the SONET environment, could also support other physical layers such
as AMD's TAXI or HP's GLINK at rates of up to 160 Mbps. A general interface is provided into which small
daughter boards supporting various physical layers can be attached.

The resulting implementation (without the daughter board required to support a particular physical layer) con-
sists of the two 32 Bit Micro Channel cards, shown below (Figure 1). The Segmenter (and space for the physical
layer daughter board) are on one card (bottom) while the Reassembler occupies the other. Power consumption of
the host interface is about 40 watts.

Preprinr - Will appear in Feb. 1993 IEEE J . Sel. Areas in Comm.

Figure 1 : Picture of Reassembler (top) and Segmenter (bottom)

3.2. Networking Environment

Several assumptions are made about the environment in which this host interface will be operating. First, the Vir-
tual Path Identifier (VPI) portion of the ATM header [21] is ignored in the AURORA ATM environment, thus it is
not supported in the initial prototype of the host interface. We also assume that cell loss, rnisordering, and cormp-
tion will occur infrequent, error recovery will be a rare event. Such rare events can be costly to perform, without an
adverse effect on overall performance.

To provide support for connectionless traffic on the network, we have chosen to provide hardware support for
the Class 4 ATM Adaptation Layer [21] (AAL4). In AURORA, the most significant bit of the Virtual Circuit Identif-
ier (VCI) in the ATM header is used to indicate that a particular connection is transporting AAW data. The use of
other adaptation layers is not prohibited by this extra support for the AAL4, though the extra processing required to
support additional adaptation layers will have to be borne by the host processor.

Preprinr - Will appear in Feh. 1992 IEEE J. Srl. Areas in Comtn.

8

Generic Flow Conml

VPI t
Header

VCI

h y h d Cdl
VCI Type $

L

Pay load 011
4 VCI

Type $ ka
CRC-8 Header Error Control I 51 CRC-8 Header Error Control I ~~~~ Cell Body Byte 1

Header
Multiplex Id (MID)

0 I Cell Body 1 44 Byte Payload 1 Payload

I I 1 Length Indicalor I CRC-10 1 AAL4

531 Cell Body Byte 48 I
t Not Implemented
$ Not Defined
Not Implemented for Reassembler

53 CRC-I0

ATM Cell Format ATM Adaptation Layer 4 Cell Format

Trailer

Figure 2: Cell Formats

In another deviation from the CCITT specifications, we ignore the AAL4 segment number on the receive side
of the interface. For compatibility with other equipment, AAL4 segment numbers will be generated by the Seg-
menter. Since the Segment number is ignored, cell loss for connectionless data using the AAL4 would be detected at
the AAL4 Convergence Sublevel (CS) by a mismatch between the actual length of the CS-Protocol Data Unit (CS-
PDU) and the CS-PDU's length field. Cell misordering can only be detected by higher levels of the protocol stack.
Although the segment number provided for AAL Class 314 data is intended to provide a mechanism for reordering
and detection of cell loss, its size (only four bits) does not in our opinion provide a sufficiently strong
loss/misordering detection and correction mechanism. For instance, consider the case where a multiple of sixteen
cells are lost.

Figure 2 illustrates the ATM cell formats used.

3.3. Micro Channel Architecture Bus

The Micro Channel Architecture Bus [13] on the RISC System/6000 [6] has been chosen as the host interface's
point of attachment for several reasons. First, it provides a relatively high bandwidth data path into the host's main
memory and to other peripherals on the workstation's bus such as a video capture card. Secondly, the Micro Chan-
nel Architecture bus is non-proprietary and relatively easy to connect to in comparison to the RISC System/6000's
memory bus. Finally, the Micro Channel bus is a point of access which provides a good balance between access to
host memory and to its I10 capabilities. The memory bus would be an excellent point of attachment in an architec-
tural sense if the primary application for the host interface is to provide support for memory-intensive applications
such as Distributed Shared Memory @SM) [18], but would not allow easy access to 110 devices. Although this host
interface may be used for DSM applications, it will also be used for more I10 related applications such as video con-
ferencing, thus it is important to keep a good balance between I10 and memory accessibility.

Commands and status are exchanged between the host interface and the host CPU by standard I10 write and
read bus transfer cycles. The host interface is capable of acting as a 32 bit streaming bus master. Streaming is a
modified bus transfer cycle, which begins as a standard bus cycle, but allows contiguous words in the address space
to be transferred every 100 ns (320 Mbps peak bandwidth) once the initial address is available. Thus, the time
required to initiate the transfer can be amortized over many word transfers. Being a bus master allows the host

Preprint - Will appear in Feb. 1993 IEEE J . Sel. Areas in Comm.

interface to transfer data to and from the host's main memory independently of the host CPU. It also allows data to
be transferred directly between other peripherals on the Micro Channel Bus and the host interface without the host
CPU's intervention.

The Micro Channel Architecture interfaces used for the Segmenter and Reassembler are very similar. Both
are based on the Chips and Technologies 82C612 DMA Slave Controller [I]. Additional logic has been added to
this controller to make it capable of being a bus master for 32 bit streaming transactions.

3.4. The Segmenter

A block diagram of the Segmenter is illustrated in Figure 3. The Segmenter provides the capability to read data
from the host's main memory (or other data source located on the Micro Channel Bus such as a video capture peri-
pheral card), segment it into ATM cells, and then transmit it into the network at the OC-3c data rate of 155 Mbps.

Figure 3: Segmenter

M
i
C
r

?
h
a
n
n
e
1

B
u
S

I
n
t
e
r
f
a
C
e

When data is to be transmitted, the host must firit load several control registers with data: the source address, length,
and ATM header control fields to be used, such as the VCI. If the VCI indicates that the data is to be transmitted
using the AAL4, the MID must also be specified.

Once this information is available, the Segmenter initiates the streaming data transfer from the source of the
data across the Micro Channel bus to the Segmenter. As soon as sufficient data has been transferred into the
Segmenter's data buffer, one cells worth of data is extracted from the buffer by the Segmentation Controller and is
concatenated with an ATM header. An AAL4 header and AAL4 trailer are also added if appropriate. Both the
CRC-8 (for the ATM header) and the CRC-10 (for the AAL4 trailer) are calculated at a rate of a byte per clock
cycle as the cell header and body are passed to the SONET framer. This process is repeated until the entire block of
data has been transmitted.

Data Buffer

3.5. Reassembler

ATM

The Reassembler is presented in Figure 4. The Reassembler is able to receive data from the OC-3c network connec-
tion, reassemble it, and then deliver the reassembled data to the host's main memory or to another peripheral card on
the Micro Channel bus.

