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Predictive Dynamic Bandwidth 
Allocation for Efficient Transport 

of Real-Time VBR Video over ATM 
Song Chong, San-qi Li, Member, IEEE, and Joydeep Ghosh 

Abstract- This paper presents a novel approach to dynamic 
transmission bandwidth allocation for transport of real-time 
variable-bit-rate video in ATM networks. Video traffic statistics 
are measured in the frequency domain: The low-frequency signal 
captures the slow time-variation of consecutive scene changes 
while the high-frequency signal exhibits the feature of strong 
frame autocorrelation. Our queueing study indicates that the 
video transmission bandwidth in a hite-buffer system is es- 
sentially characterized by the low-frequency signal. We further 
observe in typical JPEGMPEG video sequences that the time 
scale of video scene changes is in the range of a second or longer, 
which localizes the low-frequency video signal in a well-defined 
low-frequency band. Hence, in a network design it is feasible to 
implement dynamic alIocation of video transmission bandwidth 
using on-line observation and prediction of scene changes. Two 
prediction schemes are examined: recursive least square method 
and time delay neural network method. A time delay neural 
network with low-complexity high-order architecture, called “pi- 
sigma network,” is successfully used to predict scene changes. 
The overall dynamic bandwidth-allocation scheme presented in 
this paper is shown to be promising and practically feasible in 
obtaining efficient transmission of real-time video traffic. 

I. INTRODUCTION 
TM technology offers a great flexibility of transmis- A sion bandwidth allocation to accommodate diverse de- 

mands of individual connections. A major application in 
ATM networks is to provide real-time loss-free transmis- 
sion of variable-bit-rate (VBR) video. A key issue in video 
transmission design is to find an effective transmission band- 
width for guaranteed quality-of-services (QOS). Consider a 
single-link finite-buffer system shown in Fig. 1. By stochastic 
modeling, video traffic can be represented by a stationary 
random process. The notion of effective bandwidth, measured 
in cells per unit time, is then equivalent to the minimum 
transmission bandwidth allocated to the input traffic subject 
to QOS constraints. Limited analytical solutions are available 
on transmission bandwidth evaluation, usually with simplified 
input traffic models and under the asymptotic assumption of 
large buffer size and small loss rate 111, [ 2 ] .  Finding the 
effective bandwidth for video is especially difficult for the 
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Fig. 1. A single-link finite-buffer system. 

following two reasons. First, a real VBR video traffic exhibits 
highly bursty and nonstationary properties that greatly com- 
plicate the queueing analysis. Second, the effective bandwidth 
must be designed to handle the worst-case input scenario in 
order to avoid buffer blocking or excessive delay. This extreme 
case is difficult to predict due to its infrequent occurrence and 
its dependence on individual sources. 

In practice, the transmission bandwidth requirement needs 
to be assessed using on-line traffic measurement, particularly 
in live services. The study in [3] indicates that one of the most 
important input statistics to measure for queueing analysis is 
power spectrum. Two basic concepts were discovered in [4] 
on examining input traffic in the frequency domain. First, the 
transmission bandwidth in a finite-buffer system is essentially 
determined by the low-frequency flow of input traffic. Second, 
the low-frequency flow basically stays intact as it travels 
through the finite-buffer system. 

In this paper, we introduce the concept of dynamic band- 
width allocation, which is a major difference of our approach 
from most existing techniques. Instead of allocating a static 
effective bandwidth, we propose to adaptively change the 
transmission bandwidth using on-line measurement of video 
demand. For experimental studies, we choose data sequences 
coded from the movie “Star Wars” by using JPEGMPEG 
compression techniques [6], [7]. Such a full-motion enter- 
tainment movie represents a class of difficult video services 
to support in ATM networks. Our statistical analysis shows 
that video traffic is well-separated into two frequency regions: 
The low-frequency signal captures the slow time-variation of 
consecutive scene changes while the high-frequency signal 
exhibits the feature of strong frame autocorrelation. It is the 
low-frequency signal that essentially determines the on-line 
demand of video transmission bandwidth. In other words, 
once the transmission bandwidth is adaptively changed to 
accommodate the low-frequency signal, the whole video signal 
can be transmitted via finite-buffer system5 with negligible 
queueing delay or cell loss. 
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There is a tradeoff between transmission efficiency and 
protocol processing efficiency in the design of a dynamic 
bandwidth-allocation scheme. On one hand, a higher trans- 
mission efficiency can always be achieved by more frequent 
adaptation of the bandwidth to the low-frequency signal. 
On the other hand, since dynamic bandwidth allocation is 
often performed at the network layer based on global traffic 
measurement, the frequency of bandwidth adaptation is limited 
by the network-protocol processing time. Our study indicates 
that the low-frequency video signal typically stays in a well- 
defined frequency region, i.e., w < 27r rad. The corresponding 
time scale of scene changes will be in the range of a second or 
longer. Hence, our analysis shows that the video-transmission 
bandwidth olfly needs to be adapted at the interval of several 
hundred mil#seconds, which is feasible in a practical net- 
work design. Note that the increased bandwidth demand of a 
video virtual circuit (VC) can be accommodated by various 
network protocols. For a link-layer protocol, the schemes 
such as adaptive link capacity partitioning among individual 
VC’s, low-priority cell discarding and blocking (regulating) 
of non-real-time VC’s, can be employed. For a network- 
layer protocol, a dynamic (or periodic) rerouting scheme can 
be used to obtain the extra bandwidth without violating the 
other VC’s QOS [41, 151. A technique of frame-by-frame 
dynamic bandwidth allocation has been studied recently for 
the transmission of an MPEG video source [7]. While its on- 
line bandwidth-estimation scheme is simple, its application to 
control of network-wide video traffic flow is limited by the 
frequent adaptation of bandwidth. 

A key question then is how to effectively predict abrupt 
scene changes in the incoming video traffic using on-line 
low-frequency flow measurement. A better prediction scheme 
allows a relatively longer lead time to predict any scene 
changes, which otherwise will cause buffer congestion if the 
bandwidth is not properly adapted. Two prediction schemes 
are proposed and compared in this paper. One is based on 
the recursive least square (RLS) method. From linear filter 
theory, the RLS adaptive algorithm has the advantage of 
fast convergence and robustness over the least mean square 
(LMS) adaptive algorithm [IO].  The other scheme takes the 
artificial neural network (ANN) approach. In particular, we 
choose a low-complexity high-order architecture, called “pi- 
sigma network (PSN),” for the construction of a time-delay 
neural network (TDNN) [ 121. 

Each scheme has its own strength and weakness in predic- 
tion design. In contrast to the RLS method, the ANN approach 
requires a training stage with off-line computation and its 
solution may not be generally applied. However, the ANN 
approach has the advantage of much less on-line computation 
time and no initial transient state for convergence. Also, the 
PSN-TDNN scheme is a high-degree polynomial prediction 
method whereas the RLS scheme is a linear prediction method. 
In our application we find that the PSN-TDNN scheme, trained 
on one video segment, can generally be applied to other video 
segments collected from different scenes. Furthermore, the 
prediction lead time of the PSN-TDNN scheme is found to 
be longer than that of the RLS scheme for achieving virtually 
identical queueing performance. 

