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Abstract

The LSP speech analysis-synthesis method is known as one the most efficient vocoders.
An important issue in encoding of the LSP parameters is that a certain ordering rela-
tionship between the LSP parameters is required to insure the stability of the synthesis
filter. This requirement has an important impact on the design of quantizers for the LSP
parameters. In this paper, the performance of several algorithms for the quantization of
the LSP parameters is studied. A new adaptive method which utilizes the ordering prop-
erty of the LSP parameters is presented. A combination of this adaptive algorithm with
non-uniform step size quantization is shown to be a very effective method for encoding
the LSP parameters. The performance of the different quantization schemes is studied
on a long sequence of speech samples. For the spectral distortion measure, appropriate
performance comparisons between the different quantization schemes are rendered.

t This work was supported in part by a National Science Foundation grant NSFD CDR-
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1. Introduction

Various speech analysis-synthesis methods for speech transmission under 9.6 kbps have
been studied. Among these, the LSP (Line Spectrum Pair) analysis-synthesis method was
proposed by Itakura and Sugamura in 1979 for the first time [1]. This method is known
as the one of the most efficient speech analysis-synthesis techniques [2], [3]. The LSP
parameters, which represent the short-time speech spectra, are completely equivalent, in
a mathematical sense, to other linear predictive coding coefficients, such as the LPC or
the PARCOR coefficients. However, the LSP parameters have some additional interesting
properties which makes them more attractive than the LPC or PARCOR coefficients.
Experimental results indicate that high-quality synthesized speech can be obtained using
LSP parameters at relatively low rates. Subjective performance tests [4] also confirm the

high quality of the synthesized speech.

The work in [4] is limited to uniform scalar quantization of the LSP parameters with
the spectral distortion measure. In a more recent work, Soong and Juang [5| have utilized
some basic properties of the LSP parameters to develop a differential quantization scheme

for encoding the LSP parameters. Furthermore, vector quantization of the LSP parameters

is reported in [6].

In this paper we study several quantization methods for encoding the LSP parameters.
The spectral distortion measure is used for objective comparison of the different quantiza-
tion schemes. Among others, an adaptive quantization scheme is developed which utilizes
the so-called ordering property of the LSP parameters. It is shown that while this algo-
rithm is fairly simple to implement, it results in noticeable performance improvements over
all other scalar quantization schemes for the LSP parameters. The relationship between
the average spectral distortion and the bit rate for the different quantization schemes is

studied.

The rest of this paper is organized as follows. Section 2 includes a brief review of the
LSP speech analysis-synthesis method. In this section, the relationship between the LSP
parameters and the more familiar LPC and PARCOR coefficients is described and some

basic properties of the LSP parameters are discussed. In Section 3 several algorithms
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for the quantization of the LSP parameters are presented. This is followed by Section
4 in which a performance comparison of the different quantization schemes is presented.

Finally, in Section 5 a summary and conclusions is provided.

2. LSP Speech Analysis and Synthesis

In this section, we provide a brief description of the LSP speech analysis and synthesis
and its implications. The interested reader is encouraged to refer to references [1]-[5] for

more details.
2.1. LSP Speech Analysis and Its Interpretation

For a given order p, the linear predictive coding (LPC) analysis results in an all-pole
filter 1/A,(2), described by
1 1

H(z) = = : 2.1
(2) Ap(z) 14+ a1z + ag2? + ... + apzP (2:1)

where z = e77%, —7 < w < 7. The parameters {ai}i=1,..p, are well-known as the LPC

coefficients {16].

