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Abstract 
Given a distributed multimedia database system and a set of 

queries as well as their frequencies from each site, the objective 
of a data allocation algorithm is to locate the multimedia data 
objects (MDOs) at different sites so as to minimize the total data 
transfer cost incurred in executing the queries. The data 
allocation problem, however, is NP-complete, and thus requires 
fast heuristics to generate efficient solutions. In this paper we 
propose three data allocation algorithms which are based on a 
genetic technique, an evolutionary process, and neural networks. 
We have implemented and evaluated these algorithms on our 
distributed multimedia database system test-bed. A comparison 
of the algorithms reveals trade-offs between their solution quality 
and time-complexity. 

1 Introduction 
A distributed multimedia database system [2], [7], [13], [14], 

[15] is a database system loosely coupled with a multimedia data 
provider indroduced in [lo]. In this architecture, Multimedia 
Data Provider (MDP) enables users to retrieve multimedia data 
objects (MDOs) from different sites. A Common Multimedia 
User Interface (CMUI) enables the users to specify queries 
accessing the distributed multimedia database system and 
presenting the result to the user. The synchronization for the 
presentation of the multimedia data is handled by the CMUI. 
Whereas, the Multimedia Data Provider (MDP) identifies the 
relevant multimedia data for an user query and facilitates 
shipping of the multimedia data to the CMUI. The CMUI is a 
client process and the Distributed Database Management System 
(DDBMS) and the MDP are server processes. 

A major component of multimedia query execution cost is 
the data transfer cost [l], [5] ,  [6]. The MDOs are made of two 
kinds of data. The first is the single-media data that is managed 
by the DDBMS servers, such as relations (fragments), records, 
etc. The second is the multimedia data, such as audio, video, and 
image, managed by the MDP servers. These two types of data are 
managed by different specialized storage managers, and need to 
be retrieved for the user queries. Optimal allocation of MDOs is 
a complex problem because of mutual interdependency between 
allocation scheme (which gives the location of each of the MDOs 
at various sites of a distributed database system) and query 
optimization strategy (which decides how a query can be 
optimally executed, given an allocation scheme) [ll], [16], [17]. 
The processing strategy of distributed multimedia objects 
retrieval involves shipping of all the multimedia objects to the 
user’s query site because this strategy supports efficient access 
for synchronization during the presentation of the result by the 
CMUI. We introduced the data allocation problem and 
performed simulated studies regarding effectiveness of different 

Meaning 
The jth MDO 
The ith site 

data allocation algorithms in [lo]. 
The rest of the paper is organized as follows: Section 2 

further elaborates the data allocation problem. Section 3 includes 
the algorithms proposed in this paper. The experimental 
environment for empirical evaluations for these algorithms is 
described in Section 4, the results are presented in Section 5,  and 
Section 6 concludes this paper. 

2 The Data Allocation Problem 
In this section, we describe concisely the inputs to the data 

allocation problem addressed in this paper. These inputs 
characterize the underlying distributed multimedia database 
system and help in formulating the problem. We also introduce a 
number of notations throughout the paper which are summarized 
in Table 1. 

Table 1: Definitions of Symbols. 
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1, 
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‘ x j  
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The unit transportation cost matrix of the network 
The unit transportation cost from site i to site i’ 
The allocation limit vector of the sites 

The allocation limit of site i 
The query data transfer size matrix 

The query data transfer size of the xth query of MDO j 
The site data transfer size matrix 

The site data transfer size of MDO j to site j ’  

The set of queries 
The xth query 

The number of sites in the network 

The number uf MDOs in the distributed database system 

The number of queries 

A The access frequencies matrix 

The access frequency of thexth query at site i 

L I, 

D The MDO dependency matrix 

di . The size of the data from MDO i to the site where MDO j is located 
The total data transfer cost t 