Several examples of using ANN approaches for on-line 
prediction can be found in the literature, including financial 
forecasting in stock markets, electric-load forecasting in power 
networks, traffic prediction in transportation networks and fault 
prediction in process control [ 131-[ 151. An ANN approach 
was also proposed for call-admission control and link-capacity 
allocation in ATM networks [ 161, [17]. This paper is the first 
attempt to use the ANN approach for bandwidth prediction 
in multimedia communication environment. Our experimental 
study shows the efficiency and robustness of the PSN-TDNN 
scheme to predict scene changes in VBR video. 

One can implement the dynamic bandwidth allocation in 
two different operations. In synchronous operation, the band- 
width is periodically adapted at a fixed adaptation interval 
based on the prediction of video demand. In asynchronous 
operation, the bandwidth will be adapted if and only if 
the demand exceeds a preassigned level. The asynchronous 
operation can significantly reduce the adaptation frequency at 
the cost of increasing transmission bandwidth. 

The paper is organized as follows. In Section 11, we in- 
troduce the concept of dynamic bandwidth allocation and 
demonstrate its superior performance over the static allocation. 
Both RLS and PSN-TDNN prediction schemes are described 
and their complexities are examined in Section 111. Also in 
Section 111, we study the prediction performance of the two 
shemes in video application with emphasis on the PSN-TDNN 
scheme. The queueing performance is obtained in Section 
IV as the two prediction schemes are used for the dynamic 
bandwidth allocation. The paper is concluded in Section V. 

11. DYNAMIC BANDWIDTH ALLOCATION 

None of the analytical models available today can ad- 
equately represent VBR video traffic. Here we choose a 
full-motion movie, “Star Wars” released from Bellcore [6], 
as a testbed for our study. It is coded by a JPEG compression 
technique, i.e., 8 x 8  discrete cosine transform (DCT) and 
Huffman coding without motion compensation. The average 
bit rate is 5.3 Mb/s. The original data are recorded in bytes 
per slice (1.4 ms) for approximately 2 h. There are 16 lines 
per slice, 313 slices per frame, and 24 frames per second. 
The entire data sequence is divided into 60 consecutive pages 
for approxirnately two minutes per page. In ATM network 
application, bytes are converted into cells with each cell 
consisting of 44 bytes of video signal plus 9 bytes of protocol 
overhead. 

Our interest here is in the dynamic behavior of the video 
cell sequence. Fig. 2(a) shows a typical 2-min JPEG video 
traffic (page 56 of “Star Wars”) measured in cells per slice, 
denoted by ~ ( t )  at time 1. The maximum number of cells 
per slice wilhin this segment is 52.9 and the average is 24.3 
cells per slice. Also shown in Fig. 2(b) is the corresponding 
power spectrum. Two key observations are made about the 
JPEG video power spectrum. First, the spectral spikes that 
appear at 2 4 x 2 ~  rad and it5 harmonics reprehent the frame 
autocorrelation. Second, the rest of the video power, located in 
a very low frequency band typically less than 2n rad, captures 
the strong correlation of scene changes. 
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Fig. 2. (a) A typical 2-min JPEG video traffic where the mean rate and 
peak rate are, respectively, 24.3 and 52.9 celldslice (page 56). (b) The 
corresponding power spectrum. 

The recent study in [4J indicates that the effective bandwidth 
in a finite-buffer system is essentially determined by the low- 
frequency characteristics of input traffic. Especially for video, 
the effective bandwidth must be designed to cope with the 
worst scenario of consecutive scene changes, which is difficult 
to predict when the connection is initially set up. Note that 
VBR video traffic possesses highly bursty and nonstationary 
properties. An effective approach is to dynamically allocate 
transmission bandwidth using the on-line observation of video 
scene changes. On applying the above 2-min signal : ~ ( t )  to 
a low-pass filter at the cutoff frequency wc = ZT rad, Fig. 
3(a) shows the filtered signal -c .~( t )  that characterizes the 
scene changes. The average and peak input rates of  CL(^) 
are equal to 24.3 and 42.0 cells/slice, respectively. While a 
variety of low-pass filters are available, here we choose a 
class of finite impulse-response filters with a Kaiser window. 
The time unit in the digital-filtering process is one slice. As 
one will see, it is this T L ( ~ )  that essentially captures the on- 
line demand of video transmission bandwidth. For simplicity, 
we first consider an ideal situation where the transmission 
bandwidth is instantaneously changed with Z L ( ~ ) ,  as described 
in Fig. 3(b). In other words, the transmission bandwidth at 
time t .  denoted by p ( i ) ,  is defined as a function of z ~ ( 1 ) .  We 
further assume 

where C is a control parameter. From the facts E[p( t ) ]  = 
C E [ z ~ ( t ) l  and E [ z L ( ~ ) ]  = E[3.(t)]. one can get C = 
p-’ where p denotes the average link utilization. Since the 
bandwidth is instantaneously adapted by the filtered signal, 
the impact of video scene changes on the queueing process 
itself has now been removed. Note that we need G > 1 for 
E [ p ( t ) ]  > E[z( t ) ] ,  i.e., some extra transmission bandwidth is 
required for the finite buffer to effectively absorb the rest of 
the high-frequency signal. 

Let us now examine the effect of low-frequency video signal 
on queueing performance. Consider a queueing system with 
infinite buffer capacity to transmit the above 2-min video 
using the dynamic bandwidth-allocation scheme at different 
cutoff frequencies. The reason for using an infinite buffer here 
is to measure both buffer size requirement and worst-case 
delay according to different cutoff frequencies. The control 
parameter G is fixed at 1.25, which is equivalent to the 
average link utilization p = 0.8. The simulation results are 

o- 
time (sec) 

low-pass filter 

(a) (b) 

Fig. 3. (a) Low-frequency video signal filtered at w, = 2a rad, where the 
mean rate and peak rate are, respectively, 24.3 and 42.0 celldslice (page 56). 
(b) Ideal dynamic bandwidth allocation by low-frequency signal. 

TAB1.E I 

IN THE WORST (BEST) SC-ENARIO BY DYNAMIC- 
BANDWIDTH ALLOCATION AT C = 1 . 2 5  (PAGE 56) 

EFFECT OF CUTOFF FREQUENCY ON QuruFING PFRFORMANCE 

wc (radians) 

r-l x 2% 

12x2r  

l x 2 n  

0 

(cells) up (cells) 

9.0 (0) 8.4 (0) 

10.2 (1.0) 10.0 (4.2) 

11.1(2.6) 13.1(9.1) t 257.5 (247.7) 1208.5 (1207.5) 

52 (0 )  
129 (100) 

224( 195) 