Preprint - Will appear in Feb. 1993 IEEE J. Sel. Areas in Comm.

> 512 by 32
FIFO

h

Header Generator
L Class 4 AAL I - Generator

I V I
I

I

I

OC-3c !
I
I
I

r

I
I

I

r - - - - - - - - - - - - - - - - - ' - - - 1
Physical Layer Daughter Board I

SONET
Framer

I
I
I

E+O
I
I
I

L - , , - - - - - , - - - - - - - - - - - - J

Segmentation Controller

Figure 4: Reassembler

r - 7

: Physical Layer Daughter Board I

To read data reassembled by the host interface, the host must specify the destination of the data, the internal list
reference number of the connectionlCS-PDU , and the number of cells to be transferred. The origin of the internal
list reference will be discussed shortly in the CAM Lookup Controller section.

The Reassembler is composed of five major functional units which all work concurrently. Four of the units, the Cell
Manager, CAM Lookup Controller, Linked List Manager, and Dual Port Reassembly Buffer Controller form an
ATM cell-processing "pipeline." Only control information is passed through this pipeline in order to minimize the
buffer space required for pipeline elements and to avoid repetitively copying the cell body data from stage to stage.

-
M
1

C

r

Preprint - Will appear in Feb. 1993 IEEE J. Sel. Areas in Comm.

Cell Manager ; Bod i
i...FIFd..i

0

C
h
a
n
n
e
1

B
u
S

I
n
t
e
r
f
a
c
e

I
I
I

O C - 3 ~ [
I
I
I
I

I
I
I
I
I
r

j
Control

I I
L - J

SONET

FRAMER
W E

Data Path

v

Path v

< w

CAM Lookup Controller
.................................
i CAMS 512 by 48

2-

Dual Port Reassembly Buffer Controller
...

Dual Port Reassembly Buffer
32K by 32

...

v

<
Linked List Manager
...............................
i Pointer Memory

A

v

3.5.1. Cell Manager

The Cell Manager verifies the integrity of the header and payload (if the cell is carrying AAL4 data) of the cells that
are received by the SONET framer interface to the network by calculating the CRC-8 of the ATM header and
CRC-10 of the ATM cell body and comparing them with the values in the cell just received. If the values match, the
cell is assumed to be intact. The Cell Manager then extracts the VCI from the ATM header and the MID, segment
type, and length indicator from the AAL4 header and trailer. While these fields are being extracted and the CRCs
are being verified, the cell body is placed in a FIFO buffer for later movement into the dual port reassembly buffer.
Since the cell body will be placed into the FIFO buffer before its integrity can be verified, the Cell Manager can
request that the body be flushed from the FIFO by the Dual Port Reassembly Buffer Controller. These operations
take exactly one cell time, 2.7 ps at the OC-3c rates.

3.5.2. CAM Lookup Controller

The CAM Lookup Controller (CLC) manages two 256 entry (48 bits per entry) content addressable memory (CAM)
devices from AMD [2]. One is reserved for virtual circuit traffic while the other is reserved for connectionless
traffic. Thus, 256 virtual circuit connections and 256 CS-PDUs can be demultiplexed simultaneously. Virtual cir-
cuits are identified by their VCI while CS-PDUs are identified by their VCI and MID. We considered using direct
lookup RAM tables instead of CAMS but decided against this option since for CS-PDUs, the address space is 26 bits
(16 bit for VCI + 10 bits for MID). Larger CAMS are available if the 256 virtual circuit connection1CS-PDU limit
proves to be confining.

When a VCI or VCI+MID is received from the Cell Manager, the CLC searches the appropriate CAM for a match-
ing entry. If none is found and an unused entry is available, the CLC assumes that the identifiers belong to a newly
established connection or CS-PDU and writes the identifiers into the empty location. If no entry is available, the
cell is dropped. Provided that a match was found, or a new entry was created, the CLC passes the location of the
match or new entry to the Linked List Manager. This location is used as the internal list reference number for the
connection or CS-PDU .
The host is able to read the contents of each CAM entry to associate internal reference numbers with their
corresponding VCI or VCI+MID. The host is also able to delete entries which are no longer active. A delete opera-
tion will remove the entry from the CAM. It also requests that the data structures associated with that internal refer-
ence at later stages in the pipeline be deallocated.

Pointer Table
111

I

I First-
I

Next Node in List Nil
I # of Cells in List Reassembly Buffer Pointer I

I

I I

I Dual Port Reassembly Buffer I
L - J

Figure 5: Control Structures for Virtual Circuit Reassembly

The CLC requires a maximum of eleven 50 ns clock cycles (550 ns) to perform the processing required for a cell.

Preprinr - Will appear in Feb. 1993 IEEE J . Sel. Areas in Comm.

3.5.3. Linked List Manager

The Linked List Manager (LLM) constructs and updates the linked list data structures responsible for reassembly.
These data structures are stored in a 32K by 16 static RAM.

We believe that linked lists are an excellent mechanism for performing reassembly for two reasons. Fist,
they allow dynamic allocation of memory. Extremely active connections can allocate more memory than their less
active counterparts. Secondly, since each linked list node has a cell body sized portion of the dual port reassembly
buffer associated with it, all manipulations of the dual port reassembly buffer are controlled by the linked list data
structures. Thus, the data stored for a connection or CS-PDU can appear contiguous without being physically con-
tiguous in the reassembly buffer. By keeping a pointer to the beginning and end of each list, constant time insertion
and removal can be assured.

The LLM is capable of performing the following functions on the linked lists:

Delete a list

Append a node to the end of a list

Remove a node from the front of a list

Each of these operations also updates the list status information at the head of the list affected.

: Virtual Cimit Identifier (VCO CS-PDu ULM (L(6 Ennies, ! Multiplex ID (MID)

.
Pointer Table -

Last Node in List V
First Node in List ---- Z- Next Node in L-
of Cells in List Cell Body Length Cell Body Length
of CS-PDUs in List Cell Type Cell Type

Reassembly Bpffer Pointer Reassembly Buffer Pointer

- - - - - - -
I
I
I

Nil
I
I
I
I
I
I

I 1
I Dual Port Reassembly Buffer I
L - J

Figure 6: Control Structures for CS-PDU Reassembly

During configuration, the host is able to read and write into the RAM containing the data structures. This capability
is necessary to initialize the data structures prior to the start of host interface operation. During operation, the host
only needs to read the status blocks at the beginning of each list to remain aware of the network activity. The LLM
is responsible for all manipulation of the lists during operation.

