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ABSTRACT

In a recent opinion poll of telecommunications executives, enterprise network management was identified
to be the top technological issue of the future. At present, however, there do not exist any viable solutions to
this critical problem. Therefore, considerable research efforts are being focused on the development of effective
network management tools. A management information databasc is the heart of a network management system
- 1t provides the interface between all functions of the network management system, and therefore has to pro-
vide sophisticated functionality allied with high performance. In this paper, we describe MANDATE (MAnag-
ing Networks using DAtabase TEchnology), a database system that is designed to effectively support the
management of large networks of the future. MANDATE uses special characteristics of network management
data and transactions, together with recent advances in database technology, to efficiently derive its functionality.






1. INTRODUCTION

In today’s global marketplace, most large-scale enterprises have widely-dispersed manufacturing
and commercial operations for both economic and political reasons. For example, General Motors has
manufacturing plants spread over the United States, Europe and Japan. In order to effectively coordi-
nate the functioning of a distributed enterprise, the subsidiary units need to be connected by a com-
munications network. As the enterprise grows in size, its communications requirements increasc
correspondingly. The enterprise networks of the future are projected to be large agglomerations of
sub-networks such as LANs (Local-Areca Networks), MANs (Metropolitan-Area Networks), WANs
(Wide-Area Networks), etc. These enterprise networks are expected 10 be heterogeneous in several
dimensions: First, the underlying physical transmission facilitics may be "mixcd-media”. For exam-
ple, a local-area network in Baltimore built with copper cables may be connectled to a wide-area net-
work covering the Eastern United States based on fiber-optic technology, which is linked to the Euro-
pean communications system by satellite. Second, different sub-networks may be purchased from
different vendors due to economic, performance, or historical reasons. For example, a company that
uses SNA networking technology supplied by IBM may take over a company that has AppleTalk as its
internal communication mechanism. Therefore, individual sub-networks may have different vendor-
specific network management systems. Third, the information being transmitted over the network may
be "multi-media”, that is, semantic differences exist in the types of the transmitted information. For
example, video images may be transmitted on the same channels as thosc carrying telephone calls.
Finally, individual users of the network may differ in their performance objectives. For example, users
needing the network for data transfer may require high throughput while others, whose concem is

voice communications, may require low call blocking probability.

For the above-mentioned reasons, future enterprise networks are expected to be highly complex in
their transmission, performance, and communication characteristics. Due to this complexity, and due
to the disparity of management systems for individual subnetworks, cfficient managecment of an enter-
prise network is an extremely challenging problem. At present, however, there do not exist any viable
solutions to this critical problem, which has been identified, in a recent poll of telecommunication
managers [Bort88], as the most important technological issue of the current decade. Therefore, there is
a clear need for research and development of network management tools. In fact, [Rose91] claims that
lack of a workable network management system is the key reason for preventing the deployment of

large OSI networks.

Newwork researchers are in common agreement that a (conceptually) global network database,
which contains all management-related data, is central 10 the development of an efficient network

management system (e.g. [Valt91, Bapa91, Terp92, Ball92]). The database is requircd to store

2.



information on network and system configuration, current and historic performance, trouble logs, sccu-
rity codes, accounting information, etc. [Kler88]. In OSI paﬂance, this database is called a Manage-
ment Information Base (MIB). A practical example of a MIB-based architecture is DEC’s EMA
(Enterprise Management Architecture), where a Management Information Repository is defined as a
central component of the Director [DEC89]. While there has been intensive research on network
management systems in recent years, comparatively little has been published with respect to the actual
design and implementation of a MIB. In this paper, we describe the design of MANDATE, a MIB
system for effectively supporting the management of large enterprise networks. Currently, MANDATE
is a paper design; however, we shortly plan to test and tune the design by implementing it on a "toy"

network and then follow up with a detailed performance study.

The guiding principle of the MANDATE design is to have the network operator(s) interact solely

with the database, that is, from the operator’s perspective, the database logically embodies the nct-

work!. Whenever the operator wishes to make changes in the network functioning, such as changing
the routing scheme, for example, the operator merely updates the appropriate variablcs in the database.
The actual implementations of these changes in the physical network are made by the database system.
This design approach allows the operator to concentrate on what has to be done, rather than on the
mechanics of implementing the decisions. A second important aspect of the MANDATE system is
that it is a complete bottom-up design, not a modified version of commercially available database sys-
tems. This results in a system architecture that is tailor-made specifically for network management. In
addition, this research approach, by identifying those features of databasc system design that are critical
to network management, helps industry network management groups in choosing the most appropriate
currently available commercial database system for their short-term needs. Finally, MANDATE uses
special characteristics of network management data and transactions, together with recent advances in

database technology, to efficiently derive its functionality.

The remainder of this paper is organized in the following fashion: In Section 2, the role of data-
base systems in network management is discussed in detail. In Section 3, the related work on database
support for network management is briefly reviewed. Then, in Sections 4 and 5, we describe the
design of the MANDATE database system. Section 4 focuses on the data and transaction modeling
aspects of MANDATE, while Section 5 details how MANDATE provides the required functionalities.
Finally, in Section 6, we summarize the main conclusions of the study and outline futurc research ave-

nues.

! This approach is also known as the "data-centric model of network management".