9610 (9580) 

summarized in Table I, where ij, og and qrnc2, represent the 
mean, standard deviation, and maximum of queue length 
in cell unit, respectively. Note that while the video signal 
was recorded in the format of number of cells per slice, 
the queueing process must be evolved in the time unit of 
cell-transmission slot. In converting the time unit from slice 
to slot, we consider two extreme scenarios. One is for the 
“worst scenario” where all the cells generated in each slice 
are assumed to arrive at the beginning of the first slot in 
that slice. The other is for the “best scenario” where the cell 
amvals in each slice are assumed to be evenly distributed 
on all the slots of that slice. The queueing solutions in the 
two extremes provide us the upper and lower bounds of 
the exact queueing solution. When we choose w, = 2 ~ 7 - l  
where T denotes one slice interval, the bandwidth will be 
adaptively changed with C x ~ ( t )  in every slice interval. As 
a result, the queue will always be empty in the best sce- 
nario. In the worst scenario, we get ((I, uq, qnlas)=(9.0, 8.4,52) 
due to the batch cell arrival at the first slot of each slice 
interval. When w, is reduced to 12x27r, the queueing solu- 
tions increase to (1, oq. y,,,)=(10.2, 10.0, 129) in the worst 
scenario, which is contributed by the high-frequency video 
signal (i.e., the frame autocorrelation). In the extreme, one can 
take wc =O to completely eliminate the dynamic bandwidth 
allocation. Then, due to the strong impact of low-frequency 
video signal, the queue is drastically increased as measured 
by (ij, oqr y,,,)=(257.5,1208.5,9610) in the worst scenario. 
It is obvious that the low-frequency video signal, which 
captures the slow time-variation of consecutive scene changes, 
dominates the queueing performance without implementing 
the bandwidth adaptation. 

In practice, the transmission bandwidth cannot be adapted 
too frequently but is limited by the network-protocol process- 
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ing time. In our case we choose w, = 2a at which the queueing 
performance is given by (ij, oq! qnLax)=(ll . l ,  13.1,224). For 
the average rate of the 2-min video, equal to 24.3 cells/slice, 
the maximum queue length of 224 cells at C = 1.25 (or 
p = 0.8) is equivalent to the maximum delay of 10 ms, 
which is expected to be tolerable in video services. Notice 
that the time-varying scale of the video signal in the low- : slalic. 

frequency band w < 27r is at least 1 s long, which makes the 
implementation of dynamic bandwidth allocation in a practical queue length (cell) queue length (cell) 

network design feasible. (a) (h) 
Let us examine the performance improvement of dynamic 

bandwidth allocation over static allocation. The static alloca- 
tion assigns a fixed transmission bandwidth to each connection 
during the entire service period. In order to prevent excessive 
delay or cell loss, the static bandwidth has to be designed 
to cope with the worst input scenario. The most conservative 
static allocation is to reserve bandwidth by the peak input 
rate, which would lead to the excessive use of transmission 
capacity with zero buffer size as in the circuit-switched design. 
In our case, the video signal was originally collected at slice 
interval. If the bandwidth is statically assigned by the peak 
input rate of the above 2-min video segment measured at 
slice interval, the link utilization will be as low as 0.46. The 
corresponding queueing solutions in the worst scenario are 
given by (ij, oq, qmax)=(5.2, 8.8,52) (see Table 11). The study 
in 141 indicates that the effective transmission bandwidth in 
a finite-buffer system is essentially determined by the peak 
of the properly filtered input rate. Consider the filtered-video 
input rate : I : L ( ~ )  at w, = 27r. By the static allocation. the 
bandwidth will be assigned by the peak of x ~ ( t ) ,  which leads 
to the link utilization p = 0.58 and queueing performance 
(ij: oy, q,,Ln.l.)=(6.9, 9.5, 138). In contrast, when the bandwidth 
is dynamically adapted with C z ~ ( t ) ,  where G = 1.25, the link 
utilization can be as high as p = 0.80 with a moderate increase 
of buffer capacity. As the results are compared in Table 
11, the dynamic bandwidth allocation designed at w, = 27r 
can effectively improve the video-transmisson efficiency. Also 
compared in Fig. 4 are the queue distribution functions of the 
corresponding three bandwidth-allocation schemes. Note that 
the improvement with dynamic allocation can be more signif- 
icant if a longer video segment is chosen. This is because the 
static allocation scheme needs to assign the bandwidth equal 
to the filtered peak input rate of the chosen video segment. In 
practice, it is difficult to identify the filtered peak input rate of 
each individual video source at the call admission stage, which 
makes the static allocation scheme hardly implementable. By 
comparison, the dynamic bandwidth allocation is designed on 
the basis of on-line traffic measurement. Not only does it 
effectively improve the transmission efficiency, but also its 
implementation is highly feasible in practice. 

Unlike JPEG compression, the MPEG compression tech- 
nique exploits temporal (i.e., frame-to-frame) redundancy 
present i n  all video sequences [SI. There are three types of 
frames in an MPEG video depending on motion-compensation 
schemes: I frame by intraframe encoding, P frame by motion- 
compensated prediction, and B frame by motion-compensated 
interpolation. For comparative study, both MPEG and JPEG 
video sequences are collected from the same 3.5-min segment 

Fig. 4. 
56). (a) Worst scenario. (b) Best scenario. 

Queue distributions in static and dynamic bandwidth allocations (page 

TABLE I1 
QUEUI ING PERFORMANCE. IN STATIC AND DYNAMIC BAVDWIDTH 

ALI OCATIONS IN THI WORST (BEST) SCEVARIO (PAGE 56) 

Static Allocation Dynamic Allocation 

(at wc = 2rr-I) (at w, = 2n) 

11.1 (1.9) 

13.1 (9.1) 

4moz 138 (97) 224 (195) 

(a) ib) 

Fig. 5 .  (a) An MPEG video traffic. (b) The corresponding power spectrum. 

(pages 2, 3) of the “Star Wars” [7]. In the MPEG coding, only 
I .  P frames were used since the interpolation for B frames is 
not appropriate for real-time applications due to its noncausal 
property. In our experiment, each I frame is followed by 15 
consecutive P frames and there are 24 I and P frames/s. 
The average rate of the MPEG and JPEG sequences i u  2.3 
Mb/s and 3.5 Mb/s, respectively. Fig. 5(a) shows a part of the 
MPEG video sequence, which is measured in cells per frame. 
As one can see, the burst of I frames occurs periodically at 
the interval of 16 frames, which in some degree will cause 
the queueing-performance degradation. The power spectrum 
of the MPEG video sequence is also plotted in Fig. 5(b). 
The spectral spikes appeared at harmonic radian frequencies 
9.4 x k (i.e., x 27r x k ) ,  k = 1, 2 , .  .. , are due to the 
strong autocorrelation of periodic T frames. In contrast, the 
JPEG video contains negligible powers in the frequency band 
27r < w < 24 x 27r, as shown in Fig. 2(b). 