It is easy to verify that the polynomial A, (2) satisfies the following relationship [1]:
An(z) = An_l(z) - kan_l(Z), Ao(z) == 1,
Bn(2) = 2Bp_1(2) — knAn—1(2), Bo(2) = 1, (2.2)

where A,(2) and B, (2) are related by
Bu(2) = 2"t1A,(1/2). (2.3)

In (2.2), the parameters {k;}i=1,2,...p, are called the PARCOR coefficients. It is important
to note that the PARCOR coefficients are completely equivalent to the LPC coefficients in
a mathematical sense. In other words, the PARCOR coefficients and the LPC coeflicients
represent the same spectral information. In the context of speech compression, it is well-
known that the LPC coefficients are inappropriate for quantization. Thig is primarily due

to their wide dynamic range and the concomitant instability issues in the synthesis filter
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[16]. For the PARCOR coefficients, however, it is known that if all |k;| are less than
one, the stability of the synthesis filter is guaranteed. The PARCOR coefficients are also

interpreted as the reflection coefficients at the boundary of the acoustic tube model for the

vocal tract [16].
For n = p+1 in (2.2), we have

Api1(2) = Ap (2) — kp+pr(z)
= Ap(2) — kp1+12P71 4,(1/2). (2.4)

In (2.4) consider two extreme artificial boundary conditions , kpr1 =1 and kpyy = —1.
These conditions correspond to a complete closure and a complete opening at the glottis
in the acoustic tube model, respectively. Under the conditions, kp4; =1 and kp4y = —1

)

the polynomial Ap41(2) coincides with the polynomials

P(z) = Ap(2) - z’”‘lAp(l/z)

= 1+ (a1 —ap)z+...+ (ap — a)2zf — 2PHL (2.5a)
and
Qz) = Ap(2) + 27" 2,(1/2)
= 1+ (a1 +op)z+ ...+ (ap + a1)2? + 2PTL (2.5b)
respectively.

When p is an even integer !, the polynomials P(z) and Q(z) can be expressed as [1]

P(z) = (1—2) H (1 — 2zcosw; + 2%), (2.6a)
1=2,4,...,p
and
Q(z) = (1+2) H (1 — 2zcosw; + 22), (2.6b)
i=1,3,...,p—1

where it is assumed that w; <wz <+ <wp_1 and wy <wy <+ < wp.

1 Throughout this paper, we will confine attention to even values of p.
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It is clear from (2.6) that e=7¥i, ¢ = 1,2,---,p, are the roots of the polynomials P(z)
and Q(z). The parameters {w;}i=1,2,..,p are defined as the Line Spectrum Pair (LSP)
parameters [1]. It is important to note that wo = 0 and wp41 = 7 are fixed roots of P(z)
and Q(z), respectively, and will be excluded from the LSP parameters. In view of the
above definition, the LSP parameters can be interpreted as the resonant frequencies of the

vocal tract under the two extreme artificial boundary conditions at the glottis. We will

elaborate on this later.

The polynomials P(z) and Q(z) possess some very interesting and important proper-

ties summarized in the following [1]:
(1) All roots of P(z) and Q(2) lie on the unit circle.

(2) The roots of P(z) and Q(z) alternate each other on the unit circle. Specifically, the

following relationship is always satisfied:
Ozwo<w1<w2<...<wp_1<wp<wp+1=7r. (27)

(From now on, we will refer to the above relationship as the ordering property of the LSP

parameters.

The following derivation leads to an interpretation of the LSP spectral representation
of speech. Using the LSP parameters, the power transfer function of H(z) can be calculated

as follows:
|H(e7“)® = 1/|4p(e™7*)|?
= 4/|P(e7) + Q(e )

= 2"’/{sin2% H (cosw — cosw;)?

1=2,4,...,p
+ cos? % H (cosw — cosw;)?}. (2.8)
i=1,3,...,p—1

Equation (2.8) implies that | H(e~7*)|? has a strong resonance at frequency w when at least

two LSP parameters are located near w. Therefore, the LSP parameters can be interpreted
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as a representation of an all pole filter by means of the location density of p discrete frequen-
cies, namely {w;,ws2,**,wp}, in the frequency domain. In view of the steps used in defining
the LSP parameters, they are clearly equivalent to the LPC coefficients {o;}i=1,2,...,p, and
the PARCOR coefficients {k;}i=1,2,...,,. However, it is established experimentally that the

LSP parameters have better quantization and interpolation properties comparing with the

LPC and PARCOR coefficients [2].
2.2. LSP Speech Synthesis

The filter H(2) can be realized by a feedback loop, with a unity feedforward gain and
a feedback gain of A,(z) —1. The feedback gain A,(2) —1, in turn, can be realized directly

using the LSP parameters as follows [1]:

4Ap(2) —1= [(P(2) -1) +(Q(z) - 1)}/2

p t—2 p
z
=3 Z (a; + 2) (1+ajz+2%) H (1+ajz+ 2%)
=2 7=0 .1=
(¢=even) (F=even) j=e
p—1 7—2 -1
+ (a; + 2) (1+ajz+2%) + (1+a;2+2%)], (2.9
3
(s:.oc‘!d) (JJ=o—dti) (.1] odd)
where a; = —2cosw;, 1t =1,2,...,p, and a_; = ag = —2.

It is established in [1] and [9] that equation (2.7) (i.e., the ordering property of the
LSP parameters), is the necessary and sufficient condition for the stability of the LSP
synthesis filter. In an LSP-based speech compression system, the LSP parameters must be
quantized. Therefore, in order to guarantee stability for the LSP synthesis filter, we must
make certain that the quantized versions of the LSP parameters also satisfy the ordering

property. This is a very important issue in the design of quantizers and dequantizers for

the LSP parameters. We will elaborate on this in the following section.

3. Algorithms for Quantization of the LSP Parameters

In a speech coding situation based on LSP analysis, the LSP parameters must be

quantized and encoded. In this section, several algorithms for the quantization of the LSP
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parameters are described. In order to reduce the average quantization distortion, some
of the algorithms utilize the ordering property of the LSP parameters as described by
(2.7). In this paper, only scalar quantization is considered. Also, throughout the paper,
the distortion measure used for the design of the quantizers is the squared-error distortion

measure.
3.1. Uniform Quantization (UQ)

Let w; min and w; max denote the minimum and the maximum values of the ith LSP
parameter, respectively. Let us assume that these values are precomputed for all LSP
parameters based on a long sequence of speech samples. In the uniform quantization
(UQ) scheme, it is assumed that all LSP parameters are quantized by means of uniform

quantizers. The step size of the quantizer for the sth LSP parameter is denoted by A; and
described by

i=1,2,...p, (3.1)

where b; is the number of quantization bits for the sth LSP parameter.

While it might be argued that the best choice of the step size may not equal to
that given by (3.1) (because the LSP parameters are not uniformly distributed), empir-
ical evidence has shown that the values of A;, ¢ = 1,2,.--,p, given by (3.1) yield good

performance results.

Despite the fact that the LSP parameters satisfy the ordering property described by
(2.7), since they are quantized independently, there is a possibility that their quantized
versions do not satisfy (2.7). This phenomenon, which is merely the result of quantization
noise, is more likely to happen in the low bit rate quantization of the LSP parameters
(low bit rate speech coding). As mentioned before, this violation of ordering of the LSP
parameters results in an instability of the LSP synthesis filter, and therefore, should be
avoided. In what follows we will describe a dequantization algorithm which, in the decoder,
chooses the best set of reconstruction levels in an effort to minimize the squared-error

quantization distortion while maintaining stability of the synthesis filter.
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Let wij, ¢ = 1,2,...,p; J = 1,2,...,2%, denote the jth reconstruction level of the
quantizer operating on the sth LSP parameter. Then d; ;,1 =1,2,...,p; j =1,2,... , 2k

H

the squared-error in quantizing the sth LSP parameter, w;, to the jth level @; ;, is given

by

disj = (W»i - (':)1:1.7')2' (3'2)

The following algorithm describes a procedure for optimum decoding of the LSP parameters
such that the squared-error distortion is minimized while stability of the LSP synthesis

filter is maintained.

[Algorithm I]
(1) For i = 1, calculate dy,; and set Gy ; = dy,; for j = 1,2,---,2b1,
(2) Forz =2 to p,

(i) calculate d; ; for 7 =1,2,---,2%,

(i) for each j = 1,2,---,2%, find an index j' such that G;_1;» + d; ; is minimized
subject to W;_1,;+ < w; ;. Define G;; = Gi_1; + d; ;. Here, G;; denotes the
mintmum accumulated quantization error for the jth reconstruction level of the
1th LSP parameter,

(iii) for each jth reconstruction level for the ¢th LSP parameter, memorize the corre-
sponding index j/ obtained in (ii) and define L; ; a 7.