2. ROLE OF DATABASES IN NETWORK MANAGEMENT

The ISO/ANSI standards committee [Cher87] has classified the sophisticated functionality

required of network management systems into six categories, as described in [Feri88)]:

(1) Configuration Management: Defining, monitoring, and controlling network resources and data;
(2) Fault Management: Detecting, diagnosing, and recovering from network faults;

(3) Performance Management: Tracking and analyzing current and long-term network performance;
(4) Security Management: Ensuring only secure and authorized access to network resources;

(5) Accounting Management: Recording usage of network resources and generating billing informa-
tion;

(6) Directory Management: Supporting directories for managing network assets and user informa-
tion;

The functional architecture defined by these six categories clearly identifies the different facets of
network management and control, and enables a modular approach to be taken towards designing nct-
work management tools. Although this functional classification has been introduced primarily for the
future OSI-based network environment, it has received acceptance from the current vendors of network

management products [Feld89].

There is considerable overlap and interaction between the various management sub-systems
described above. For example, fault management and performance management arc closely interre-
lated, since poor performance is often the only visible symptom of a fault deep down in the system.
Similarly, detecting a faulty resource and isolating it from the remainder of the network requires both
fault management and configuration management. In order for the various management modules to
co-ordinate their activities, a common "public workspace” or database is necessary. Therefore, a logi-
cally integrated database is the heart of a network management system [Schw90] — it provides the
interface between all functions of the network management system, as shown in Figure 2.1. This data-
base, or MIB, is the conceptual repository of all management-related information. The MIB defines
the set of managed objects visible to a network management module and the network operators use the

MIB to communicate all commands to the physical components of the network.

2.1. Requirements on MIB

Ideally, the MIB module of an enterprise network management system should provide the [ollow-

ing functionalities:
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Homogeneous interface: Present a uniform interface to the operator that is independent of the

individual sub-network characteristics.

Graphical Interface: Allow the operator to view the network at any lcvel of detail that is, to

graphically navigate the MIB.

Scalable design: Add new sub-networks or increase the functionality of existing sub-networks

without requiring complete restructuring of the database.

Fault-tolerance: Operate 24 hours on-line since the MIB is the core of the network management

system.

Real-time Response: Store and process in real-time the "network health" data which is continu-

ously gathered by external network monitoring tools.

Temporal Views: Provide a "snapshot” of the network as of some real-world time instant. This

is necessary for post-mortem fault and performance analysis.

Active Mechanisms: Support triggers that recognize and respond to special network situations (as

reflected by the data) without requiring operator initiation.

High-performance: Minimize the overhead of network management on the performance of the
network. In addition, the network management performance should gracefully degrade under

overload conditions.

Decision Support: Answer "what-if" questions (for cxample, by executing on-line simulations),

thus helping the operator to evaluate the potential impacts ot different control decisions.

Embedded Control: Efficiently execute on-line control algorithms (for example, expert systcms)
to adapt the network routing, configuration, etc. in response 1o changes in the network traffic or

connectivity.

From the above list, we see that a MIB has architectural requirements (fault-tolcrance, scalability,

triggers), interface requirements (homogeneous, navigational), temporal requirements (real-time

response, temporal views), automation requirements (active mechanisms, decision support, control), and

performance goals. Clearly, the design of the MIB is key to providing all of these complex functional-

ities in an integrated fashion.

2.2

Need for new MIB Design

Since current database technology is fairly mature, one might think that using a popular database

management package (e.g. ORACLE, INGRES) should be sufficient for implementing a network

management MIB. There are several reasons, however, due to which existing DBMS products are not



satisfactory from the network management perspective:

(1) Standard off-the-shelf DBMSs lack many of the required MIB functionalities, such as the real-

time capabilities and decision support facilities described above.

(2) Conventional DBMSs have been developed for the commercial query processing environment and
are primarily geared towards monetary applications such as banking, where the focus is on naive
human users interactively performing transactions. In network management, however, software

programs control the network behavior with human intervention restricted to skilled opcrators.

(3) The objective of conventional DBMSs is to efficiently implement a transaction model that pro-
vides the properties of atomicity, serializability, and permanence. Howevcr, this transaction
model is unsuitable for processing of network management data, since these properties are not
always essential here. For example, in banking databases, all updates have to bc implemented for
the database to be correct, and this guarantee is provided by conventional DBMSs. In the net-
work environment, however, updates t0 "network health” information such as packet retransmis-
sion rates or node queue lengths are not "sacred” — failing to register updates has only perfor-
mance implications, but certainly no correctness implications. A MIB can use this property of
network data to derive some of its functionality. For example, under over-load conditions, it can
continue to provide real-time response to critical network monitors by selectively ignoring the

updates of less important sensors.

In summary, the network management environment is a specialized application area with unique
characteristics that can best be taken advantage of by a database system that is built specifically for this
environment. In this paper, we describe the design of MANDATE, a MIB that is tuned to the task of

enterprise network management.

3. RELATED WORK

While network management has been an important research topic for the past several years, com-
paratively little work has been done, however, with respect to the database management aspect of net-

work control. In this section, we provide a brief review of these papers.

In [Schw90], issues similar to those addressed in this paper wcre congidered. The focus in that
work was on evaluating how conventional relational DBMS packages would serve in the role of a
MIB, and suggesting network-related modifications to these conventional packages. In contrast, our

focus is on developing a new DBMS whose design is tailor-made for network management.

An overview of the issues involved in implementing the MIB interface definition laid down by

the OSI standards committee was presented in [Bapa91]. The issues considered included the choice of
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data model, the architecture for distributing network management data, and the mechanisms for ensur-
ing integrity of replicated data. While the paper describes several of the functionalities to be provided

by a MIB, it does not, however, provide a detailed design for achieving these functionalitics.