When the internal list reference number is passed to the LLM from the CLC, the LLM appends a new node at
the end of the list specified. The pointer to the portion of the dual port reassembly buffer assigned to the node just
appended to the list is passed to the dual port reassembly buffer controller.

When the host reads data from the host interface, nodes are removed from the front of the affected list, and
the reassembly buffer pointers are passed to the dual port ieassembly buffer controller so that the appropriate data
can be moved from the host interface.

In the worst case, the LLM requires thirteen 50 ns cycles (650 ns) to perform an operation on a list.

3.5.4. Dual Port Reassembly Buffer Controller

The Dual Port Reassembly Buffer Controller (DPRBC) is the final stage of the ATM cell processing pipeline. It is
responsible for moving data to and from the dual port reassembly buffer. This buffer consists of a single ported
128K by 32 RAM bank which is dual ported by the DPRBC. Dual port RAMs are commercially available, but they
are less dense and more expensive than the single port RAMs used.

Preprint - Will appear in Feb. 1993 IEEE J . Sel. Areas in Comm.

The DPRBC is able to move a cell body from the FIFO associated with the Cell Manager into the reassembly
buffer in 2.4 ps (cell time is 2.7 ps). A cell body can be extracted from the buffer for movement across the bus in
1.2 ps, the minimum time required to move the data across the bus.

4. Host Software Support

As remarked in the introduction, software plays a key role in the achievement of high end-to-end networking perfor-
mance. The abstraction provided by the hardware is of a device which can transfer arbitrarily-sized data units
between a network and system memory. The software must build upon this abstraction to satisfy application require-
ments. A significant constraint on such software is its embedding in the framework of an operating system which
satisfies other (possibly conflicting) requirements. Particular application needs include transfer of data into
application-private address spaces, connection management, high throughput, low latency, and the ability to support
both traditional bursty data communications traffic and the sustained bandwidth requirements of applications using
continuous media

The software operating on the host is usually partitioned functionally into a series of layers; typically, each
software layer contains several of the protocol layers outlined in the introduction. The applications are typically
executable programs, or groups of such programs cooperating on a task, which a user might invoke. Applications
which require network access obtain it via abstract service primitives such as read{), write{), and sendto{). These
service primitives provide access to an implementation of some layers of the network protocol, as in the UNIX
system's access to TCPIIP through the socket abstraction. The protocol is often designed to mask the behavior of the
network and the hardware connecting the computer to the network, and its implementation can usually be split into
device-independent and device-dependent portions.

Significant portions of protocol implementations are often embedded in the operating system of the host,
where the service primitives are system entry points, and the device-dependent portion is implemented as a "device
driver." Such device drivers often have a rigidly specified programmer interface, mainly so that the device-
independent portions of system software can form a reasonable abstraction of their behavior. Placement of the pro-
tocol functions within the operating system is dictated by two factors, policies and performance. The key policies
which an operating system can enforce through its scheduling are fairness (e.g., in multiplexing packet streams) and
the prevention of starvation. High performance may require the ability to control timing and task scheduling, the
ability to manipulate virtual memory directly, the ability to fully control peripheral devices, and the ability to com-
municate efficiently (e.g., with a shared address space). All of these requirements can be met by embedding the
protocol functions in the host operating system. In practice, the main freedoms for the host interface designer lie in
the design of the device driver, since it forms the boundary between the host's device independent software and the
functions performed by the device.

Interfacing a workstation-class machine to an ATM network provides some particular problems, opportunities and
challenges for a designer implementing such software, particularly in policy decisions such as the host operating
system's management strategy for the host interface. Four observations are particularly helpful in the design pro-
cess.

1. Unlike mainframes, supercomputers or minicomputers, workstations are rarely a shared resource, and they typi-
cally have cycles to spare.

2. Egalitarian scheduling policies (e.g., the I/0 multiplexor-like strategy employed by UNIX [26] and its deriva-
tives) have made real-time awkward, and yet many proposed applications require accurately paced data
delivery.

3. Interrupt-handling overhead is large (for example, a savelrestore of the RISC System/6000's registers is 256
bytes versus the 48 byte ATh4 payload) and effects a significant reduction in cache [24] effectiveness. As larger
register files and caches have pushed data processing speeds higher and higher, interrupt service has become
more and more expensive relative to instruction processing. Full interrupt service per ATM cell would severely
limit the workstation's network bandwidth, as well as leaving little capacity for applications.

4. Workstation architectures have been optimized for data processing rather than data movement, and many
costlperformance tradeoffs have kept the system memory bandwidth relatively low in respect to instruction pro-
cessing rates. Unfortunately, the result of this is architectures which have memory or bus bandwidths closely
matched to network bandwidths, thus memory access must be minimized, e.g., by reducing copying of data.

Given these observations, the software architect is presented with the following choices as to implementation

strategy:

1. Based on the capabilities of the interface (e.g., its provision for programmed V0, DMA, and streaming), what
is the partitioning of functionality between the host software and the host interface hardware? For example,
use of DMA or streaming removes the need for a copying loop in the device driver to process programmed
YO, but may require a variety of locks and scheduling mechanisms to support the concurrent activities of
copying and processing. Poor partitioning of functions can force the host software to implement a complex
protocol for communicating with the interface, and thereby reduce performance.

2. Should existing protocol implementations be supported? On the one hand, many applications are immediately
available when an existing implementation is supported, e.g., TCPIIP or XNS. On the other, significant per-
formance (and hopefully new applications) can be gained by ignoring existing stacks in favor of stacks optim-
ized to the new Gbps networks and interface hardware, using a new programmer interface. Or, both stacks
could be supported, at a significant cost in effort; this allows both older applications and new applications
with greater bandwidth requirements to coexist.

3. How are services provided to applications? One key example is the support for paced data delivery, used for
multimedia applications. As the host interface software is a component in timely end-toend delivery, it must
support real-time data &livery. This implies provision for process control, timers, etc. in the driver software.

4. How do design choices affect the remainder of the system? The host interface software may be assigned a
high priority, causing &lays or losses elsewhere in the system. Use of polling for real-time service may affect
other interrupt service latencies. The correct choices for tradeoffs here are entirely a function of the worksta-
tion user's desire for, and use of, network services. While any tradeoffs should not preclude interaction with
other components of the system, e.g., storage devices or framer buffers, increasing demand for network ser-
vices should bias decisions towards delivering network subsystem performance.