(3) For the pth LSP parameter, find that index j* which minimizes Gy ;, i.e., Gp j+ =
min{Gp ;}, where the minimization is over all j =1,2,---, 2b», Denote this index by

L, = g%,

(4) Find the set of indices of optimum reconstruction levels for the (p—1)st, (p—2)nd, - -,
1st , LSP parameters, denoted by {¢x}x=p—1,p—2,.,1, by backtracking L; ;’s. More
specifically, the index £; of the optimum reconstruction level for the :th LSP parameter

is obtained recursively according to
EiZLi_;.l,ng,izp—l,p—Z,---,l, (3.3)

with £, = j*.



The procedure described above yields the optimum choice of reconstruction levels,
which minimizes the squared quantization error while preserving the ordering property as
described in (2.7). It must be noted that this algorithm could be used for the decoding

of the LSP parameters regardless of the type of individual quantizers — uniform or non-

uniform.

The above algorithm is a dynamic programming-based algorithm which, compared to
the exhaustive search method, substantially reduces the number of computations needed
to determine the optimum choice of the reconstruction levels. In fact, the computational
complexity of this algorithm can be further reduced by noticing that the calculation of the
minimum accumulated quantization error in Step (2) is not necessary for all possible values
of the index j. For instance, let @;; and @;4 1k be such that &;; > @;11,k. In this case
only the two combinations @; ;1 and @41,k (Qij—1 < Dig1,k), @i,; and Dipy k41(Di; <

@i+1,k+1) should be calculated.
3.2 Non-Uniform Quantization (NUQ)

It is well-known that non-uniform quantization is superior to uniform quantization
in the sense that it results in a smaller average quantization error, except in the case of
the uniform distribution. Let us now suppose that the number of quantization levels and
the probability distribution function of all LSP parameters are known. The objective is
to find the optimum quantization levels in the sense of minimizing the expected value of
quantization errors. More specifically, for a generic LSP parameter, say, w, if we denote
its quantized version by g(w), the objective in designing an N-level quantizer is to choose

the optimum reconstruction levels and thresholds to minimize

D= [ glw))plw)s
N T;
-y /T 7w 0)p(w)de, (3.4)

where the T;’s are the threshold levels (To = wmin and T = Wmax), the &;’s are the

reconstruction levels, p(w) is the probability density function of the LSP parameter, and
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Wmin and Wmax are the minimum and the maximum of the support of p(w), respectively.
It is easy to show that for the squared-error distortion measure, the optimum choice of the

threshold levels satisfies T; = (&; + &;41)/2, § =1,2,---,N — L.

Algorithms for solving this problem are given by Lloyd [7] and Max [8]. However,
the algorithms suggested in [7] and [8] provide only locally optimum quantizer structures.
A dynamic programming-based algorithm can be used to obtain the globally optimum
quantizer structure, [10], [11]. This algorithm is briefly described in the following. The
interested reader should consult with [10] and [11] for details.

[Algorithm II]

First we discretize the interval [Wmin, wWmax| into M subintervals of equal lengths. This
will result in a set of discretization points described by T' = {~v1,v2,*,Ym—1}, where
Ym = Wmin + (Wmax — Wmin)M/M, m =1,2,.-- M — 1. The set T is a discrete collection
of points from which we will choose the reconstruction levels. Obviously, the larger the
value of M, the more precise will be the value of the reconstruction levels.

(1) For all &,,; € T 2, compute

Dy = / ™ (0 = 01) (W) d. (3.5)

Wmin

(2) For each n =2,3,---,N — 1, and for all &, ;» € I' compute

A

Wn—1,5

le
Dy, j+ = min [Dn‘l’f T / (W — Fn—1,7)°p(w)dw

+ / = w,,,j,)2p(w)dw] , (3.6)

where the minimization is with respect to the index j such that &n,_1; < @, ;7 and

Tjr = (Gn-1,5 + On,j)/2.