A Layered Attributed Graph was proposed as a formal mechanism to model a network in
[Valt91]. Different graphs, each representing a single layer of a seven-layer OSI network, are set into
a formal layering relationship resulting in a layered attributed graph. It was suggested that this
mechanism could be used as the basis for the design of a network management DBMS. The practical-

ity of this approach remains to be seen.

Very recently, several books that are devoted exclusively to network management have appeared
(e.g. [Terp92, Held92, Ball92]). These books highlight the importance of database tools in developing
network management systems, but focus more on the functionality requirements and evaluation of such

tools and less so on the design aspect and the mechanisms for realizing the functionality requirements.

Finally, there are numerous papers on expert systems for network management (see [Eric89] for a
detailed survey), all of which rely on an underlying knowledge base on which (o base their inferences.
These papers usually assume the existence of a database (typically in the form of rules) and develop

expert systems on top of this knowledge base.

4. DESIGN OF MANDATE

As mentioned in the introduction, the guiding principle of the MANDATE design is to have the
network operator(s) interact solely with the MIB, that is, from the operator’s pcrspeclive, the MIB
embodies the network, Therefore, whenever changes have to be made to the network topology, routing
scheme, switch software, etc., the operator merely initiates actions that update the corresponding data
objects in the MIB. The actual implementation of these changes in the physical nctwork are made by
execution processes that are activated or triggered by the database system. This design approach
results in modularity and efficiency since the operator does not need to know the internal mechanisms

of the physical network, but can focus, instead, exclusively on the logical operations of the network.

The first step in designing a database system is to understand the propertics (semantics) of the
data items that are resident in the database and to understand the propertics of the tasks (or transac-
tions) that store, process, and retrieve this data. In this section, we discuss the data and transaction

modeling aspects of the network environment.

4.1. Data Model

Network management data can be broadly classified into three types: Sensor Data, Structural

Data, and Control Data, as shown in Figure 4.1, which describes a high-level abstraction of the MIB

.
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data model. As explained in detail below, the structural data describes the physical and logical con-
struction of the network, the control data captures the operational settings of the nctwork, and the sen-

sor data represents the observed state of the network.

4.1.1. Sensor Data

The sensor (or measurement) data is the raw information thalt comes in from the network moni-
toring processes, and includes variables such as node queue lengths, retransmission rates, link status,
call statistics, etc. The sensor data provides the primary input for three of the six OSI network
management categories: Accounting Management, Performance Management, and Fault Management.
It represents the current "health” of the network in terms of the network’s usage and operational qual-
ity. Typically, each sensor’s data arrives at a regular frequency under normal network operation.
However, under fault or overload conditions, sensors may generate data at a higher rate than normal.
Another possibility is where a sensor supplies data only when an extraordinary cvent occurs (such as a
link going down), or only upon explicit request from the MIB control processes. For example, in the
Internet, trap-directed polling is employed for dealing with extraordinary network events [Rosc91].
Here, whenever an extraordinary event occurs, the managed network element sends a single trap to the
MIB, and the MIB is then responsible for initiating further interactions with the network clement.
Since the traps are sent unreliably, the MIB also employs low-frequency polling of managed elements

to determine their operational status.

Sensor data can be divided into two groups: Persistent and Perishable. The persistent data con-
sists of sensor data whose utility is long-term and therefore needs to be maintained permanently in the
database. Critical data such as customer billing information, network alarms, and security violations
belong to this category. Due to the requirement of permanence, persistent sensor data requires the
complete set of recovery mechanisms (i.e. logging, mirroring, checkpointing) similar to those provided
by commercial DBMSs.

Perishable sensor data, on the other hand, is data that is of "limited time utility" in the sense that
its current value is valid only while the network characteristic that is being monitored retains that
value. Data such as node queue lengths, retransmission rates, and most other dynamic performance
statistics fall into this category. There is no need for logging of these updates since the information
will be out-of-date by the time the MIB recovers from a failure. Also, unlike the persistent sensor
data, updates to perishable sensor data are not "sacred" — here individual samples may not be essential,
and ignoring updates occasionally does not have serious implications. While the perishable sensor data
has only limited time utility with respect to the immediate operation of the network, it might bc useful

to retain the history of values for long-term post-mortem performance and fault analysis. In order to
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fully implement this feature, a new version has to be created for each update of a perishable data item.
From a practical storage perspective, however, it may be necessary to implement a coarser granularity
of versioning, such that a new version is created only periodically (say, every tenth update) or only
when the value of the observed variable has changed appreciably from its immedialely previous
archived value (say, by more than 10 percent). Further, it may be sufficient to version only those vari-
ables that are of critical importance in tracking the state of the database such as the link utilizations,
the number of retransmissions, etc. and not version less important variables such as the number of

null-header packets or the byte count in individual packets.

In current large networks, the quantity of sensor data that is gathered may be as large as 20 to 30

gigabytes per day [Sprin92].

4.1.2. Structural Data

In contrast to sensor data, structural data is composed of "static" (slowly-changing) network
information such as the network topology, the configurations of the network switches and trunks, the
data encryption keys, the customer description records, etc. This data provides the primary input for
the remaining three OSI network management categories: Configuration Management, Security
Management, and Directory Management. A point to note here is that unlike sensor data, structural

data is valid even when the network is not in operation.

Most of the structural data is stored at system initiation time. This data is typically changed only
in response to significant network events such as adding a new switch to the system, or offering a new
type of customer service, or having a breach of security. The structural data needs to be recoverable
for monetary reasons (customer records are of vital importance), for efficiency rcasons (restart quickly
from a database crash), and for security reasons (accessing copies of data encryption keys remotely
over the network could lead to security compromises). In a typical large network, the quantity of
configuration data depends on the level of detail at which the network equipment, clc. arc represented,

and may be of the order of several gigabytes.