Let us now examine the effect of the MPEG and JPEG com- 
pression schemes on queueing performance when the dynamic 
bandwidth allocation is applied. The control parameter C is 
set at 1.25 in both MPEG and JEPG cases. The results are 
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TABLE 111 
COMPARISON OF QUEUEING PERFORMANCES OF MPEG AND JPEG VIDEOS AS A 

FUNCTION O F d c  BY THE SAME DYNAMIC BANDWIDTH ALLOCATION AT c = 1.25 

r-l x 27r 

summarized in Table 111. In the queueing simulation, the cell 
arrivals in each frame are assumed to be evenly distributed 
among the slots of that frame. The queueing performances are 
compared at three selected cutoff frequencies. When w, = 
27rr-l, where T denotes one frame interval, the queue is 
always empty in both MPEG and JPEG cases because the 
video sequences are collected in frame units. When w, = 27r, 
we get (q, ( T ~ ,  qnLar) equal to (1  3.7,43.4,497) for the MPEG 
video and (0.52,7.9,237) for the JEPG video. Obviously, the 
I frame burstiness (or powers at 9.4 x k,k = 1, 2 . . . . )  in 
some degree has caused the queueing-performance degradation 
in the MPEG video. The maximum queue length increases 
from 237 in the JPEG case to 497 in the MPEG case. With 
such a moderate increase of buffer-capacity requirement, the 
proposed dynamic bandwidth allocation at cutoff frequency 
w, = 27r should also be applicable to the MPEG video. 
At w, = 0, i.e., without dynamic allocation, the queueing 
performances in both MPEG and JPEG cases are drastically 
deteriorated due to the strong impact of low-frequency video 
signal. as shown in Table 111. 

In principle, the same dynamic bandwidth-allocation scheme 
can be applied to MPEG video transmission with moderate 
increase of buffer capacity. On the other hand, the motion- 
compensation technique used in the MPEG compression will 
greatly improve transmission efficiency. In the above example, 
the average transmission rate is each case is given by multi- 
plying the average video rate by C. Therefore, the average 
transmission rate is equal to 1 . 2 5 ~ 2 . 3  Mb/s for the MPEG 
video whereas it is 1.25x3.5 Mb/s for the JPEG video. The 
following sections focus on JPEG video transmission since 
only few MPEG video sequences are available. 

111. BANDWIDTH PREDICTION 

In the above section we have assumed that the transmission 
bandwidth p ( t )  is instantaneously adapted by the filtered input 
rate Z L ( ~ ) .  In reality, the bandwidth can only be adapted 
intermittently using on-line observation and prediction of 
z ~ ( t ) ;  the adaptation interval cannot be too short since it is 
limited by the protocol processing time to allocate the desired 
bandwidth. Fig. 6 describes a realistic dynamic allocation 
scheme. Let the filtered input signal x ~ ( t )  be sampled at 
time unit A. Denote the sampled signal by T L ( ~ )  at the 
nth A unit. The bandwidth is periodically adapted at the 
interval of MA. There will be D A  lead time for computation 
of the prediction algorithm and protocol processing of the 
bandwidth allocation. That is, if the prediction starts at the 
71th unit, the bandwidth will be adapted at the ( n  + D)th 

A: sampling period 
U bandwidth adapta(i0n interval 
DA: praocol pmcesaing time 
NA: obwvstion inmal 

prediction of bandwidth: 
C max(tL(n+O. I=D,D+I;-,D+M} 

filtered input rate 
NA DA MA (soenechanges) 

A --- 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I  

n-N n+D n+D+M 

Fig. 6. Bandwidth prediction in a VBR video connection. 

unit. Consequently, the next bandwidth adaptation will occur 
at the (n  + D + M)th  unit. The prediction of the input rate 
at each consecutive unit in the adaptation interval, denoted by 
i ~ ( n  + D + I )  at 1 = 0, 1,. . , M ,  is made on the basis 
of ( N  + 1) consecutive observations collected at the nth 
unit. In other words, the predictions { : 2 ~ ( 7 1  + D ) ,  dL(n + 
D + l),...:?~(n + D + A4)) are made on the basis of 
{ x ~ ( n  - N ) ,  z ~ ( 7 ~  - N + l), . ' .  , x : ~ ( 7 ~ ) } .  To cope with the 
worst input rate in the adaptation interval, the transmission 
bandwidth is assigned by 

Gmax{iL(n+D) ,  ? ~ ( n + D + l ) , . . .  , . ~ L ( T L + D + M ) } .  (2) 

The selection of A is dependent on the time-variation scale 
of x ~ ( t ) .  In our application, z ~ ( t )  is defined at w,. = 27r 
to represent the video scene changes as indicated in Figs. 
2(b), 3(a). The corresponding time-varying scale of xL( t )  is 
at least 1 s long. Here we take the oversampling of Z L ( ~ )  at 
A = 0.14 s in order to capture any abrupt scene changes. Two 
prediction schemes are introduced in the following subsections 
with comparison of prediction performance and computational 
complexity . 

A. RLS-Based Prediction 

We use the RLS algorithm to design an adaptive filter for 
traffic prediction [IO]. The rate of convergence of the RLS 
algorithm is typically an order of magnitude faster than that of 
the LMS algorithm at the expense of increased computation. In 
contrast to the LMS algorithm, the rate of convergence of the 
RLS algorithm is insensitive to variations in the eigenvalue 
spread, defined as the ratio of the maximum-to-minimum 
eigenvalues of the correlation matrix of the input vector. The 
RLS algorithm also has to some extent the capability to track 
statistical variations in a nonstationary environment by setting 
the exponential forgetting factor less than unity [lo]. As a 
result, here we choose the RLS algorithm for the on-line 
bandwidth prediction of video traffic. 

Since each bandwidth adaptation requires computation of 
the predictions { i ~ ( n + D ) ,  . i . ~ ( n + D +  1), . . .  , 2 1 , ( n + D +  
M ) } ,  the so-called indirect prediction approach is used to 
avoid redundant computation 191. That is, instead of directly 
constructing ( M  + 1) RLS prediction filters, we construct a 
single RLS filter to perform parameter estimation of a given 
autoregressive (AR) model of the time series. The (A4 + 1) 
predictions are then obtained by converting the model into 
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the required predictor format. This is further described in the 
following. 

Assume that the sampled time series of the filtered video is 
modeled by a deterministic AR process of order N ,  defined by 

reasonable value for 4 with a tradeoff between transmission 
efficiency and protocol processing efficiency. 

B. TD”-Rased prediction 

What we need to solve-is the estimation of the un- 
known parameter vector f l *  = [e;: H a , . . .  ,e”,]T. At the 
nth time unit, let us define the input vector ,Z(n) = 
[ x ~ ( n  - I ) ,  z ~ ( n  - 2),-..,:c~(n - N ) l T ,  the desired output 
d ( n )  = z ~ ( n ) ,  and the estimated parameter vector O ( n )  = 
&(n);  &(n), . . . , i , ~ ( n ) ] ~ .  The on-line RLS estimation of 
8* is then recursively expressed by 

-4 

(4) 

e‘(71) = $(TA - 1) + i ( n ) ( d ( n )  - B (71 - l)u’(n)) (5 )  

(6)  P (n )  = X-’P(n - I )  - X- lZ (n . )dT( r~)P(~~  - 1) 

where X is the forgetting factor, P(n)  denotes the inverse 
of the input correlation matrix, and Z ( 7 h )  represents the gain 
vector. For the initial condition at n = 0 we have $(0) = 0’ 
and P(0)  = 6-II, where 5 is a small positive constant and I 
represents an identity matrix. From the given AR model in (3), 
then each I-step ahead prediction, 1 = D, D + 1,. . . . D + M .  
is recursively obtained by 

(7) 

where ?(n, 1 )  = [.?L(TL + 1 - 1). . iL ( r l  + I  - Z),..-,i~(n + 
11, x L ( n ) .  x L ( n  - 1): . . , x L ( n  + 1 - N)IT.  