The use of workstations permits a bias towards networking performance, as they are often used in combination with
other workstations in an aggregate connected by a network, and each workstation is in practice a personal machine
(or shared by a very small user population). This bias pennits us to explore strategies which address networking
performance with less concern for their implications than might be necessary if a large mainframe environment with
heavy multiprocessing loads was under study. Given the cost of interrupts and their effect on processor perfor-
mance, strategies which reduce the number of interrupts per data transfer can be employed 1221. An example would
using an interrupt only as an event indicator. The transfer of bursts of ATM cells may arise as a consequence of the
mismatch between larger application data units and the ATM payload of 48 bytes would be accomplished in a
scheduled manner, e-g., using polling.

4.1. Implementation

UNIX and its derivatives are the development platform for almost all host software research, as they are the dom-
inant operating systems on workstation-class machines. These systems unfortunately impose a number of additional
constraints on the designer, in particular, the high cost of system calls due to their generality and the crossing of an
applicatiodkernel address space protection boundary. Pu, et al. 1251 report that over 1000 instructions are executed
by a read() call before any data is actually read. UNIX also embeds a number of policy decisions about scheduling,
which as indicated above, is event-driven and designed to support interactive computing for large numbers of users.
While several UNIX derivatives have been modified to support "real-time" behavior, these are non-standard, mak-
ing solutions dependent on them non-portable. A number of other evolutions in UNIX, however, appear promising
for high performance implementations and efficient application-kernel, such as shared memory, memory-mapped
files, and provision for concurrency control primitives such as semaphores.

The current host interface support software consists of an AIX character-special [26] device driver, of which
several versions exist. Multiple versions have been implemented so that we could test various hypotheses about the
effects of data copying and bus transfer modes on achieving high performance. One of the versions copies data to
and from large kernel buffers which serve as staging areas for the transfers to and from application address spaces.
The other version we discuss here enables the host interface hardware to copy data directly from the application
address space. Since our main focus was understanding the host interface architecture, we have not yet imple-
mented a complete protocol stack.

The driver employs AIX's capability to support dynamically-loadable device drivers; this allowed develop-
ment without access to kernel source code for recompilation. The next section describes startup processing common

to all driver software; later sections are devoted to particular driver functions and discussion of the alternative
implementation strategies.

4.1.1. Driver Set-up and access

The driver can be configured into the system at boot time if the device is detected on the Micro Channel, or later
under program control. The host interface presents a unique device identifier when probed, and this identifier is
used to gather descriptive information (including driver routines) from a system object database. This description is
used to "configure" the device into the system. Configuration includes allocating addresses for use by the device
in bus transfers; the device uses these addresses for access to its control registers and to support streaming mode
transfers. Another important feature of the configuration process is adding the access routines for the device to the
"device switch" table used by AIX to direct system calls issued on character special devices to the correct device.

The interface is initialized when the device special file /dev/host{n] is first opened (n is a small integer, 0 on
our test system). Initialization consists of probing the device at a distinguished address which causes it to be reset,
build data structures in the Reassembler, as well as performing various set-up operations for the &vice driver
software. The operations currently include pinning the driver software's pages into real memory by removing them
as candidates for page replacement, and, if kernel buffering is used, allocating two 64KB contiguous buffers which
are also pinned. After initialization, the device and driver are ready for operation; routines for all appropriate AIX
calls (e.g., read(), write(), ioctl(, erc.) are provided. The read() and write() calls perform data transfer operations,
while iocrl() is used for control operations such as specifying Virtual Circuit Identifiers to be associated with a par-
ticular channel. The code fragment in Section 9 illustrates how a programmer would access the device for writing;
this particular fragment is taken from the measurement software used for performance evaluation.

4.1.2. Segmenter Software

The Segmenter software is accessed mainly through the ioctlt) and write() system entry points. Ioctlt) is employed
for such control tasks as specifying VCIs and MIDs for use in formatting ATM cells; the VCI and MID are speci-
fied to the driver on a per-file descriptor basis. They are used to specify header data to the host interface card so that
it can format a series of ATM cells for transmission. Our intention is to use ioctl() for any behavioral specification
for the Segmenter software, such as bandwidth allocations, maximum delays, and pacing strategies. Data transfer is
done with write{), providing a clean separation between transfer and control interfaces.

When the write() call is invoked on the device, user data is available to the driver through a u i o structure
element. If the data is to be put into kernel buffers, it is copied from the user address space into one of the 64K
buffers. If data is to be copied from the user process address space, the u i o structure element is used to mark the
application pages as pinned, and to obtain a "cross-memory descriptor" which allows the user data to be addressed
by a device on the Micro Channel bus. When a hardware-provided status flag on the Segmenter indicates the device
is inactive, a streaming mode transfer is set up. The software prepares for streaming by initializing a number of
translation control words (TCWs) 1141 in the Micro Channel's 110 Channel Controller (IOCC). In addition, page
mappings are adjusted for pages in the host memory; the RISC Systern/6000 uses an Inverted Page Table also
referred to as the Page Frame Table (PFT). The TCWs and Page Frame Table entries allow both the device and the
CPU to have apparently contigi~ous access to scattered pages of real memory. This is illustrated in Figure 7.

Figure 7: Illustration of TCW and PFT usage

After the TCWs and other state are set up, the device is presented with the data size and buffer address, which

P r ~ n r i n t - Will onnpor in Feh. 1993 IEEE J . Sel A r p a . ~ in Cnmm.

initiates the transfer. As mentioned above, two strategies have been explored for data management, one which
copies user data through kernel buffers in transfers to and from the interface, and one which performs transfers
directly from the application address space.

In-kernel buffering allows trivial double-buffering; the driver can thus tag a buffer active and return control to
the user process. The combination of a hardware-provided state flag and double-buffering permits overlapped
operation of the host interface and the host processing unit. While this implementation supports overlapped opera-
tion, the copying between user and kernel address spaces is potentially a major impediment to high-performance
operation. The provision for TCWs in the IOCC allows large contiguous transfers directly to and from the address
space of an AIX user process. This removes the burden of copying data across the protection boundary from the
software, imposing it on the hardware portion of the interface architecture. An alternative prototype device driver
supports such transfers.