4.1.3. Control Data

The final data category is the control data, which captures the current setting of network tuning
parameters such as the maximum flows on individual trunks, the traffic split ratios on the output links
of switches, the routing table, etc. The process for changing an existing set of control settings is usu-
ally initiated by the network operators. Alternatively, the changes may be automatically triggered as a
function of the information contained in the sensor data. For example, if there is a serious security

violation (such as introduction of a virus) at a node, the links going through thc node may bc



automatically shut down pending investigation of the problem by the network operators. In addition to
the current parameter settings, the control database also stores a library of pre-defined control settings
(often called "profiles”) that reflect the appropriate settings for a variety of common traffic patterns and
network configurations. For example, different suites of seltings may be appropriate for day traffic and

night traffic.

In order to support the functionality requirement that operators should be able to obtain historical
views of the network state, it is necessary to maintain a record of changes that are made to the struc-
tural data and the control data. However, since these changes are rather infrequent (especially for the

structural data), we expect that the overhead of maintaining the update history will not be significant.

4.1.4. Data Storage Model

In the above discussion, we have described the semantics of the different categories of network
management data. A related issue is the choice of storage model, such as the relational model or the
object-oriented model, for physically storing the data. Relational models are used in most current data-
base systems since they are compatible with powerful data access languages that are at the same time
simple and declarative (¢.g. SQL) [U1l88]. However, the OSI standards definitions for the MIB inter-
face are based on an object-oriented paradigm [Rose91], which might suggest that an object-oriented
model is the appropriate storage model. Note, however, that the OSI standards refer only to the
abstract model of management information that is visible at the interface. Therefore, the actual imple-

mentation of the persistent storage model could be quite different and is a design choice.

The OSI definition of the MIB object class hierarchy, when graphed as an inheritance tree, is
broad and shallow [Bapa91]. Therefore, the inheritance mechanism of the object-oriented model,
which is its primary virtue, does not really come into play. Consequently, in the MANDATE design,
we provide an OSI-compatible object-oriented query interface but use a relational model for the physi-
cal storage in order to gain processing efficiency. Algorithms for mapping from an object-orienicd
interface to the equivalent relational storage model are available in the database literature [Vald86].
This approach to MIB design is similar to the common practice among designers of commercial data-
base systems of using the entity-relationship model during the design stage and then converting the

final design into a relational model at the physical level [UlI88].

4.2. Transaction Model

Having discussed the characteristics of network management data, we now move on to consider-
ing the various types of transactions that operatc on the scnsor, structural, and control databascs. The

traditional view of a transaction in commercial database systems is that it provides the so-called ACID
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property, that is, atomicity, consistency, isolation, and durability. In order to provide the ACID pro-
perty, an elaborate set of mechanisms such as write-ahead-logging, locking, checkpointing, ctc. arc
utilized in these database systems. However, in the network management domain, weaker forms of the
ACID property may be acceptable for certain data categories. By identifying and taking advantage of

these less restrictive forms, performance improvements can be realized.

4.2.1. Sensor Data

The transaction access model for the performance data (perishable sensor data) is divided into
two distinct groups, "updaters” and "readers”. The updaters are network monitoring tools, while the
readers are internal MIB processes. The updaters work in private data partitions since they update
different sets of network variables and they therefore do not interfere with each other. These updates
are different from typical database updates in that the updated value is independent of the current value
of the data object. Such updates are referred to as "blind writes" [Bem87]. Since the performance
data is versioned, readers can always read the data that they want without delay. Therefore, due 1o the

absence of Read-Write and Write-Write conflicts, no locking is necessary for the performance data.

For the accounting and fault information (the persistent sensor data), the updaters from the net-
work monitors append records to existing relations. The MIB internal processes may both recad and
update these persistent records. For example, a network monitor may register a trouble ticket in the
fault database. Once the fault is fixed, the trouble ticket has to be updated to reflect this fact. Duc to

the concurrent reading and updating, locking is necessary for the accounting and fault data relations.

4.2.2. Structural Data

The transaction access model for structural data is that it can be both read and written by the nel-
work operator(s) or by MIB control processes. Since it is possible that multiple processes may access
the same structural data simultaneously, concurrency control has to be implemented. However, since
the structural data is updated only very rarely, concurrency control is nol a major performance issue
with respect to transactions having to block while accessing data objects. Yet, it is wasteful to have all
transactions pay the computational overhead of invoking the lock manager for each access 10 a data
object given that regulated access is only rarely necessary. Therefore. we use the following solution in
MANDATE: The system maintains a special StructuralCC intcger variable which is initially set to 0.
Whenever the StructuralCC variable has a value of O no concurrency control is employed by transac-
tions accessing the structural data. For any other value of StructuralCC, newly-arriving transactions
have to follow the locking protocol. Any transaction that is potentially an updater of the structural

data increments the StructuralCC variable at arrival and decrements the variable when it has finished

11-



accessing the structural data. This means that read-only transactions which arrive when no update tran-
sactions are executing can access their data objects without incurring the overhead of locking. If an
update transaction arrives when the StructuralCC variable is 0, the StructuralCC variable is incre-
mented and all the read-only transactions that are currently accessing structural data are aborted and

restarted, thus ensuring that they too follow the locking protocol.

4.2.3. Control Data

The transaction access model for control data is that it can be both read and written by the net-
work operator or by MIB control processes. For example, if the operator observes from the sensor
data that some links are becoming excessively utilized, he/she¢ may decide to replace the routing
scheme that is currently employed by a different scheme. Another source of change for the control
data is that produced by re-executing the optimization algorithms to reflect changes in the network

configuration or activity profile, thus generating a new set of control settings.