Let b( n )  represent the transmission bandwidth required 
during the adaptation interval [ (n  + D)A, (n + D + h!f)A). 
Its prediction, denoted by &(a). is then given by 

&(,L) = c max { i L ( n  + I ) .  I = D ,  D + 1,. . . . D + M } .  (8) 

Using the round-to-largest rule, the real value of h(n) is quan- 
tized into an integer in cell unit. Such an adaptive bandwidth 
assignment is called synchronous dynamic allocation since 
it is adapted periodically at a fixed interval MA.  For low- 
complexity network management of bandwidth adaptation, 
one can also introduce an asynchronous dynamic alLocation 
scheme, defined by 

b ( r , )  = Cmax  {4, 2 L ( n + ~ ) ,  I = D ,  D+I, .  . . , D + M }  (9) 

where 4 denotes a preassigned nominal bandwidth. Since 
the bandwidth is adapted if and only if the video prediction 
exceeds the nominal bandwidth, the asynchronous operation 
can significantly reduce the bandwidth adaptation frequency 
at the expense of increased transmission bandwidth. As an 
example. we set 4 = E [ r ( t ) ]  + ( V a r [ ~ ( t ) ] ) ’ / ~  in this paper. 
If such statistics are not available a priori, one can choose a 

As an alternative approach we introduce a TDNN-based pre- 
diction scheme [IS] ,  [19]. ANN’S have adaptation capability 
that can accommodate nonstationarity. ANN’S have general- 
ization capability that makes them flexible and robust when 
faced with new and/or noisy data patterns. Once the training is 
completed, an ANN can be computationally inexpensive even 
if it continues to adapt on-line. Recently a high-order neural 
network has been developed [ 121, which approximates the 
input-output relationship by a high-degree polynomial while 
avoiding exponentially increasing computational and memory 
cost that had affected ordinary high-order nets [21]. This 
architecture, called the pi-sigma network (PSN), is selected 
as the basis of our TDNN prediction scheme. 

Fig. 7 shows a TDNN based on Lth-degree PSN with 
( N  + 1) inputs and (&I + 1) outputs. In conventional TDNN’s, 
the architecture above tapped delay line in Fig. 7 is given by 
multilayered perceptron networks (MLP’s) [ 181-[20], which 
suffer slow training and relatively expensive on-line com- 
putation. The PSN architecture consists of a single hidden 
layer of 1, x (A4 + 1) linear summing nits ( L  summing 
units per output) and an output layer of (Ail + 1) product 
units. These product units make it possible to incorporate 
the capabilities of high-order networks while greatly reducing 
network complexity. The term “pi-sigma” comes from the fact 
that these networks use products of sums of input components 
instead of sums of products, as in ordinary high-order net- 
works. The output from each product unit passes through a 
sigmoid activation function defined by U(.) = 1/(1 + e?). 
Unlike in MLP, the weights from the hidden layer to the 
outputs are fixed at I .  This property contributes to reducing 
training time substantially. The bias input is also fixed at 
1. The purpose of this network is to find an approximate 
Lth-degree relationship between the inputs .LL (n ) ,  x~ (71 - 

l), . . . ,zLI:~L-NN) and the desired outputs x L ( u + D ) ,  z ~ ( n +  
D + 1): . . . , ~ ~ ( 7 1  + D + M ) .  For convenience, we define 
input veztor, desired output vector, and estimated outpyt vec- 
tor by C(n) = [ < o ( a ) ,  E 1 ( 7 ~ ) ,  <2(7L),  . . . < . v + 1 ( 7 1 , ) 1 ~ ~  d ( 7 ~ )  = 
[d0(71) ,  d l ! n ) , . . . , d , ~ ~ ( 7 1 ) I T  and i i ( 7 ~ )  = [yO(n),;1/1(n),..., 
y~ (n)lT. Correspondingly 

Note that f ( n )  is augmented by a bias input and g(7~) is from 
the array of sigmoid functions. By training, the relationship 
will be stored through the network in the form of connectivity 
strengths or weight$. Let ti?: = [ut;, , wi, . . . , w ~ + ~ , ] ~  be the 
weight vector for the j t h  hidden unit of the Ith output where 
1 = 0 ,  1,. . . ~ M and I = 0. 1.. . . . L - 1. The Ith output yl(71) 
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Fig. 7. An L t h - d e g r e e  PSN-TDNN. 

at time 71 is then expressed by 

Note that this regression model of the PSN-TDNN is more 
general than AR model in that it realizes an Lth-degree 
polynomial mapping from input to output. Furthermore, unlike 
in ordinary high-order nets, the high-degree approximation in 
a factorised form as in (1  I )  greatly reduces the computational 
complexity . 

The learning algorithm for the PSN is based on gradient 
descent on the estimated mean square error (MSE) surface in 
weight space. The MSE objective is given by 

~ P - I  

J /  =I A-x[di(rr) - : l / l ( n ) ] 2 .  1 = 0, 1;. . . .  M (12) 
I),=, 

where y denotes the number of training patterns. By taking 
LMS-type approach, the weight update rule is given by 

(13) 
for 1 = 0, 1..  . . .  A4 where [yl(n)]' I S  the first derivative of 
the sigmoid function and 71 is the learning rate. Here we 
have adopted an asynchronous update rule, which updates 
only a partial set of weights at a time instead of the overall 
weights [ 121. There are total L sets of weights, defined by 
{ G ; ( i i ) .  1 = 0. 1 9 . . . , M }  at j = 0, l , . . . , L  - 1, each 
of which is associated with a hidden unit. Only one set, 

by ( 1  3 ) ;  the rest of the sets remain unchanged. This procedure 
is repeated in an asynchronous manner. 

As in the RLS-based prediction, the transmission bandwidth 
required during the next adaptation interval [(a + D ) A ,  ( [ I  + 
D + M ) A )  I S  predicted by 

1 

{U:: (n). 1 = 0, 1, . . . .  hl} ,  is chosen at time ri and updated 

b ( n )  =Cmax{!/~(n) .  1 = 0, l . . . . ,M}.  (14) 

......................................................................................... Bandwidth Rediction Scheme i 

measurement 
, - - - - - -  

._I 

................... ...................................................................... 
I... ........................, xc bandwidth prediction 

............................................ t .......................................... 

Also, the asynchronous allocation scheme is given by 

;(n) = Cmax{$, yi(n), L = 0. l , . . . , M )  . (15) 

The overall structure of dynamic bandwidth-allocation 
scheme using on-line PSN-TDNN-based prediction is shown 
in Fig. 8. In practice, such a system can be implemented at the 
network access point to continuously provide the prediction 
of bandwidth changes to the network. The function of 
dynamic bandwidth control protocol is to allocate the predicted 
bandwidth to each VC, which can be implemented at different 
protocol layers. At the link layer, the dynamic allocation of 
predicted bandwidth can be achieved by adaptive partitioning 
of link capacity among individual VC's, low-priority cell 
discarding, or blocking (regulating) of non-real-time traffic 
streams. The adaptive-link-capacity partitioning scheme is to 
take advantage of srutisticul gain of multiplexed connections. 
Also, for hierarchically coded video connections [7], a low- 
priority cell-discarding scheme can be effectively employed. 
At the network layer, the dynamic allocation of predicted 
bandwidth can be achieved by dynamic (or periodic) rerouting 
schemes as proposed and implemented in [4], [SJ.  When a 
video VC request more bandwidth, by selectively rerouting 
some of the active VC's to the other paths being underutilized, 
the network can provide the extra bandwidth to the VC without 
violating the other VC's QOS. The design and evaluation of 
such dynamic-bandwidth-control protocols are beyond the 
scope of this paper. 