Consider a distributed multimedia database system with m 
sites, with each site having its own processing power, memory 
and a database system. Let S, be the name of site i where 
0 5 i I m - 1.  The m sites of the distributed multimedia database 
system are connected by a communication network. A link 
between two sites S, and S,. (if it exists) has a positive integer 
c,,. associated with it giving the cost for a unit data transferred 
from site S, to site S,. . If two sites are not directly connected by 
a communication link then the cost for unit data transferred is 
given by the sum of the cost of links of a chosen path from site 
S, to site S,,. Let Q = { q,,, ql,  . . ., q.-,} be the most important 
queries accounting for say more than 80% of the processing in the 
distributed multimedia database system. Each query qr can be 
executed from any site with a certain frequency. Let a,, be the 
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frequency with which query q1 is executed from site S i .  Let 
there be k MDOs (or database objects, or relations), named 

Any query accessing both the single-niedi,a database 
fragments and multimedia objects can be split into two queries, 
one which accesses only single-media fragments andl one which 
accesses only multimedia data (MDO). A multim.edia query 
execution strategy can be: 

1) Move-Small: If a binary operation involves two data 
MDOs located at two different sites then ship the smaller 
data MDO to the site of the larger data MDO. 

2) Query-Site: Ship all the data MDOs to the site of query 
origin and execute the query. 

{Om o,, ..., o!+,>. 

3 The Data Transfer Cost Model 
There are two aspects of the data transfer cost incurred to 

process a query that need to be modeled. The first a!jpect is the 
unit data transfer cost from one site to another. This is modeled 
as minimum cost path and the corresponding path from one site 
to another. Let ci, is cost of transporting a single unit of data from 
site Si to site Sj . In order to find the best allocation of a set of 
MDOs, it is enough to know the size of data from every MDO 
that is required from every site. Let rx, be defined as the size of 
data of MDO 0, that needs to be transported to the site where qx 
is initiated. Let there be a query qx initiated from site S i ,  a, 
times in an unit time interval. And let q1 request MDO 0, and 
each request require rxj amount of dataltransfer from the site 
where Oj is located. 

Let uij give the amount of data needed to be transferred from 
the site where MDO Oj is allocated to the site Si where the 
queries are initiated. That is, 

n -  1 
u . .  = U .  . r  . 

I X  XJ 
IJ x = o  

The second type of data transfer cost corresponds to the 
deeper levels of the MDOs dependency graph. The data is 
transported from the site where one MDO is located to the site 
where the other MDO is located in order t@ plerform binary 
operation involving two (or more) different MDOs. In this case, 
the amount of data of a MDO required by a site varies with the 
allocation of other MDOs. Let djr define the size of data from 
MDO 0, that needs to be transported to the site where Of is 
located so as to execute some binary operation. Let the 
corresponding matrix, k x k , be D. But this is depend’ent on the 
query that is to be processed. 

Let 6;. be the data size of 0, needed to be transported to the 
site where Or is located to process qx . A Then the amount of 
data that needs to be transported from the site where Oj is 
located to the site where Or is given by: 

“ - 1  n- l  

djr = Z ( C aix)&i, 
r = O  i = O  

Let site COj) denote the site where MDO 0 ,  i:s located. 
Then the total transportation cost, T, is given by: 

k - l  k - 1  m- 1 k -  1 

where the first term gives the data transfer cost incurred to 
process the binary operations between the MDOs located at 
different sites, and the second term gives the data transfer cost 
incurred to transfer the results of the binary operations of MDOs 
to the site where the query is initiated. The objective in data 
allocation problem is to minimize T by altering the function 
site (0,) (which maps a MDO to a site). 