Control parameters may be either under operator control or under automatic control. In the
former case, the operator manually determines the setting of the control parameter while in the latter
case, the MIB’s internal processes automatically update the control settings. A facility is provided in
MANDATE whereby a control setting may be moved from automatic control to manual control and
vice versa. This allows the operator to assume full control under emergency or unanticipated situa-
tions. At any given time, no more than one process can update a given sel of control variables. There-
fore, concurrency control is not required. However, the transaction construct is necessary for installing
the updates in order to ensure the atomicity of the updates (hall-implemented control settings may

cause havoc in the network).

4.3. Network Views

The MIB should be able at all times to provide the operator(s) with a view of the current state
(as best known) of the entire network. This is achieved by combining the current sensor information,
the structural information, and the control settings in effect, as shown in Figure 4.1. In MANDATE,
this idea is generalized to allow the operators to create different views of the network by incorporating
a view processor that provides the appropriate view to each operator based on the information in the
database. For example, the structural database holds information about the customcr sub-networks,
which includes details of the physical customer access links and the logical mapping of a customer (o
the public shared network. An operator trying to find the cause of a customer complaint would use a
view wherein the customer sub-network is superposed on the public network to determine whether the

fault lies in the public network or is local to the customer subnet. The network views also serve as
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inputs to the embedded simulation and optimization algorithms.

There is no clear-cut distinction between performance data and fault data since poor performance
can be viewed as a fault. Our definition, however, is that fault data is performance data that is
sufficiently critical that it should appear spontancously on the operator’s console without explicit
request, that is, fault data generates an alarm. Therefore, a message about the fault pops up on the

operator’s console whenever a new fault is indicated by the sensor data.

5. MEETING MIB FUNCTIONALITY GOALS

In the previous section, we have shown how the MANDATE design uses the special characteris-
tics of network management data and transactions to derive improved performance. We follow up in
this section by describing how MANDATE uses recent advances in database technology to achieve

some of the required MIB functionalities.

5.1. Architectural Issues

Although a MIB is logically a centralized repository of all network-management data, its physical
implementation in large networks will have to be distributed for performance reasons. We assume that
there is a central main database which stores all the structural data, thc most critical sensor data and
the major control settings, while the remaining network state data is stored in the local memories and
disks of network components. As shown in Figure 5.1, the recently developed concept of a Client-
Server architecture integrates well with this design. In this picture, the DB Server is the primary data
store site where all updates are synchronized for maintenance of consistency. The network switches
periodically propagate status data to the DB Server; the switches can also be quericd on demand. The
client modules are typically workstations that have a full DBMS functionality for cacheing views (sub-
sets) of the MIB data. At any point in time, a particular view is maintained in each client. In many
cases the client workstation will be supporting an operator who is responsible for real-time control
decisions. Therefore, updates to the MIB must be propagated to the client views in real-time. The
client and Server DBMSs cooperate and split the task of query processing. By placing client worksta-
tions at strategic nodes on the network, database access is performed in parallel from multipte client
databases, thereby alleviating the bottleneck at the primary server, Some of these clicnt workstations

may be located at customer sites as shown in Figure 5.1.

A second server is shown in Figure 5.1 which is used to mirror the database of the main server
and thereby provide fault tolerance. All updates are made on both servers. During normal operation,
query-retrieval is load-balanced between the two servers. If the primary scrver happens to fail, the

secondary server is promoted 1o be the primary server for regisiering updates.
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While the above client-server architecture appears on the surface to be an attractive design choice,
there are serious problems that may arise in an actual implementation: First, the activities of synchron-
izing and refreshing downloaded data are repeated very often in a nctwork and therefore, as the
number of sites increases, the processing throughput rapidly deteriorates due to blocking. Second,
because sites collectively carry a large variety of data subsets, each subset pertinent (o a client’s func-
tion, place of deployment, response requirements, etc., the database servers waste most of their capa-
city in keeping track of who-needs-what-when in order to propagate changes that affect the clients. On
the other hand, if all changes are broadcast to all clients, the clients would be incapacitated due to hav-
ing to check all updates received, whether or not they were relevant (most of them would be irrelevant
to each individual client). Therefore, the intelligence, namely who-needs-what-when, must be distri-
buted to the client workstations which would selectively request only relevant updates from the incre-

mental logs maintained at the servers.

Due to the above problems, a straightforward implementation of the client-scrver architecture is
not suitable for network MIBs as it requires enormous processing and data transmission. For example,
if queries used to generate and cache the data on the clients is re-executed on the server every time a
client needs to refresh its cache, and if the data is transmitted in its entirety, a good fraction of the
server’s and network’s capacity would have to be allocated to the support of the database itself rather
than the MIB. In the following subsections, we show how the problems can be resolved by enhancing

the basic client server architecture.

5.2. Incremental Computation Models

Here we present the recently developed concept of incremental computation models [Rous86].
Conventional computation models are based on re-execution, that is, the cntire computation is repeated
each and every time results are needed. Nothing is retained from previous executions and, often, even
the optimization of the computation is repeated. In contrast, incremental computation models utilize
cached results or access paths to generate these results [Rous91]. With thesc models, the results of
subsequent accesses to the same portion of the database are realized by applying the computation to the
input differentials, rather than re-executing the computation on the whole input.

The following example illustrates the above concept. Consider the following two tables:

C=Cust_call(cust _id, call_id, route_id)
R=Route(route_id, link id)
where C stores information about customer calls and R stores the routes that these calls go through.