C. Computational Complexity 

One disadvantage of the RLS prediction scheme is its 
computational complexity. The parameter estimation in (4)-(6) 
requires 2N2 + 7N + 5 multiplications and N 2  + 4N + 3 
divisions per iteration. The bandwidth prediction in (7) needs 
N x ( D + M )  multiplications. Since the parameter estimation is 
computed at every A interval while the bandwidth prediction 
is computed at every MA, the total complexity per MA is 
M x ( 2 N 2  + 7N + 5 )  + N x (D + M )  multiplications and 
M x ( N 2  + 4N + 3 )  divisions. The computational complexity 
can be reduced by using the so-called fast transversal filter 
(FTF) algorithm [ I  11. This algorithm attains the RLS solution 
with the same convergence properties as in the RLS algorithm 
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( D  + M)A=0.7 (D + M)A=0.84 

but at a computational cost that is competitive with the LMS 
algorithm. As a result, the complexity in parameter estimation 
is reduced to 71v + 12 multiplcations plus 4 divisions per 
iteration; the total complexity per MA then becomes A4 x 
(71V + 12) + N x ( D  + M )  multiplications and 4A4 divisions. 
In comparison, once it is trained, the PSN-TDNN scheme 
only requires ( M  + 1) x ( N  + 2) x L multiplications per 
MA. Although special computation for the sigmoid function 
is required, in practice the sigmoid function is usually replaced 
by a linear saturator or a lookup table. 

D. Prediction Performance 

In the experimental study. we choose w, = 27r for the low- 
frequency signal z~ ( t )  to represent the video scene changes 
according to the power spectral distribution in Fig. 2(b). The 
RLS scheme is designed with ( N !  D ,  M )  = ( 5 :  1: 4) and the 
PSN-TDNN scheme is with ( N ,  D ,  M .  L) = (5 ,  2: 4, 2 ) ;  
both of which are found to provide adequate prediction of 
scene changes in queueing performance. The prediction lead 
time is defined by ( D  + M)A: which at A = 0.14 s is equal 
to 0.7 s for the RLS scheme and 0.84 s for the PSN-TDNN 
scheme. The longer the lead time, the better the prediction 
scheme for achieving identical performance. Since the time- 
varying scale of the low-frequency video signal is at least one 
second long, we design the bandwidth-adaptation interval at 
LWA = 0.56 s, close to the Nyquist sampling interval. 

In the initial stage of our experimental study, we also used 
an MLP-based TDNN for the prediction, but no significant 
performance advantage was observed over the PSN-based 
TDNN. In contrast with PSN-TDNN, MLP-TDNN suffers 
higher computational complexity and subsequent longer train- 
ing period. For the training of the PSN-TDNN, we used a 
2-min JPEG video segment (page 56) in Fig. 3(a), which was 
filtered at w, = 27r. By scanning the filtered video segment 
along time, we collected 208 training examples. After adding 
a 2A-long offset, we again scanned the segment, thereby 
updating the 208 examples. By repeating this procedure three 
times, we obtained a total of 624 examples. Due to the 
dynamic range of the sigmoid function, the input data was 
normalized into [0, 11. In the design of the PSN-TDNN, having 
the observation interval N A  > 5A or the degree L > 2 
was found to simply add computational complexity with no 
significant performance improvement. It can be interpreted 
in that, in statistical estimation, increasing complexity of the 
model over some optimal point may degrade performance due 
to the biashariance dilemma [22]. The learning rate was tuned 
at 71 = 0.15. The training was carried out on a SPARC-IO 
workstation for 24 min (CPU time) through 5000 epochs. In 
the design of the RLS scheme, the observation interval was 
also tuned at N = 5 and the forgetting factor was set at 
x = 0.9. 

The performance is measured by the prediction-error statis- 
tics. In our application, the transmission bandwidth is adapted 
at every M A  interval. For t E [ (n + D)A, ( n  + D + M)A),  
let 2ma,c(t)  be 

TABLE IV 
PREDICTION ERROR PERFORMANCE ON TRAINING SET (PAGE 56) AT 
AfA 4- 0.56  s WHERE C ,  U < ,  E ~ ~ , ( ~ ~ ,  AND f,,,,, ARE RESPECTIVELY. 
THE MEAN, STANDARD DEVIATION, MAXIMUM, AND MINWUM OF F( t )  

The relative prediction error at time t is then defined by 

F ( t )  = [2max ( t )  - Z L ( t ) ] / Z L ( t ) .  

Positive and negative values of t ( t )  correspond to the overesti- 
mation anti underestimation of the low-frequency video signal. 
Note that it is the underestimation that may cause the buffer 
congestion, while the overestimation can only result in the 
underutilization of the transmission bandwidth. This is why in 
(2) we have taken the maximum of the predictions in each 
adaptation interval for the bandwidth allocation. 

Table IV shows the prediction-error performance of the 
PSN-TDNN on the training-video segment (page 56). The 
performance on the same segment achieved by the RLS 
scheme is also shown. While the lead time of the PSN-TDNN 
scheme is 0.14 s longer than that of the RLS scheme, the 
performance is basically identical. In the RLS prediction- 
error statistics, initial transient performance for convergence 
was excluded. For comparison, also listed in Table IV is the 
performance of the RLS scheme at the lead time equal to 
0.84 s. Obviously, this design of RLS scheme degrades the 
performance. It is observed that the RLS scheme has larger 
prediction-error variance than the PSN-TDNN scheme. 

Let us now examine the general applicability of the PSN- 
TDNN scheme, trained by one video segment, to other video 
segments. Six 2-min filtered-video segments (pages 3941, 
55-57) were chosen as testing sets. Pages 39-41 were arbi- 
trarily selected to represent statistically different scenes. For 
example, Fig. 9(a) shows the quantile-quantile (Q-Q) plot 'of 
page 40 and page 56 (the training set) at w, = 27r. Since the 
Q-Q plot is largely deviated from the linear reference line, the 
probability distribution of page 40 is different from that of 
page 56. Also displayed in Fig. 9(b) are the autocovariance 
functions of the two segments, which are also quite different. 
Hence, the scene statistics of page 40 must be different from 
that of the training set. It is interesting to find that the PSN- 
TDNN scheme, trained on page 56, works very well on the 
other pages. Fig. 10(a) shows a part of the prediction curve 
to track the scene changes on page 40. Similar performance 
is observed on the other pages. Listed in Table V are the 
error statistics of the PSN-TDNN scheme on pages 40 and 
56. The error statistics of the RLS scheme on page 40 are also 
included for comparson. Furthermore, in Table VI we compare 
the prediction performance of the two schemes for the overall 
12 min. The generalization capability of the PSN-TDNN 
scheme is also tested on the prediction of a 2-min multiplexed 
video segment. Here we take the summation of five 2-min 
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Autocovariance functions. 