4 Proposed Data Allocation Algorithms 
Developing an efficient solution to the data allocation 

problem highly depends on the query execution strategy 
employed by the distributed database system. This is because 
different query execution strategies have different MDO 
migration ]patterns. We develop solutions for the data allocation 
problem when query-site and move-small query execution 
strategies are respectively used by the distributed database 
management system and the multimedia data provider. The 
proposed algorithms are described as follows: 
4.1 The Genetic Algorithm 

Genetic algorithms manipulate a population of potential 
solutions to an optimization problem [8], [9], [12], [18]. They 
operate on encoded representations of the solutions, equivalent to 
the genetic material of individuals in nature, and not directly on 
the solutions themselves. As in nature, the selection mechanism 
provides the necessary driving force for better solutions to 
survive. Each solution is associated with a fitness value that 
reflects how good it is, compared with other solutions in the 
population. The higher the fitness value of an individual, the 
higher the chance of survival in the subsequent generation. 
Recombination of genetic material in genetic algorithms is 
simulated through a crossover mechanism that exchanges 
portions between strings. Another operation, called mutation, 
causes sporadic and random alternation of the bits of strings. 

In the proposed genetic algorithm for the data allocation 
problem, we encode the assignment of each MDO in a binary 
representation. For example, if an MDO is assigned to site 3, then 
its assignment value is 1 1. The assignment value of all the MDOs 
are concatenated to form a binary string. Each binary string then 
represents a potential solution to the data allocation problem. The 
fitness of tlhe string is simply the cost of the allocation. The 
selection mechanism is implemented as a simple proportionate 
selection scheme: a string with fitness f is allocated f/ (f) 
offspring, where f is the average fitness value of the population. 
A string with a fitness value higher than the average is allocated 
more than one offspring, while a string with a fitness value lower 
than the average is allocated less than one offspring. 

Pairs of strings are picked at random from the population to 
be subjected to crossover. We use the single point crossover. 
Assuming that 1 is the string length, the algorithm randomly 
chooses a crossover point that can assume values in the range 1 
to I -  1 . The portions of the two strings beyond this crossover 
point are exchanged to form two new strings. The crossover point 
may assume any of the 1 - 1 possible values with equal 
probability. Note that crossover is performed only when a 
randomly generated number in the range is greater than a pre- 
specified crossover rate p c  (also called the probability of 
crossover); otherwise, the strings remain unaltered. The value of 
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p c  lies in the range from 0 to 1. In a large population, p ,  gives 
the fraction of strings actually crossed. 

Mutation of a bit is to flip a bit. Just as p e  controls the 
probability of a crossover, another parameter, pm (the mutation 
rate), gives the probability that a bit will be flipped. The bits of a 
string are independently mutated 

The genetic algorithm for the data allocation problem is 
briefly described below. 

Genetic Data Allocation Algorithm: 
(1) Initialize population. Each individual of the population is a 

concatenation of the binary representations of the initial 
random allocation of each MDO. 

(2) Evaluate population. 
(3) no-of-generation = 0 
(4) WHILE no-of-generation < MAX-GENERATION DO 
(5) 
(6) Perform crossover and mutation for the selected 

(7) Evaluate population. 
(8) no-of-generation ++; 
(9) ENDWHILE 
(10)Determine final allocation by selecting the fittest individual. 

If the final allocation is not feasible, then consider each 
over-allocated site to migrate the MDOs to other sites so that 
the increase in cost is the minimum. 
The time complexity of the GA algorithm is 

0 ( G P  ( kZ + km)  ), where G is the number of generations and P 
is the population size. 
4.2 The Simulated Evolution Algorithm 

This variant of the traditional genetic algorithm is called 
problem-based simulated evolution [18], [ 191. Simulated 
evolution is an optimization method based on an analogy with the 
natural selection process in the biological environments. In 
biological processes species adapt themselves better to the 
environment as they evolve from one generation to the next one. 
In this evolution process some of the bad characteristics of the old 
generation are eliminated and a new generation that is more 
suited to the environment is created. 

The principal difference between genetic algorithms and 
evolutionary strategies is that genetic algorithms rely on 
crossover, a mechanism of probabilistic and useful exchange of 
information among solutions, to locate better solutions, while 
evolutionary strategies use mutation as the primary search 
mechanism. Furthermore, in the proposed scheme the 
chromosomal representation is based on problem data, and 
solution is generated by applying a fast decoding heuristic 
(mapping heuristic) in order to map from problem domain to 
solution domain. The generic problem-based simulated evolution 
is as below. 