Assume that a customer representative needs to know which customers use what links, so that if a link

goes down, the affected customers can be identified. This requires computation of the join C*R. In
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the incremental model, the C*R join is computed only once, as illustrated in Figure 5.2, and thereafter
maintained incrementally by using only the differential files 6C and R, 8(C*R)= 6C*R U C*dR (here

C and R refer to the updated versions of the relations).

Incremental computation can be performed on demand, periodically, or immediatcly. Each invo-
cation is performed on small input increments which permits a significant reduction of the response
time. The cost of computing is amortized over the life-cycle of the computed information, a concept
that is absolutely orthogonal to the re-execution model of transient and non-persistent software, which
is the norm. Since computation is done on increments, performance is improved by scveral orders of

magnitude.

5.3. Incremental Client-Server Architecture

The earlier-mentioned problems associated with distributed network database processing in
client-server architectures can be resolved by integrating the client-server architecture with the incre-
mental computation model. A recent study has shown that the client-server architecture in association
with the incremental computation model achieves two orders of magnitude performance increasc over i
standard client-server database architecture [Deli92]. More importantly, the incremental model seems
especially appropriate for the real-time maintenance of network views which are continuously being
used by the network operators and customers. This is because, with this model, keeping the vicws
uptodate requires only incremental computations and relieves the system from the burden of having to
recompute the entire view in each refresh cycle. Since, under normal network operations, the views
change only very slowly over time, the incremental model can realize great improvements in perfor-

rmance and minimize the overhead of maintaining the views on the other system functions.

In MANDATE, the client-server database architecture is combined with incremental computation

models to provide the following:
(1) Real-time refreshing of network views.

(2) Immediate update propagation from the primary site to its secondary ones; this guarantees (hat, in

case of failure, the secondary site is uptodate for promotion to be the primary site.
(3) A quick switch capability between a failing primary site and its backup secondary one.

(4) Parallel access of dynamically distributed data on the enhanced clients and significant reduction

on the servers 1/0.
(5) Preservation of the appropriate level of centralized control.

In summary, the incremental client-server architecture provides the functional advantages of a dis-

tributed architecture while retaining the performance of a centralized system.
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5.4. Network Control

The fundamental goal of network management is to be able to control the state of the network.
In the context of a MIB, a network control process is any mechanism that makes the network respond
to stimuli collected by various network sensors. Examples of such stimuli include traffic data along
links (e.g. load factors, retransmission rates), switching information (e.g. queue lengths, throughput),
and network faults. In current large networks, numerous sensors continuously monitor all aspects of
the network operation and generate vast quantitics of data. Though most of this data is routine, events
such as link failures and switch malfunctions may occur which require remedial action by the network
management system. The continued operation of the network in the presence of faults is achieved
through the activation of control processes which are triggered when the network is confronted with

unusual circumstances.

For network MIB systems, we classify network control mechanisms along two dimensions: local
versus global and automatic versus manual. We present below brief descriptions of each class with

illustrative examples.

5.4.1. Local Control

Local control mechanisms rely on local data collection and local decision models. By local we
refer to specific components of the network as opposed to the network as a whole. An example of a
local network control mechanism is the classical window-based flow control scheme for regulating
traffic between a source destination pair [Ephr89]. In this protocol, incoming packets are accepted as
long as the number of unacknowledged packets is below a pre-specified threshold. If the threshold is
exceeded, a local control mechanism turns off the acceptance of further traffic until a sufficient number
of outstanding packets are acknowledged. The advantage of local controls is that they incur little or no
communication overhead since decisions are made locally with local data and minimal information
exchange is involved. Due to this locality of operation, local control proccsses arc unaffected by
remote network failures and network congestion. In MANDATE, these local control processes are

implemented as simple triggers or rules in the MIB.

5.4.2. Global Control

Global control processes rely on network-wide data and global decision models. Examples of
global control mechanisms include routing algorithms that compute routes based on network-wide
traffic estimates. Clearly, global control processes are capable of optimizing network wide perfor-
mance characteristics. However, they are more vulnerable to nctwork failures and have greater infor-

mation overhead since decisions must be communicated across the network. Global controls are
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usually implemented as algorithms that accept input from the MIB server, perform large computations

and return the results to the MIB server.

It should be noted that a significant amount of research has been devoted to the development of
distributed implementations of network algorithms [Gall77, Tsit86]. These implementations attempt 10

develop local controls that approach global performance standards.

5.4.3. Automatic Control

Automatic controls monitor certain network performance data. When specific conditions are met,
control settings are automatically changed without operator intervention. For cxample, assume that a
particular switch has a local control process that allocates incoming calls between a source destination
pair equally among three different routes. If one of these routes becomes overloaded. an automatic
control process embedded in the switch is triggered such that only twenty percent of all new traffic is
sent along the saturated route and the remainder is split equally among the two other routes. Clearly,

implementing automatic controls require active database features.

5.4.4. Manual Control

Manual control processes either permit or require human intervention. Network operators alter
control settings in the network using these processes. In a sense, manual controls represent one of the
major justifications of the MIB. Clearly, the role of the MIB is o provide the network manager with
information that supports decision making regarding the setting of control parameters. This supporting
activity may be achieved passively by simply providing an interface between the network operator and
network status information. Alternatively, it may be achieved actively through an alarm system that

notifies the network manager of network conditions that require actions on his or her part.

The MANDATE design provides passive support for manual controls. Specifically, it provides

the operator with
(1) Flexible, fast access to network information.