(a) Q-Q plot of page 40 and page 56 (training set) at LJ,. = 2rr. (b) 
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Fig. 10. 
different scenes (page 40). (b) On video multiplexed by pages 55-59. 

Testing of PSN-TDNN. (a) On video segment with statistically 

TABLE V 
PREDICTION ERROR PERFORMAKE ON A 

TESTING SET (PAGE 40) AT M A  = 0.56 s 

on page 56 

PSN-TDNN PSN-TDNN RLS 
on page 40 

(D + M)A=0.84 (D + M)A=0.84 (D + M)A=0.7  

0.044 0.045 0.048 

0.071 0.086 0.128 

0.541 0.597 1.875 

Emin -0.145 -0.152 -0.181 

TABLE VI 
TWELVE MINUTE PREDKTION-ERROR PERFORMANCE 

(ON PACES 39-41, 55-57) AT 1JfA = 0 56 S 

PSN-TDNN RLS 
(D + M)A=0.84 (D + M)A=0.7  

0.072 0.098 

0.597 1.875 

-0.171 -0.188 
I 

video segments (pages 55-59) to represent the statistical 
multiplexing of five video sources. Similar performance is 
achieved as plotted in Fig. 10(b). In summary, we argue that 
the PSN-TDNN scheme, properly trained on a 2-min video 
segment, can be directly used to a certain extent on other video 
segments (which consist of statistically quite different scenes). 

According to the analysis in Section III.C, the complexity 

while the complexity of the PSN-TDNN scheme is only 70 
multiplications per 4A. When the FTF algorithm is applied 
[ I l l ,  the complexity of the RLS scheme is reduced to 213 
multiplications and 16 divisions. In contrast, the on-line com- 
putation of the PSN-TDNN scheme is less than one-eighth of 
the RLS scheme. 

The study in this section indicates that, in our application 
of video bandwidth prediction, the PSN-TDNN scheme is 
superior to the RLS scheme in terms of both prediction 
performance and computational complexity. In the next section 
we evaluate the video queueing performance when the two 
schemes are applied to the dynamic adaptation of transmission 
bandwidth. 

Iv. PERFORMANCE EVALUATION OF 
DYNAMIC BANDWIDTH ALLOCATION 

First, let us design a zero-loss transmission system to deliver 
a 12-min video segment (pages 3 9 4 1 ,  55-57). Assume that 
the buffer size should never exceed 300 cells. As described in 
Section 11, the transmission bandwidth is essentially captured 
by the video scene changes located in a well-defined low- 
frequency band. We choose w, = 27r for the filtered video 
signal Z L ( ~ )  to capture the scene changes. The transmis- 
sion bandwidth is then allocated through the observation and 
prediction of xL( t ) ,  either dynamically or statically. In the 
static allocation, the bandwidth is assigned by maxt x ~ ( t ) ,  
which is the maximum of n : ~  ( t )  in the entire 12-min period. 
In practice. however, maxt x ~ ( l )  is unknown. In the ideal 
dynamic allocation, the bandwidth is directly assigned by 
C x ~ ( t )  as in (l) ,  which is also unrealistic since the bandwidth 
cannot be instantaneously adapted. For the practical implemen- 
tation of synchronous dynamic allocation, the bandwidth is 
periodically adapted by C&,,., ( t ) ,  where :in,,, ( t  ) represents 
the maximum prediction of Z L ( ~ )  in the next adaptation 
interval defined in (16). For the asynchronous dynamic allo- 
cation, the bandwidth is determined by Cirinz {@, .?,,,,, ( t ) }  
where (f, stands for a preassigned nominal video bandwidth. 
We assume cb = E[x:(t)] + (Vur [ : L ( / , ) ] ) ' / * .  As mentioned 
before, if such statistics are not available a priori, one can 
choose a reasonable value for 4.  Depending on 4: there 
is a tradeoff between transmission efficiency and protocol- 
processing efficiency. Both RLS and PSN-TDNN schemes, 
designed in Section I11 at the adaptation interval M A  = 0.56 s, 
are used to evaluate 2nLaz (1) in the synchronouslasynchronous 
dynamic allocation. We choose C = 1.25 for the dynamic 
allocation schemes. 

Listed in Table VI1 are the transmission efficiency and 
queueing solutions with respect to each allocation scheme. 
Obviously, the transmission efficiency p reaches its highest 
value at 0.80 by the ideal dynamic allocation, while its lowest 
value occurs at 0.54 by the static allocation. We also get 
1' = 0.74 for the synchronous dynamic allocation and p = 0.62 
for the asynchronous dynamic allocation. Note that one can 
get p = C-l for the ideal dynamic allocation. The rest of 
the values of the transmission efficiency are measured by 
simulation. Although both RLS and PSN-TDNN prediction - 

of the RLS scheme is 385 multiplications and 192 divisions schemes have achieved the same transmission efficiency ( p  = 
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(filtered peak) ideal RLS (eyn.) PSN (8~11.) RLS (asyn.) PSN (asyn.) 

0.54 0.80 0.74 0.74 0.62 0.62 

6.4 10.7 9.1 8.7 7.0 7.0 

8.7 13.3 11.7 10.2 8.9 8.8 

138 283 269 23 1 202 186 

p 
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qma+ 

(1): ideal (4): RLS 
(2): RLS (sya)  (5): F'SN (asp.) 

b io lb lb 2b 2b 3 k  

queue length (cell) 
Fig. 11. Queue distributions in 12-min video transmission by different 
allocation schemes in the worst scenario. 

ideal RLS PSN non-predictive estimation 

(C = 1.25) (C = 1.25) (C = 1.30) 

( D  + M)A = 0.7 ( D  + M)A = 0.84 ( D  + M)A = 0.7 ( D  + M)A = 0.84 

37.6 

0.80 0.73 0.73 0.76 

10.7 9.0 8.3 23.8 

15.2 14.1 11.2 78.2 139.2 47.3 

218 269 231 877 1351 

0.74 or 0.62), the queueng performance of the PSN-TDNN 
scheme is better than that of the RLS scheme as shown in 
Table VII. This is consistent to the prediction-performance 
comparison in Section 111. DIsplayed in Fig. 11 is the queue 
distribution with respect to each allocation scheme. In Fig. 
12, we show a sample path of the synchronouslasynchronous 
dynamic allocation using the PSN-TDNN scheme. As one 
can see, the asynchronous operation significantly reduces the 
frequency of bandwidth adaptation, which is desirable for 
low-complexity network management, but at the expense of 
increased transmission bandwidth. This study indicates the sig- 
nificant performance improvement due to dynamic allocation 
and the feasiblity of its implementation at a reasonably long 
adaptation interval such as 0.56 s for video transmission. 

To further verify the significance of bandwidth prediction, 
we also study a nonpredictive bandwidth-estimation scheme 
where the bandwidth for the interval [ (n  + D)A, ( 7 ~  + D + 
M ) A )  is approximated at time 7~ by the maximum of ( M  + 
1) current observations, i.e., C max{x:L(n - Ad), . r ~ ( n  - 
M + 1). . . . , ~ ~ ( 7 1 ) ) .  The queueing performance by such a 
nonpredictive scheme is compared with those by the RLS 
and the PSN-TDNN schemes in the case of synchronous 

tim(sec) 

Fig. 12. 
page 41) using the PSN-TDNN scheme. 