Overlapped operation from user address spaces is somewhat more complex than for transfers from copies
kept in kernel buffers, due to the risks inherent in concurrent access to shared state by the device and the process.
Two obvious approaches are: (1) blocking (i.e., ceasing execution of) the process until streaming is complete, and
(2) trusting the process to not access the data (e.g., the process could do its own double-buffering). The first
approach prevents a single process from using the hardware's capability for overlapped operation. This seems
unwise (although it is what we do currently), since most applications use the CPU to transform data which travels to
and from the network. The second approach assumes either intelligence or benevolence. However, as we have seen
in practice, the inevitable crashes due to inconsistent data in the kernel punish other users for a transgression. A
third approach is to force the process to block (cease execution) when it accesses a "busy" buffer. In this way,
"well-behaved" processes can achieve maximum overlap, while AIX is protected from the indiscretions of
"poorly-behaved" processes. This can be accomplished by tagging the active buffer's PFT entries with "fault-on-
write"; the process is then blocked until the streaming transfer is complete and the page fault can be resolved. This
combines the good features and removes the complications of the other two schemes, and is the approach currently
being explored.

4.1.3. Reassembler Software

The Reassembler software is considerably more complex than the Segmenter software, because its activation is con-
trolled by external events such as arriving cells. We have avoided the use of interrupts in our interface system [27]
due to the software overhead, since with rapid amval of small data objects (such as ATM cells), the interrupt ser-
vice time can exceed the data service time. This remains true for considerably larger aggregations of cells. Without
interrupts, however, the host is obligated to poll the interface. For the Segmenter, we poll for completion of a
streaming transfer using a status register value indicating that the card is idle; only performance is affected if we are
delayed in observing a transition. On the Reassembler, however, the consequence of a delayed observation may be
lost data and state inconsistencies between the host and the interface. Thus, the design of the Reassembler software
requires support for real-time operations (such as clock-driven polling) and must perform well to keep up with arriv-
ing traffic. Much of the additional software complexity of the receiver is support for polled operation.

As described above, the current support software is implemented as an AIX device driver. The Reassembler
software operates using mainly three AIX system calls, open(), ioctl{), and read(). Before initialization (for exarn-
ple, by loading at system boot time or later), the device driver is inactive, but since there are no interrupts from the
device, this does not affect system integrity. At initialization, a number of data structures are created and processes
dependent on these data structures are begun. As in the Segmenter software, the iocrl() system entry point is used
for control functions and the read() call performs transfer of data. The card-to-host data transfer operations are
analogous to those described for the Segmenter software. Our polling strategy also requires considerable support, in
the form of tables which maintain state associated with the ATM network. The three main data structures are the VC
table, the DG table, and the POLL table.

4.1.3.1. VC table

The hardware supports 256 Virtual Circuit Identifiers (VCIs); a 256-entry table is used to track activity on each vir-
tual circuit. Each array element is of type vc-r:

typedef struct {

int vc-status;
struc t xmem. vc-x;
caddr-t vc-buf;
int vc-len;
vci-t vcpext;
vci-t vcsrev;
long vcqoll-rate;
long vcqoll-time;
dg-list-t vc-dgs;

> vc-t;

status flags for this VC
pinned pages, d-masterOed area
parameters for buffer mapped to...
... this virtual circuit
identifier of next active VC
identifier of previous active VC
polls per second
clock time for next poll
list of CS-PDUs on this VC

The vc-x entry is a "cross-memory descriptor" used by AD[to control transfers between processor virtual
address spaces (e.g., user space) and the Micro Channel's virtual address space. The vc-buf pointer and the
vc-len byte count are used to prevent overwrites of user data, unpin pages when a particular VC is closed, and to
remove the cross-memory mapping. The polling strategy uses the vc-next and vcsrev entries to maintain an
active list; the vcqoll-rate and vc_poll-time entries also exist to support polling. The vc-dgs entry
points to any CS-PDUs which may have arrived on this virtual circuit.

4.1.3.2. DG table

Connectionless data transmission is also supported by the AALA [21]. The Reassembler board assembles the CS-
PDU and when the CS-PDU is complete, a transfer can be initiated into a processor memory area. We currently
transfer data from the board into a 64KB buffer allocated from the kernel's pinned heap. After the CS-PDU has
been transferred from the interface, its length is available from a &vice register; this length is used to copy the data
into buffer areas provided by the user process. The DG table has 256 entries, each of which is quite similar to the
VC table entry illustrated above, and is of type dg-t. The polling parameters are deleted, there are no cross
pointers to other tables, and no pointers to support doubly-linked lists. The vc-dgs entry of the VC table is s u p
ported with dg-list-t, which is the head of a singly-linked list of DG table entries.

4.1.3.3. POLL table

The POLL table is constructed to support polling operations on the VCs; it implements a linked list of pointers to
VC table entries. The linked list (which bears considerable resemblance to the data structures used by many UNIX
'ITY drivers) is sorted on vcqoll-times, so that the head of the list immediately yields the time to next poll;
subtracting the current system clock time from this value yields the time with which a fine-granularity alarm timer is
set. Insertion into the list is potentially expensive, since insertion into the ordered list takes linear time. However, the
lookup required for polling and deletion of the processed table entry are constant-time operations.

4.1.4. Control Strategy

A periodic timer intermpt is generated using the AIX timer services [15]. The timer interrupt service routine exarn-
ines the control tables in order to decide which actions are to be taken next. All operations are of short duration
(e.g., examining the CAMS on the host interface card) so that several can be performed during the intermpt service
routine. In addition, the status of the device and its internal tables are determined, in order to drain active VCs and
receive reassembled CS-PDUs. Logical timers in the tables which have expired are updated and reset when service
is performed.

AIX on the IBM RISC SystemJ6000 Models 520 and 320 can support timer frequencies up to about 1000
Hertz [15] before there are few cycles left for application processing. At a timer frequency of 60 Hertz, at least
90% of the processor capacity should remain available to applications. In one sixtieth of a second, about 2.6 Mbits
can arrive on an OC-3c at full rate, and the Reassembler buffer can accommodate 3 Mbits. While less-frequent pol-
ling improves throughput and host performance, it has some potentially negative consequences for latency; for
example a 60 Hertz timer would give a worst-case latency of over 16.7 milliseconds before data reached an applica-
tion, far slower than desired for many LAN applications [22]. We are currently studying the problem of setting the
timer interval.

Preprint - Will appear in Feb. 1993 IEEE J . Sel. Areas in Comm.

While the Segrnenter software is currently not timer-driven, our intention is to add Segmenter service to the
tasks performed during clock service, as this would allow best support for isochronous traffic.

4.2. Discussion

We have biased the implementation towards providing high-performance service to network-intensive applications.
While we discuss performance in detail in the next section, this realization of host interface software has delivered
approximately 90% of the performance of the hardware subsystem (comprised of the processor, U0 bus and host
interface) to applications.