Simulated Evolution Data Allocation Algorithm: 

Select individuals for next population. 

individuals . 

Construct the first chromosome based on theproblem data 
and perturb this chromosome to generate an initial 
population. 
Use the mapping heuristic to generate a solution for each 
chromosome. 
Evaluate the solutions obtained. 
no-of-generation = 0 
WHILE no-of-generation < MAX-GENERATION DO 

Select chromosomes for next population. 

(7) Perform crossover and mutation for these set of 
chromosomes. 

(8) Use the mapping heuristic to generate a solution for each 
chromosome, 

(9) Evaluate the solutions obtained. 
(1 0) no-of2eneration = no-of-generation + 1. 
(1 1)ENDWHILE 
(12)Output the best solution found so far. 

The chromosome structure is as follows: 

a genes 1 b genes 
where number of genes in a = total allocation limit, 
and number of genes in b = total number of MDOs. 

For a, each gene is a single bit. A value of 1 indicates that the 
corresponding allocation space is allowed to be used for this 
chromosome. Otherwise, if the bit is 0, the space cannot be used. 
This reduces the effective allocation limit for each sites. For b, 
each gene is an integer which represents the priority of the MDO 
to be considered; a large value means high priority and a small 
value means low priority. 

The first chromosome in the initial population is constructed 
from the information of the table of wij which represents the cost 
of allocating M D O j  to site i. For each MDO j ,  we calculate 

m 

XJ = c 
, = I  

The objective is to minimize the allocation cost by giving a 
higher priority to MDO with larger xj (a large value of xi means 
that this MDO will use more transmission time (cost)). Thus, we 
simply assign xj as the genes for each MDO position in part b of 
the first chromosome in the initial population. All of the genes in 
part a of the chromosomes are set to be 1 for the first 
chromosome in the initial population since this is the allocation 
limit of the original problem. For the remaining chromosomes in 
the initial population, the genes in a are chosen randomly as 0 or 
1. The genes in b are perturbations of the first chromosome’s 
corresponding genes in b. Notice that for genes in a,  we must 
check whether the new effective allocation limit is enough for all 
MDO to be allocated. This can be done simply by counting the 
number of 1’s in a and by checking that this sum is greater than 
or equal to the total number of MDOs n. 

For each chromosome, we find a solution by allocating MDO 
j with the highest priority to the site i such that wu is smallest for 
all wk) 1 < k < m. If the effective allocation limit embedded in the 
genes in part a of the chromosome for that site is exceeded (the 
site is already saturated), we allocate this MDO to the site with 
the next smallest value of wB for all wli, 1 < 1 < m, 1 # k . We 
continue the process for the next MDO with the highest priority 
among MDOs not yet allocated. 

For each chromosome, the cost function is the total 
transmission cost after allocating all the MDOs to some site using 
the mapping heuristic. The fitness value for the chromosome is 
calculated as 

(MaxCost - Cos@))  
x:, ( ~ a x ~ o s t  - Cost(i)) 

Ai) = 

where Np is population size, Mancost is the maximum cost 
among the chromosomes in the population, z is the convergence 
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factor used for controlling the rate of convergence. 
The genetic operators selection, crossover, (and mutation are 

applied. Selection means proportionately selecting the 
chromosomes in the population according to their fitness values. 
Crossover is cutting two chromosomes at the same position and 
exchanging the genes after the point of cutting. Mutation is 
choosing a gene in a chromosome and reset its value. For genes 
in a ,  simply set the value to either 1 or 0. For genes in b, 
perturbing the value in the gene by adding a randomly chosen 
value from -q to p (q and p are set as the maximal value of b- 
genes divided by 4 in this chromosome). The time complexity of 
the problem-based simulated evolution algoritlhm, like GA, is 
O(GP( k2 +km)), where G is the number of generations and P is 
the population size. 
4.3 The Mean Field Annealing Algorithm 