2 To avoid confusion with the notation developed earlier, we emphasgize that Dp,; de-

notes the jth choice in the set I' which is being examined for the nth reconstruction level.
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(3) Finally, to determine &y, compute

TJ-/
.DN,]-: = min [DN—I,]' -l—/ (w - G)N_l,j)zp(w)dw

A

WN—1,5

Wmax

G)N,j’
+/ (w— c?JN_l,j)zp(w)dw + / (w— @N,j:)2p(w)dw , (3.7)
Ty Dn gt

where the minimization is with respect to the index j such that Ony_y; < ON,5
and Tj» = (ON-1,7 + @n,57)/2. Then find the minimum value of Dy j» among all
choices of j/. After finding this, the optimum reconstruction levels can be obtained

by backtracking the process described in Step (2).

In the actual computation of the optimum reconstruction levels, the discrete version
of the probability density function of the LSP parameters, computed from a long sequence

of speech samples, is used.

It must be noted that performance improvements can be obtained by designing the
quantizers based on the conditional probability density functions p(w;|wi—1), 7 = 2,3,--,p.
This is because of the inherent dependency between the consecutive LSP parameters which
is best described by the ordering property described by (2.7). In this work, however, we
have only used the marginal probability density functions of the LSP parameters to avoid
the additional complexity associated with the design and implementation of quantizers

based on the conditional densities.

We have to mention at this point that while the use of optimum mean square error
quantizers certainly reduces the average quantization error as compared to the uniform
quantization case, there is still a possibility that the correct ordering of the LSP parameters
is not preserved at the output of these quantizers (especially in the low bit rate region).
However, Algorithm I can still be applied to obtain the best dequantization of the LSP
parameters while preserving the correct order. Our results in the next section on NUQ are
indeed obtained by combining Algorithms I and II; Algorithm II is used for the design of

quantizers for individual LSP parameters while Algorithm I is used for optimal decoding.

3.3 Differential Quantization (DQ)
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Due to the ordering property of the LSP parameters, it is conceivable that the fre-
quency difference of consecutive LSP parameters possess a smaller dynamic range com-
pared with the LSP parameters themselves. Experimental evidence indicates that this is
indeed true. This has become the motivation for a method first reported by Soong and
Juang [5],in which instead of quantizing the LSP parameters, the differences of consec-
utive LSP parameters are quantized—hence, the term differential quantization. Since we

have used this algorithm for comparison purposes, in what follows we will provide a brief

description of it.

[Algorithm III]

(1) Quantize w; to & and set ¢ = 1;

(2) Calculate the difference between w; 11 and @;, namely Aw; = wiy1 — @;;
(3) Quantize Aw; to Ad; 3;

(4) Reconstruct wiyy as @1 = @5 + Ady;

(56) If ¢ = p, stop; otherwise set ¢ = ¢+ 1 and go to (2).

3.4 Adaptive Quantization (AQ)

Finally, in this subsection we will present an alegant algorithm which utilizes the
ordering property of the LSP parameters to reduce the quantization error. The algorithm,
essentially, uses the fact the knowledge of the value of w; (or its quantized version) provides
useful information about the range of possible values of w;; this information can be used
to design a better quantizer for the (¢ + 1)st parameter. The algorithm is detailed in the

following.

3.4.1. Forward Adaptive Quantization (AQFW)
[Algorithm IV]

(1) Quantize w; to &y with b; bits and set : = 1.

(2) Compare @; and wi41,min,

3 In Algorithm III, ®; and Ad; denote the quantized versions of w; and Aw;, respectively.
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() If &; < wit+1,min, then quantize w;y; to &;y; with b;; bits using a uniform
quantizer with step size, A;y1 = (Wit1,max — wi+1,min)/2b"+1, over the range
[wi+1,min s wi+1,max];

(b) If @; > wit1,min, then quantize w;41 to &;4 with b, bits using a uniform quan-
tizer with step size, Ajy1 = (Wit1,max — ©5)/2%+*, over the range (@i, Wit1,max)s
because we know @;;; must be greater than &;. (This is the case where the
knowledge of w; becomes useful in quantizing w;41.)