5. Performance Measurements

In this section, we focus on measuring the performance of the implementation. First, we discuss the performance of
the Segmentation and Reassembly hardware. We then analyze the performance of data transfers across the IBM
RISC Systemf6000 Model 320's implementation of the Micro Channel Architecture. Finally, we study the perfor-
mance of the entire hardwarelsoftware transmission architecture using the AIX device drivers discussed in Section
4.

5.1. Segmentation and Reassembly Hardware

As of September 1992, the Segmenter and Reassembler have been fully prototyped and tested with an STS-3c phy-
sical layer. We are currently in the process of replicating the host interface for use in the AURORA testbed, and pro-
viding support for other physical layers including OC-3c and TAXI.

The Segmenter performs as specified in the earlier discussion of Section 3.

The various stages of the Reassembler also perform as specified in the discussion. Assuming that the Reassembler
is not required to service any host requests, the limiting component in the pipeline is the LLM. Since the worst case
per cell operation requires 650 ns, and there are 424 bits per cell, the pipeline is capable of processing a network
bandwidth of about 650 Mbps. In actual operation, this bandwidth would be reduced by up to 50% since the host
must also utilize the LLM to drain cells from the reassembly buffer. Even with this reduction in bandwidth, the
Reassembler pipeline is still more than capable of support the full bandwidth of an OC-3c connection.

5.2. Micro Channel Architecture Bus Performance

We have carefully studied the performance of data transfers between the host interface and the host's main memory
on an IBM RISC Systed6000 Model 320.

Using 32 bit streaming transfers, we have found that the bus itself is capable of sustained data transfers at
slightly less than 320 Mbps, its peak rate for 32 bit transfers. These data rates were observed card-to-card between
peripherals on the Micro Channel bus. Bus arbitration and stream setup time accounted for the deviation from the
peak rate.

Unfortunately, when transferring data between the host's main memory and the host interface, significantly
lower performance is observed. We determined that the difficulty was with the current implementation of the UO
Channel Controller (IOCC). The IOCC is the connection between the Micro Channel bus and the internal memory
bus, illustrated in Figure 8.

P r ~ n r i n t - Will n n n ~ n r in Feh. 1993 IEEE .I A~PII.T in Comm.

System Memory
CPU

I : Micro Channel Bus ,
L - - , - - - - - - - - - - - - - J

Figure 8: IOCC location in IBM RISUSystem 6000

To minimize the latency of the host's main memory during a data transfer, the IOCC allocates 16 words of buffering
to each transfer channel. Thus, when a word of main memory is read, 16 words of data are loaded into the IOCC's
buffers so that consecutive memory accesses are unnecessary.

We have characterized the IOCC's behavior using a logic analyzer connected to the Micro Channel Bus.
Between 2 and 3 ps were required to load the IOCC buffer for every 16 words transferred across the bus. The
actual transfer of 16 words requires only 1.8 ps (200 ns for setup and 100 ns per word transferred). This results in a
maximum channel efficiency of 44% or 142 Mbps for data transfer between the host interface and the host's main
memory.

We understand that versions of the RISC System16000 which are about to be released will contain an
improved version of the IOCC which will permit a greater utilization of the bandwidth of the Micro Channel bus.

5.3. Software and System Performance

A key test of the various architectural hypotheses presented is their experimental evaluation; since many of these
claims are related to performance, our experiments are focused on timing and throughput measurements, and ana-
lyses of these measurements. Since application performance is the final validation, any experiments should be as
close to true end-to-end experiments as possible. In our case, data should pass from a user process (the application),
through the software and hardware subsystems, to the network.

5.3.1. Experimental Setup and possible sources of error

A shon AIX program to gather timing measurements was written, of the basic form shown in Figure 9.

Preprint - Will appear in Feb. 1993 IEEE J. Sel. Areas in Comm.

/ * testwr.c - main block (no declarations or set-up shown) * /

if ((fd = ~pen(~/dev/hostO', 0-WRONLY)) == -I)(
perror('Couldnlt open dd');
exit (-1) ;

1

for(i=O; icrepeats; i++)(
/ * copies added here: memay(buf, SOMETHING) ; * /

if (write(fd, buf, count) == -1)
gerror('write failure');

1

gettimeofday(&tv2, &tz 1 ;
clock = elapsed (tv2, tvl) ;

print£('elapsed time: %d microseconds\n0, clock) ;

Figure 9: Code fragment to access and exercise Segmenter

While the option-handling is not shown for the sake of brevity, the basic options include a repetition count, a buffer
size, and a bit pattern with which to populate the buffer. This latter option was included so that recognizable data
patterns would be produced on the logic analyzer used to monitor the experiments. The defaults used are 1,65536
(bytes), and a pattern of bytes derived from a counter. A modified version of this program which recopies the pat-
tern into the buffer before each write() system call was also used in the tests (this version gives rise to the solid lines
marked "with copy" in Figures 10-12); the primary version of the program does not do this, as our focus was the
performance of our hardwarelsoftware architecture, not RISC System16000 data movement performance. However,
the additional copy may make the measurements more relevant for protocol stacks built above our architecture.

A script which varied the buffer size and number of repetitions to achieve a constant total of bytes was writ-
ten. The parameters used ranged from a buffer size of 1KB and repetition count of 8K to a size of 64KB and a count
of 128, yielding a total byte count of 8MB. While this may have been too short a test, we verified the measured
values by rerunning the 64KB cases with a repetition count of 32K, and this case (2GB) matched the shorter case to
3 significant digits. All measurements are repeatable to 3 significant digits of accuracy; at this point, there is
"noise" due to such factors as background activities on the processor and AIX timing granularity.

These measurements do not reflect the throughput that would be seen by an application using a protocol suite
such as TCPIIP, although they may reflect an upper bound on the throughput achievable with an implementation of
Clark and Tennenhouse's Application Layer Framing and Integrated Layer Processing [8]. The tests do not
represent end-toend throughput measurements between processors across the network, but rather rates sustainable
by the host when delivering data to the network.

5.3.2. Measurements

Shown in Figure 10 is the performance of the hardwarelsoftware combination for the device driver implemen-
tation, where the AIX kernel copies the user buffer data into a kernel buffer and then initiates a streaming transfer
using the kernel copy of the buffer as a source.

Prevrint - Will amear in Feb. 1993 IEEE J. Sel. Areas in Comm.