The mean field annealing (MFA) technique [3], [4], 
combines the collective computation property of the famous 
Hopfield Neural Network (HNN) with the anniealing notion of 
another well-known optimization algorithm known as the 
simulated annealing (SA) [20]. The MFA algorithm is derived 
from an analogy to the Ising spin model which is used to estimate 
the state of a system of particles or spins in thermal (equilibrium. 
In the Ising spin model, the energy of a system with S spins has 
the following form: 

l S  S 

= - PtfStSf h s t  
2x,11tx k =  I ,  

where PKI  represents the level of interaction between spins k and 
1, and sk E { 1, 0) is the value of spin k. It is assumed that 
Pkf = PI, and Pkk = 0 for 1 S k, IS S .  At the thermal 
equilibrium, spin average ( sx)  of spin k can be icalciulated using 
Boltzmann distribution as follows: 

1 
( ’ k )  = - 

where Qx = ( H  (s) ) I S t  = - ( H  (s) ) I s k  ~ represents the mean 
field acting on spin k, where the energy average ( H  (s) ) of the 
system is: 

S S .  

( H ( s ) )  = ZPP,f(sksf)+ h K ( S k )  
&=I!*& x =  I 

The complexity of computing Qk using the above equation 
is exponential. However, for large number of spins, the mean 
field approximation can be used to compute the energy average : 

Hence ( H  (s) )  is linear in ( s t ) ,  the mean field 
computed using the equation: 

can be 

Thus, the complexity of computing Qx reduces 1:o 0 (S) 
At each temperature, starting with initial spin averages, the 

mean field Q k  acting on a randomly selected spin is computed. 
Then the spin average is updated. This process is repeated for a 
random sequence of spins until the system is stabil~zed for the 
current temperature. 

We formulate the data allocation problem as MFA in the 
following manner. A spin matrix ( s i j )  is used to encode the 
allocation of the data MDOs to sites. The matrix consists of k 
rows and m columns, representing k MDOs and m sites, 
respectively. A value of 1 in each entry indicates the MDO is 
allocated to the corresponding site. For example, if sij = 1, then 
MDO i is allocated to site j .  A valid allocation is one in which 
each row of the spin matrix has exactly a single 1. Each spin 
variable is a continuous variable in the range [0, 11 , Spin values 
converge to either 1 or 0 at the fixed point. Given this 
formulatilon, the energy function (i.e., the data transfer cost 
function) for the data allocation problem can be formalized 
below. 

& - I  & - I  , n - l m - l  I ! - I & - 1  

i = or = 0 j = 0 J’ = 0 
E (s) = 2 C C cjrd,,.sijsj7. + I: ujisij 

j = o i = o  

Using: the mean field approximation, the expression for the 
mean field aPij experienced by spin sij is: 

In a feasible allocation, each MDO should be allocated to 
exclusiveliy one site. Thus, the sum of the spins across each row 
of the matrix should equal unity. This constraint can be explicitly 
handled while updating by normalizing each spin s,, as: 

Given the above formulation, the MFA algorithm to solving 
the data alllocation problem can be briefly formalized below. 

MFA Data Allocation Algorithm: 
(1) Get the initial temperature To , set T = To. 
(2) Initialize the spin averages s = [sw, sol, .. ., sx- ,,”- J ,  each 

si, is initialized as a random number between 0 and 1 .  
(3) WHILE temperature Tis  in the cooling range DO ~- 

WHILE Eis decreasing DO 
Select a MDO i at random. 
Compute the mean field of the spins at the i-th row, i.e., 
aiij, Vj  . 
Compute the summation x;i:e@v”r . 
Compute the new spin values at the i-th row. 
Compute the energy change due to these updates. 

ENDWNILE 
Update the temperature T according to the cooling 
schedule. 