(2) Embedded optimization and simulation algorithms, described in the next section, which support

control decisions.
(3) Facilities that implement specified control decisions.
MANDATE provides active support for automatic control by

(1) Supporting active database elements that can monitor sensor data and automatically sct local con-

trols.
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(2) Providing embedded optimization algorithms that analyze global network data and automatically

propagate control settings throughout the network.
5.5. Embedded Optimization and Simulation Algorithms

The presence of embedded optimization and simulation algorithms as well as the provision of
flexible, real-time access to them is a distinct advantage of the MANDATE approach. While some
present-day networks employ optimization algorithms to determine global control settings, MANDATE
allows for the generation of alternate versions of control settings as well as their detailed analysis using
simulation. These features should result in much higher quality control decisions on the part of net-

work operators.

This section deals with the interaction between embedded optimization and simulation algorithms
and the MIB. It is important to note that the network control processes which were discussed in the
previous sub-section are different from embedded algorithms. Network control processes comprise the
entire mechanism of controlling the process of network management. As such, they include the pro-
cess of data collection by network sensors, the invocation of daemons under certain conditions detected
by the sensors, the execution of control algorithms that accept the data as input and perform computa-
tions to derive control settings, the potential screening of the settings by human users, the potential
execution of simulation algorithms that output projected network performance based on the control set-
tings, the selection of the final settings and the final execution of these settings. Thus, nctwork control
processes are complex mechanisms of which optimization and simulation algorithms are only com-
ponents. However, optimization algorithms are an integral component of the global controller and

therefore require to be fully investigated.

Figure 5.3 below gives a more detailcd view of the interaction between the algorithms and the
MIB. Examples of optimization algorithms include algorithms that output routes, flow controls, access
controls, etc. In general, the optimization algorithm draws input from the MIB and outputs control set-
tings. The inputs to the algorithm consist of the current network state as embodied by some network
view and the existing control settings. We also envision the presence of archived control settings in
the MIB, which consist of old control settings and the corresponding network states for which they
were used. These also may serve as input to oplimizing routines which may find commonality
between the current network state and some old state and may be able to use old settings. The oulput
from an optimization algorithm will be used to update ecither an active sctting or a non-active setling.
Active settings invoke immediate execution of control action — in such a case, the algorithm would be
part of an automatic control process. Implementation of active settings may be achieved through
triggers or rules. Non active settings are usually examined by users who make the final decision on

implementation. That is, if the user wishes to use the control setting, he or she would transfer it from
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the non-active state to the active state. Whether the output of an algorithm is active or non-active is
determined by the network state that invoked the execution of the algorithm. For example a case of
emergency may trigger the algorithm in an active output mode while a less critical situation may per-
mit non active output and the subsequent examination of the proposed control setting by the operator.
In the latter case, the user may wish to run the algorithm several times, possibly with different parame-
lers and compare the output. Typically in that case, as a resull of multiple invocations of the algo-
rithm, there would be several versions of control settings present leading to the need of a version con-
trol scheme. The role of simulation is to evaluate a proposed central setting (one or more of the ver-
sions). The inputs to the simulation consist of a network state, an existing control setting and the pro-
posed control setting. The output is a detailed analysis of the effect on performance of using the pro-

posed control setting.

The general environment that must be supported by the sysiem is one in which a user can
invoke a given optimization algorithm several times or can invoke alternate algorithms in order to pro-
duce different versions of the output (proposed control settings). The user would typically examine
and possibly modify various versions and also may wish to invoke a simulation algorithm that pro-
duced a detailed analysis of the proposed control setting. Finally, the user would choose one of the
versions as a "final version” which in our framework would correspond to making the central setting

active.

5.6. Temporal Requirements

An important functionality that has to be provided by a network MIB is that of supplying tem-
poral views of the state of the database, that is, a description of the network state as of a specific point
in time. This is necessary in order to conduct post-mortem fault analysis or to profile performance
trends. Therefore, the network MIB must support the retrieval and analysis of network data describing
the state of the network as it was known at a particular location and time. In addition, the system
must support the analysis of change of network state data in order to provide information describing
how the network behavior at a particular location changed over time. Such information constitutes an

important basis for long-term planning and fault analysis.

In typical conventional database systems, transactions are usually processed in a first-come-first-
served manner and the objective is to minimize average transaction responsc times. In a network
management database system, however, data from numerous sources is clectronically arriving into the
system in a continuous fashion [Schw90]. Due to the high rate of data arrivals, delays in processing
the data streams will cause the data streams to back up and the database will cease (0 provide an accu-

rate timely picture of the network state. Therefore, in contrast to a conventional DBMS where the goal
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usually is to minimize transaction response times, the emphasis in the network MIB is on processing

the database updates in real-time.

Here we discuss how MANDATE provides temporal views to the network operators, and how

the network state information is installed in the database in real-time.
5.6.1. Temporal Views

A requirement for transactions that access network state information is that they havce to enforce
temporal consistency, that is, the data items they read should have existed in the real-world at approxi-
mately the same time. For example, using the link utilizations that were valid ten seconds back in
association with the node queue lengths that were measured ten minutes ago clearly makes no sense.
Therefore, the "right” versions of data items have to be used in processing cach query. Note that tem-
poral consistency is evaluated with respect to the real-world time that the data was valid, not the time
at which the data was installed in the database. (These two time concepts are referred to as valid time
and fransaction time, respectively, in the database literature [Sno85].) As a consequence, the source
and time of measurement of network data are important attributes of data collected in a network

management system.