124 Mbps _ D @ ~ ~ P Y _ *
100 - - _ - - - -

/ -
BIW

(in MbJs)

50 -

I I I I I I
1 2 5 10 20 50

Buffer Site
(KB)

Figure 10: Performance of test-wr, streaming from kernel buffers

Figure 11 shows the performance of a driver (please refer to Section 4) which copies the data directly from
the user address space using the RISC SystemJ6000's facilities for virtual address translation.

pa COPY
L24 Mbps

- - - 4 -

/ *
100 - #

/ - with copy
/

/
0 B/W 0

(in MbJs)
/' 7" Mbps

50 -

1 2 5 10 20 50
Buffer Size
(KB)

Figure 11: Performance of test-wr, streaming from user buffers

After the detailed performance analysis of the hardware showing the IOCC bottleneck (discussed below), we
modified the user-buffer driver so that we could measure driver overhead versus other factors such as memory
copying and host memory access performance. This was done by deactivating about 5 lines of code in the driver
which initiate the streaming transfer, and another 5 lines which poll the host interface status register for completion
of the transfer. These results thus correspond to the case of an "infinitely fast" host interface card connected to a
current generation RISC SystemJ6000 through an infinitely fast Micro Channel Architecture bus.

Pronrint - Will nnnonr in Foh lQO? l F F F 1 To1 Aronr in rnmm

no copy

35/00 Mbps

B/W 2000 -
(in Mbls) ,

1 2 5 10 20 50
Buffer Size
(KB)

Figure 12: Performance of test-wr, infinitely fast interface subsystem

5.3.3. Discussion of Results

The script described earlier was run on a lightly-loaded IBM RISC System/6000 Model 320. Benchmarking done by
another process showed little or no system performance degradation, even when competing for UO resources (e-g., a
several megabyte FTP copying data from a remote IBM PC/RT connected through an Ethernet).

It's clear fromeach of the three graphs that for small block sizes, software is the limiting factor to system per-
formance. Smaller block sizes force the application to make frequent system calls, which force the AIX system to
context-switch frequently. Larger block sizes reduce the per-byte software overhead, since the system calls are
amortized over a larger data transfer. As this overhead becomes relatively smaller, the data transfer rate dominates
the perfonnance, and since the software does not participate in actual transfer to and from the device, the hardware
performance limits discussed in Section 5.2 become the limiting factor. This can be seen by examining the relative
performance gain for each doubling in block size. The performance is almost doubled as block size is increased
from 1KB to 2KB. but the increase from 32KB to 64KB gives only a 10% gain.

For many sources of traffic, the 64KB blocks, and hence the performance figures, may be unrealistic. We are
studying device driver strategies which can give us good performance with smaller block sizes. One such idea is the
use of an area of shared memory to allow the kernel and applications to communicate without system calls, thus
eliminating their effect.

6. Conclusions and a Look to the Future

The hardware and software we have designed and implemented performs remarkably well. The cell manipulation
logic on the host interface could operate at over 1 Gbps with minor architectural and implementation technology
changes. Our approach of pursuing architectural solutions, such as concurrent operation (as in the parallelism in the
cell processing pipeline), allows us to take advantage of improvements in technology which would allow higher
clock speeds. The software experiments positing an "infinitely fast" device show that the software design scales
well to higher-performance platforms. We were somewhat frustrated in our performance goals by the implementa-
tion of the Micro Channel Architecture on the IBM RISC System/6000 Model 320. While the clock rates of the
current Micro Channel Architecture could support higher speeds (up to 320Mbps, multiplying data width by the
clock rate), the current VO Channel Controller design limits performance to about 140 Mbps. We were surprised to
discover this bottleneck, as we expected software or the Micro Channel Architecture bus itself to be the limiting fac-
tor. It is hard to blame the designers, as networking at this speed was probably not a consideration in bringing the
machine to fruition.

We have a number of short term research targets. The first is to interconnect a RISC System16000 to a

D~Cstation 5000 using our host interface and the host interface designed by Davie [17] of Bellcore. This experiment
will lead to the connection of RISC Systed6000s to Bellcore's Sunshine switch [19] in the context of the AURORA
collaboration. We are also porting the segmentation and reassembly hardware architecture for use as a Link
Adapter with the HP 9000/700 series of workstations equipped with the Afterburner network interface card [23]. To
provide additional connectivity we are working to provide support for the Class 5 AAL and the TAXI physical
layer.

Our colleagues at IBM Research have implemented an ORBIT [lo] card for the RISC Systeml6000's Micro
Channel Architecture; our use of the RISC System16000 suggests that internetworking PTM and ATM using the
RISC Systed6000 as a bridge would be a very interesting engineering experiment.

The longer-term research questions raised by these experiments are centered around workstation architec-
tures. The RISC Systed6000, unlike many current-generation workstations, has adequate memory bandwidth to
support high-speed networking. I/0 channel architectures such as the Micro Channel Architecture provide a number
of attractions, among which are access to other peripherals, structuring, concurrency control, and features such as
virtual address translation by the IOCC. Once the newer IOCC is available, the host's memory bandwidth should be
accessible to peripherals. Connection to a bus can aid portability across CPU and system architectures; analysis and
debugging of the host interface hardware was done on an IBM PSI2 Model 50 running MS-DOS.

It is unclear how the networking community will resolve its ferocious need for bandwidth, but there seems lit-
tle question that workstation vendors must provide higher performance access to computational resources and to
memory. This performance must be available to attached devices and networks, whether through UO channels or
novel attachment schemes.

7. Notes and Acknowledgments

Bruce Davie and other reviewers of this paper provided detailed and constructive criticisms of this work. Dave
Farber planted the seed which started the research, by suggesting the implementation of an ATM to Ethernet bridge.
Steve Heimlich helped with guidance in the initial phases of the device driver implementation and Fred Strietel-
meier helped us understand the IOCC.

AURORA is a joint research effort undertaken by Bell Atlantic, Bellcore, IBM Research, MIT, MCI, NYNEX,
and Penn. AURORA is sponsored as part of the NSFIDARPA Sponsored Gigabit Testbed Initiative through the Cor-
poration for National Research Initiatives. NSF (Cooperative Agreement Number NCR-8919038) and DARPA pro-
vide funds to the University participants in AURORA. Bellcore is providing support through the DAWN project.
IBM has supported this effort by providing RISC Systed6000 workstations, and this work was partially supported
by an IBM Faculty Development Award. The Hewlett-Packard Company has supported this effort through dona-
tions of laboratory test equipment.