(12)ENDWHILE 
(13)Determine the final allocation by allocating each MDO to 

the site with the largest spin value. If the final allocation is 
not feasible, then consider each over-allocated site to 
migrale the MDOs to other sites so that the increase in cost 
is the minimum. 
Note that the last step of the MFA algorithm is necessary 

because we do not explicitly check for feasibility in the search 
process, which can then explore a broader regions in the search 
space. However, we found that this adjustment of the final 
allocation were seldom invoked as the allocation limits were 
usually very loose. The time complexity of the MFA algorithm is 
0 ( B K  ( k  + km) ). 
5 Expel-imental Setup 

In this section, we present the experimental setup for the 
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empirical evaluation of the data allocation algorithms described 
in the previous sections. Comparisons among these algorithms 
will be made by considering the quality of solutions and the 
algorithm running times. 
5.1 Environment 

Empirical evaluation of the algorithms was done by 
implementing a prototype loosely-coupled distributed 
multimedia database system on a cluster of SUN workstations 
with single media relational data stored in the distributed 
SYBASE database system. Each of the workstations has an 
application system consisting of a client CMUI process, and a 
multimedia database server. The multimedia server extracts the 
data from the multimedia files and the SYBASE database system, 
whereas the CMUI process accepts the users queries and presents 
the results. The MDOs in the distributed multimedia database 
system are allocated based on the allocation schemes generated 
by the algorithms presented in the previous section. A set of 
queries are initiated according to the frequencies from various 
sites and the time taken to execute the queries is measured. There 
are two sites SYBASElO-CI and SYBASE-CS-SVR4 (site 0 
and site 1) that store the distributed relational database, and a 
cluster of workstations, namely, csl3su1, csl3sul0, cs13su30 and 
cs13su40 (i.e., site 2 to site 6, respectively) store multimedia data 
files. 
5.2 Relations 

The distributed multimedia database system consists of 
following relations, wherein, the ImageId, VideoID and AudioID 
attributes of Product-Media relation point to the files containing 
the corresponding image file, video file and audio file, 
respectively. 
01: Product-Cate ofy(CategofylD, Description) 
02: Product-Ty efT pelD,Cate or$D,Description) 
03: Media_lnfo~e~alnnforlD, JediaType, IP-addr, Filename, Path, Size) 
04: Company(CompanylD, Name, Address, Phone) 
0 5 :  Product-general(ProductlD, CompanylD, TypelD, Name, Brandname, 
Price,Description) 
0 6 :  Product~media(Product~lD, ImagelD, VideolD, AudilD) 
5.3 Queries 

We illustrate only one of the ten queries considered for the 
experimentation due to lack of space. SQL is used as the query 
language for expressing the queries. Each of the queries access 
some information from the distributed SYBASE database and 
some information from the MDOs. The query 1 accesses all the 
office products and presents the images of the office products, a 
video clip about the product, and an audio clip describing the 
product. 
Query 1 -product-category: = ‘Office Products’ 

SQL : $ID = ImagelD, VideoID, AudioID 
select company-name, company-address, 
company-phone from Media-Info 

where MediaInfoJD in ( 
select $ID from Product 
where TypeID in ( 

select Type-ID from Product-Type 
where CategoryID in ( 

select Category-ID from 
Product-Category 
where Description = 
‘Office Products’ 

) 
) 

7 
8 
9 
10 

Total 

The network cost between two sites is calculated as the 
average of two costs from A to B and from B to A and is given in 
Table 3. Network cost is in terms of time in ms required for 
transferring one Kbyte. 

6 Experimental Results 

eof the two SYBASE servers, namely, server 1 and server 0. 
6.1 Evaluation of Data Allocation Algorithms 

Each query was executed a number of times with the set 
frequencies and the total time to execute the queries was 
calculated. Table 2 shows the result of data allocation generated 
by the mean field annealing algorithm. Each query is executed 
five time from each site and average execution time is calculated. 
Table 3 shows the average query execution time times the 
frequency with which the query executed at each site. The total. 