Two types of temporal queries are possible: (a) Historical queries: These querics expect their
answer to be based on the real-world network state as of some time in the past. (b) Current queries:
These queries expect their answer to be based on as recent a real-world network state as possible. In
order to help maintain temporal consistency for queries, each new version of a data item is times-
tamped with the real-world time of occurrence of the event or measurement. The valid time of the k-th
version of data item d is denoted by E,(d). Also, the system maintains a table describing the periodi-
city P, of updates for each data item d that is periodically updated by the network sensors. When a
user submits a historical query that requires the network state as of some carlier lime 7,, for each
data item, the version V, of the data item which satisfies the constraints £y (d) < T, and E;,((d) > T,
is used for computing the answer. For periodically updated data, if the k+1-th version has not yet
been installed in the database, then the V; version is used if 7, < E,(d) + P,. Otherwise, thc query
processor waits for the V., version to be installed and then uses it. If blocking cannot be tolerated,
however, then an alternative is to rerun the query as of an carlier time than 7,, informing the operator
of this change. A guaranteed earlier time for which the query will run through without blocking for
unavailable data is —Max (P;) where ¢ is the current time and P; are with refercnce to the periodically
updated data items that the query wishes to read. This scheme can be used for processing current

queries in a timely manner.
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5.6.2. Real-Time response

There are two types of network updates that arrive to the MIB, periodic and sporadic. The
periodic data is the performance data that arrives in a regular fashion, whereas the sporadic data is the
billing and fault information which arrives in random fashion based on the network’s use and opera-
tional status. Since the sporadic data is critical data that has to be registered in the database, higher
priority is given by MANDATE to processing these updates as compared to processing the periodic
updates. In addition, MANDATE uses sufficient resources and carliest deadline scheduling [Liu73] to

ensure that these sporadic updates are always registered in the database.

Under normal operations, when the sporadic updates are arriving at a normal rate, MANDATE
ensures that all the periodic updates can be entered into the database system. This is done in the fol-
lowing manner: For each periodic sensor, S;, the system keeps information about its computation
requirement C; and period P;. The deadline of each of these periodic update transactions is the time
of the next triggering, that is, each task must be completed before the next instance of it occurs. If
hardware restrictions require the system (o use fixed priority scheduling, then in order to ensurc that all

updates are registered, it is sufficient to use a processor with sufficient speed such that
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where N is the number of periodic sensors, in conjunction with rate-monotonic scheduling (see [Liu73]
for details). On the other hand, if dynamic priority scheduling is possible, then the above condition

can be relaxed to employing a processor with sufficient speed such that
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in conjunction with earliest-deadline scheduling (see [Liu73] for details).

Under periods of stress loading or emergency situations, which is when the sporadic updates
arrive at a much higher rate than normal, the system starts to miss the deadlines of periodic updates
since sporadic updates have higher priority than periodic updates. To minimize the number of missed
deadlines under these overload conditions, MANDATE uses the Adaptive Earliest Deadlinc scheduling
policy described in [Hari91], which has been shown to provide robust good performance undcr a

variety of workloads and system loading conditions.
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6. CONCLUSIONS

The Management Information Base (MIB) of a network management system is a critical com-
ponent since it provides the interface between all functions of the network management system. In this
paper, we presented the design of MANDATE, a database system which is geared towards effectively
supporting the management of large networks. To the best of our knowledge, this is the first paper to
present a detailed architectural design of a network MIB. MANDATE provides the network operators
and customers with a MIB interface that allows them to control and evaluate the network operations by
interacting solely with the database. The actual implementation of the control decisions in the physical

network are handled by MANDATE’s internal processes.

We showed here that the network management environment is a specialized application area with
unique characteristics that can best be taken advantage of by a MIB that is designed specifically for
this environment. To this end, MANDATE’s design was built bottom-up, unlike other designs dis-
cussed in the literature which basically add network-related modifications on top of commercially avail-

able general purpose database systems.

The underlying structural framework of MANDATE is a client-server architecture which is
enhanced by the use of an incremental computational model. This architecture results in a high-
performance interface which provides the functional advantages of a distributed architecture while

retaining the performance of a centralized system.

We presented a detailed analysis of the different categories of data that are stored in the MIB.
Based on this analysis, we showed that concurrency control and recovery protocols, which are funda-
mental mechanisms in conventional database systems, are not necessary for all categories of network
management data. This insight was used in the MANDATE design to selectively eliminate con-
currency control and recovery overheads. We expect that these optimizations will result in

significantly improved real-time performance.

A rich variety of control structures are provided in the MANDATE system. Both local control
mechanisms, which control specific network components, and global control mechanisms, which con-
trol network-wide performance, are supported. For each control mechanism, the user can ¢ither control
it manually or have the MANDATE system control it automatically. Another distinctive feature of the
MANDATE design is its support for embedded network simulation algorithms and optimization algo-

rithms, which are essential for deriving high-quality control decisions.

Network operators and customers interact with MANDATE through a view-based interface. Both
customers and operators obtain views of the network that are constructed according 1o their individual

requirements by the view processor of the MANDATE system. These views are maintained on a real-
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time basis, an essential feature for viable network management systems. In addition, MANDATE pro-

vides the network operators with a facility for obtaining historical views of the database state. These

views are extremely useful for post-mortem analysis of the causes for network faults and also to derive

long-term performance profiles.

In summary, MANDATE uses special characteristics of network management data and transac-

tions, together with recent advances in database technology, to efficiently derive its functionality.

Currently, MANDATE is still a paper design. As part of our future research, we plan to test and tune

MANDATE by implementing it on a "toy" network and to follow this up with a detailed performance

study.
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