RISC Systed6000, AIX, PC/RT, PSI2 and Micro Channel are trademarks of IBM. Ethernet is a trademark of
Xerox. m ~ o c h a n n e l and D~cstation are trademarks of Digital Equipment Corporation. UNIX is a trademark of
UNIX Systems Laboratories.

8. References

[I] 82C611,82C612 MicroCHlPS: Micro Channel Interface Parts, Chips and Technologies, January, 1988.

[2] Am99C10 256 x 48 Content Addressable Memory, Advanced Micro Devices, 1989.

[3] 1992 Data Book, Altera Corporation, 1992.

[4] H. Abu-Arnara, T. Balraj, T. Barzilai, and Y. Yemini, "Psi: A Silicon Compiler for Very Fast Protocol Pro-
cessing," in Protocols for High Speed Networks, ed. R. C. Williamson, North-Holland (1989).

[5] Ernmanuel A. Arnould, Francois J. Bitz, Eric C. Cooper, Robert D. Sansom, and Peter A. Steenkiste, "The
design of Nectar: A network backplane for heterogeneous multicomputers," in Proceedings, ASPLOS-111
(April 1989), pp. 205-216.

[6] H. B. Bakoglu, G. F. Grohoski, and R. K. Montoye, "The IBM RISC System/6000 processor: Hardware over-
view," IBM Journal of Research and Development 34(1), pp. 12-22 (January, 1990).

[7] David D. Clark, Van Jacobson, John Romkey, and Howard Salwen, "An Analysis of TCP Processing Over-
head," IEEE Communications Magazine 27(6), pp. 23-29 (June 1989).

Preprint - Will appear in Feb. 1993 IEEE J . Sel. Areas in Comm.

[8] D. D. Clark and D. L. Tennenhouse, "Architectural considerations for a new generation of protocols," in
Proc. ACM SIGCOMM '90, Philadelphia, PA (September 1990).

[9] D. D. Clark, B. S. Davie, D. J. Farber, I. S. Gopal, B. K. Kadaba, W. D. Sincoskie, J. M. Smith, and D. L.
Tennenhouse, "An Overview of the AURORA Gigabit Testbed," in Proceedings, INFOCOM 1992,
Florence, ITALY (1992).

[lo] David D. Clark, Bruce S. Davie, David J. Farber, Inder S. Gopal, Bharath K. Kadaba, W. David Sincoskie,
Jonathan M. Smith, and David L. Tennenhouse, "The AURORA Gigabit Testbed," Computer Nenvorks and
ISDN Systems 25(6), (to appear) (January 1993).

[l l] Eric Cooper, Onat Menzilcioglu, Robert Sansom, and Francois Bitz, "Host Interface Design for ATM
LANs," in Proceedings, 16th Conference on Local Computer Networks, Minneapolis, MN (October 14-17,
1991). pp. 247-258.

[12] Eric C. Cooper, Peter A. Steenkiste, Robert D. Sansom, and Brian D. Zill, "Protocol Implementation on the
Nectar Communication Processor," in Proceedings, SIGCOMM '90, Philadelphia, PA (September 24-27,
1990), pp. 135-144.

[13] IBM Corporation, IBM RISC System/6000 POWERstation and POWERservec Hardware Technical Refer-
ence, Micro Channel Architecture, IBM Order Number SA23-2647-00,1990.

[14] IBM Corporation, IBM RISC Systed6000 POWERstation and POWERserver: Hardware Technical Refer-
ence, General Information Manual, IBM Order Number SA23-2613-00.1990.

[15] IBM Corporation, "AIX Version 3.1 RISC System16000 as a Real-Time System," Document Number
GG24-3633-0, Austin, TX (March 1991). International Technical Support Center

[16] Bruce S. Davie, "Host Interface Design for Experimental, Very High Speed Networks," in Proc. Compcon
Spring '90, San Francisco, CA (February 1990), pp. 102-106.

1171 Bruce S. Davie, "A Host-Network Interface Architecture for ATM," in Proceedings, SIGCOMM 1991,
Zurich, SWITZERLAND (September 46,1991). pp. 307-315.

[18] Gary Delp, David Farber, Ronald Minnich, Jonathan M. Smith, and Ming-Chit Tam, "Memory as a Network
Abstraction," IEEE Nenvork 5(4), pp. 34-41 (July, 1991).

[19] J. Giacopelli, J. Hickey, W. Marcus, W. D. Sincoskie, and M. Littlewood, "Sunshine: A High-Performance
Self-Routing Broadband Packet Switch Architecture," IEEE Joumal on Selected Areas in Communications
9(8), pp. 1289-1298 (October, 199 1).

[20] David J. Greaves, Derek McAuley, and Leslie J. French, "Protocol and interface for ATM LANs," in
Proceedings, 5th IEEE Workshop on Metropolitan Area Networks, Taormina, Italy (May 1992).

[21] CCIIT Recommendation 1.363, B-ISDNATM Adaptation Layer (AAL) Specification, 1990.

[22] Hemant Kanakia and David R. Cheriton, "The VMP Network Adapter Board (NAB): High Performance Net-
work Communication for Multiprocessors," in Proceedings, ACM SIGCOMM '88 (August 16-19 1988),
pp. 175-187.

[23] John Lumley, "A High-Throughput Network Interface to a RISC Workstation," in Proceedings, IEEE
Workshop on the Architecture and Implementation of High-Performance Communications Subsystems (HPCS
'92), Tucson, AZ (February 17-19,1992).

[24] Jeffrey C. Mogul and Anita Borg, "The effect of context switches on cache performance," in Proceedings,
Fourth Intemational Conference on Architectural Support for Programming Languages and Operating Sys-
tems (ASPLOS-IV), Santa Clara, CA (April 8-1 1, 1991). pp. 75-85.

[25] Calton Pu, Henry Massalin, John Ioannidis, and Perry Metzger, "The Synthesis System," Computing Systems
l(1) (1988).

[26] K.L. Thompson, "UNIX Implementation," The Bell System Technical Journal 57(6, Part 2). pp. 1931-1946
(July-August 1978).

[27] C. Brendan S. Traw and Jonathan M. Smith, "A High-Performance Host Interface for ATM Networks," in
Proceedings, SIGCOMM 1991, Zurich, SWITZERLAND (September 4-6, 1991), pp. 317-325.

[28] Martina Zitterbart, "High-Speed Transport Components," IEEE Network, pp. 54-63 (January 1991).

Preprint - Will appear in Feb. 1993 IEEE J . Sel. Areas in Comm.