In these experiments we allocate all the MDOs to either on 

Table 2: Allocation scheme generated by the MFA algorithm. 

24372.81 2343.66 12269.70 0 4Mw.00 
21118.58 8158.71 0 10612.20 5584.10 
33430.41 0 7276.28 22626.66 34401.33 
2321.07 18692.56 9968.52 12144.45 6814.98 

249226.41 179340.04 131665.01 195741.57 180727.23 

MDO I O 1  I 0 2  I 0 3  I 0 4  I 0 5  I 0 6  
Allocated server I 1 1 0 1 1 1 1 1 0 1  1 

Table 3: Average execution time x query access frequency (MFA). 

Table 4: Allocation scheme generated by the GA. 
MDO I 01 I 0 2  I 0 3  I 0 4  I 0 5  I 0 6  

Allocated Server I 1 1 1 1 1 I  0 I o  I I 

Table 5: Average query execution time x query access frequency (GA). 

Table 6:  Allocation scheme generated by the SE algorithm. 

1 MDO I 01 I 0 2  I 0 3  I 0 4  I 0 5  I 06 
Allocated Server l O l 0 l l l l l l l  I 

Table 7: Average execution time x query access frequency (SE). 
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query time cost in this case is 936209. Table 4 and Table 5 show 
the results for genetic algorithm. The total query time cost is 
936700. Table 6 and Table 7 for simulated evolution (total query 
time cost is 918950). These results show the difference in the 
allocation schema generated by different algorithms and the total 
cost of processing all the queries 
6.2 Evaluation of Query Execeution Time! 

First, we discuss the query time of different allocation 
algorithms at different sites as shown in Tables 2 to 9. In order to 
further evaluate the results more clearly, each of query execution 
time value is divided by the average of that of values among 
different allocation algorithms. Thus algorithm which 
consistently gives a value close to 1 .O for most of the queries is a 
better algorithm. Otherwise, it implies that the results generated 
by the algorithm provide erratic performance in (executing the 
queries. From the experiments (not included dui: to Lack of space) 
we found that the query time is quite fluctuating for some 
algorithms like the mean field annealing algoiithrn. In general, 
however, the simulated evolution exhibits the best performance 
among all the algorithms. Moreover, simulated evolution tends to 
give an optimal solution when compared to exhaustive search 
solution. 
6.3 Total Running Time of Data Allocation Algorithms 

First, we present the total running time for executing the four 
algorithms as well as an exhaustive search in Table 8. It can be 
seen that simulated evolution gives the least total cost but its 
running time is the longest among the three algorithms. Thus, 
there is a trade-off between the algorithm and quality of the 
solution. Though mean field annealing algorithm is fast, its 
solution quality is much worse than simulated evohtion. 

Table 8: The total transfer costs and running times of different 
allocation algorithms. 

Allocation Algorithms I TotalCost I 
Mean Field Annealing I 97851967 I 

1111.32 
351.01 =a 1034.15 

Genetic Algorithm I 100196279 I 
Simulated Evolution I 86731127 I 
Exhaustive Search I 86731127 I - 

7 Conclusions 
In this paper, we proposed various algorithms for the data 

allocation problem in distributed multimedia database systems. 
We developed an experimental loosely couplejd distributed 
multimedia database system to perform empirical e:valuations of 
the proposed algorithms. The experimental ev,aluation involved 
studying data allocation algorithms based on mean field 
annealing, genetic algorithm, and simulated evolutilon. Further, it 
involved implementing these algorithms, allocating data based 
on the results of these algorithms, and measuring the actual time 
to execute queries from different sites with set frequencies. 
Finally, the results collected are evaluated to derive conclusions 
regarding the utility of these four algorithms. The best allocation 
algorithm was found to be simulated evolution because it gives 
allocation with the least total query execution time cost, and also 
tends to provide an optimal solution when compared to the 
exhaustive solution. 
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