A sample path of synchronouda5ynchronous dynamic allocation (on 

dynamic bandwidth allocation with an adaptation interval 
MA = 0.56 s. We use the same RLS and PSN-TDNN 
schemes as designed in Section 111. Specifically, the prediction 
lead time ( D  + M)A is set at 0.7 seconds for the RLS 
scheme and 0.84 seconds for the PSN-TDNN scheme. For 
comparisorl, we use the same lead time for the nonpredictive 
estimator. Listed in Table VI11 are the results when G = 
1.25. The RLS and PSN-TDNN schemes almost achieve 
the ideal queueing performance, whereas the nonpredictive 
scheme greatly degrades the queueing performance. 

On the other hand, compared to p = 0.76 with the non- 
predictive scheme, both RLS and PSN-TDNN schemes result 
in relatively lower utilization ( p  = 0.73),  since they tend to 
overestimate the bandwidth. Hence, for fair comparison, we 
study another nonpredictive estimation case where the control 
parameter G is set at 1.30 to achieve the same utilization as 
in the RLS and the PSN-TDNN schemes. By allocating more 
bandwidth in such a manner, the queueing performance by the 
nonpredictive scheme is improved to some extent. However, 
the resulting performance is still much worse than those in the 
RLS and the PSN-TDNN schemes. 

Next, we consider a single transmisson trunk of fixed 
bandwidth IJ, to support five VC connections as shown in 
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1206.4 682.6 1206.4 9.3 8.7 9.6 

9427 5656 9427 123 76 140 

10.2 19.9 10.2 9.0 9.3 9.2 

21.8 66.0 21.8 9.5 9.8 9.7 

672 1490 672 131 113 135 

Fig. 13. 
ATM trunk. 

Transmission of five videv sources by dynamic sharing on a single 
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Fig. 13. Each connection is associated with a separate buffer. 
The ATM traffic on each connection, denoted by : c i ( t )  at 
Z = 1: 2 : . . , 5 ,  is represented by a 2-min video source. 
We use pages 39-41, 55,  and 56 of the JPEG “Star Wars” 
to individually represent each source. Let the transmission 
bandwidth of each VC be dynamically adapted based on 
the filtered z ; ( t ) ’ s .  As in the previous example, we choose 
w, = 2 7 ~  for the input filter and denote the filtered x ; i ( t )  by 
: c , ~ ( t ) .  For the ideal dynamic sharing, the bandwidth of each 
VC is instantaneously changed by 

106.9 16.3 78.6 9.2 9.0 10.0 

670.6 89.7 507.1 10.2 9.4 15.5 

6170 1282 5000 177 138 269 

For the synchronous dynamic sharing, similar to the definition 
of (t) to represent the maxi- 
mum prediction of . c L ~ ( t )  in each adaptation interval. The total 
bandwidth is then adaptively partitioned among the five VC’s 
in every M A  interval, according to 

(t) in (16), we use 

t E [ (n  + D ) A ,  (n + D + M ) A ) .  

Here we use the same RLS and PSN-TDNN schemes as 
designed in Section 111, where the adaptation interval is 
fixed at 0.56 s. Assume that the overall trunk utilization is 
p = 0.7. Since the mean of the aggregate video traffic is 
114.1 cells/slice, we have the total trunk bandwidth equal 
to p = 163.0 cells/\lice. One slice corresponds to 1.4 ms. 
Listed in Table IX are the queueing solutions of each VC 
connection using different (synchronous) dynamic sharing 
policies in the worst scenario. As one can see, every dynamic 
sharing policy provides a fair service performance among the 
individual connections. it is also interesting to observe that 
the performance of the synchronous dynamic sharing is almost 
identical to that of the ideal one. 

For comparison, we also consider some static sharing poli- 
cies where the total bandwidth is statically divided by 

where ( i d  denotes a static bandwidth measure of the ith 
connection. For instance, e L  can be the peak of the input traffic 
(maxt .x,(t)), the peak of the filtered input (maxtz,L(t)), or 
the average input ( E [ . c L ( t ) ] ) .  The assumption of infinite buffer 
size is made for each connection since we are more interested 

TABLE IX 
PERFORMANCE COMPARISON OF DIFFERENT 

SHARING POLICIES OF TRANSMISSION BANDWIDTH 

Static Allocation Dynamic Allocation II peak filtered peak mean ideal RLS PSN 
137.0 9.8 8.3 8.5 8.2 

U:: 11 ::f 371.8 13.4 9.7 14.0 9.6 

gmarl 292 2179 214 171 445 177 

30.5 203.9 604.1 10.5 11.1 11.1 

122.0 672.7 1998.3 13.8 15.3 15.4 

1753 4129 11737 183 178 159 

in the worst-case queue (or delay) than cell loss. As shown in 
Table IX, the queueing solutions of the static sharing are highly 
unbalanced among the individual connections. In contrast, the 
queueing performance of the static sharing is much worse than 
that of the dynamic one. In summary, the temporal bandwidth 
demand of each video connection is essentially characterized 
by the scene changes, which are highly predictable through 
the on-line traffic measurement. One can therefore implement 
the dynamic sharing to significantly reduce the transmission 
bandwidth and buffer-capacity requirement. 

For the reasonably long time-varying scale of scene changes, 
we also expect that the same dynamic bandwidth-allocation 
scheme can be incorporated with network-wide control of 
video traffic flow. As mentioned, one feasible approach is 
a dynamic rerouting scheme [4], [ 5 ]  based on global traffic 
measurements. When enough bandwidth is not available at a 
certain link, some of active VC’s are selectively rerouted to 
the other paths which are being underutilized. By doing so, not 
only the per-connection bandwidth demand can be guaranteed 
but also the network-wide load balance can be achieved. 

V. CONCLUSION 

This paper has presented a novel approach to dynamic 
bandwidth allocation for transport of real-time VBR video over 
ATM networks. The study indicates that the video-transmission 
bandwidth in a finite-buffer system is essentially characterized 
by the low-frequency signal that captures the time-variation of 
video scene changes. Furthermore, it is observed that the low- 
frequency video signal stays in a well-defined low-frequency 
band, typically w < 2 1 ~  radians. The dynamic bandwidth- 
allocation scheme proposed in this paper is based on on- 
line observation and prediction of the slowly time-varying 
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video scene changes. In the design of prediction scheme, 
both recursive least square method and time-delay neural 
network method are examined and In Particular, 
a time-delay neural network with low-complexity high-order 
architecture, called pi-sigma network, is found to be effective 
in predicting video scene changes. The proposed dynamic 
bandwidth-allocation scheme provides a new solution for 

[21] C. Giles and T. Maxwell, “Learning, invariance, and generalization 
in a high-order neural network,” Appl. Optics, vol. 26, no. 23, pp. 
4972-4978, 1987. 

[221 S .  German, E. Bienenstock, and R. Doursat, ‘‘Neural networks and the 
bias/variance dilemma,” Neural Computation. vol. 4, no. I ,  pp. 1-58, 
1992. 

efficient transmission of real-time video traffic with guaranteed 
quality-of-services. 
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