(3) If # = p — 1, stop; otherwise, set 1 =1+ 1 and go to (2).
3.4.2 Backward Adaptive Quantization (AQBW)

The idea used in AQFW can also be applied in the backward direction. This is

outlined in the following.

[Algorithm V)|

(1) Quantize wy, to &, with b, bits and set 1 = p.
(2) Compare @&; and w;—1 max,

(a) If @i > wi—1,max, then quantize w;_; to &;_; with b;_; bits using a uniform
quantizer with step size Aj_; = (Wi—1,max — Wi—1,min)/2%~* over the range
[Wi-—l,min,wi—l,max]-

(b) If &; < wi—1,max, then quantize w;_; to &;_; with b;_; bits using a uniform

quantizer with step size A;_1 = (@i —w;—1,min)/2%~* over the range [Wi—1,min,®s]-

(3) If i = 2, stop; otherwise set ¢ =7 — 1 and go to (2).

In AQFW and AQBW, since the ordering of the LSP parameters is preserved after quan-

tization, parameter inversion never occurs.

Obviously, the average value of quantization error can be reduced comparing with the
UQ method which always quantizes the LSP parameters over their full distribution range.

Observe that in AQFW we start by quantizing the first LSP parameter while in AQBW
we start by quantizing the last LSP parameter. In fact, the choice of the initial LSP

parameter is rather arbitrary. If the middle-order parameter (e.g., the (p/2)th) is chosen
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as the initially quantized parameter, the quantization procedure can proceed in parallel in
both directions, namely forward and backward. The advantage of such a technique is that
parallel architectures can be used for the implementation of the algorithm which could

result in a saving in the processing time. In this paper, to avoid confusing the issue, we

merely study the AQFW and AQBW.
3.5 Adaptive Quantization with Adaptive Bit Allocation (AQ-AB)

Let us consider, for instance, the AQFW algorithm. This algorithm uses the knowledge
of the value of one LSP parameter to reduce the range of possible values of the next
LSP parameter. Thus, it is conceivable that sometimes the next LSP parameter can be
quantized with a smaller number bits with nearly the same average distortion as in the
nonadaptive UQ case. This has become the motivation to study the potential advantages
of such adaptive bit allocations. We propose a very simple algorithm for adaptive bit
allocation in AQFW and AQBW, hereafter referred to as AQFW-AB and AQBW-AB,

respectively. These algorithms are described below.

In Algorithms IV or V, if the following relatioriship is satisfied, w; can be quantized

with approximately the same distortion with one fewer bit.
[1] In Algorithm IV,

Wi, max — @i—1 < (Wi, max — Wi,min)/2- (3.8a)
[2] In Algorithm V,

Qit1 — Wimin < (Wi;max — Wi,min)/2. (3.8b)
3.6 Adaptive Quantization with Non-Uniform Step Size (AQ-NU)

Obviously, combining the ideas in AQ and NUQ will result in an improved quantization

scheme referred to as AQ-NU. The algorithm is as follows.
[Algorithm VI]

(1) Quantize w; to @&; with b; bits using a non-uniform quantizer determined by the
procedure mentioned in Section 3.2, and set : = 1.

(2) Compare ©; and Wit 1,min,

13



(a) If ®; < wit1,min, then quantize w;4; to @;y; with b;y; bits using a non-uniform
optimum quantizer over the range [Wi+1,min,Wi+1,max)- The non-uniform recon-
struction levels must be precomputed using the conditional probability density
function p(w;y1|@;) for each reconstruction level of the ith LSP parameter which
satisfy @; < wiy1,min-

(b) I &; > Wit1,min, then quantize w;y; to @;4.4 with b;; bits using a non-uniform
optimum quantizer over the range [¥;,wi+1,max]- In this case also, conditonal
distribution functions are used as in Step (a).

(3) If i = p — 1 stop; otherwise, set ¢ = 7 + 1 and go to (2).

Similar modifications can be made to incorporate non-uniform quantization into the

AQBW scheme.

Clearly, the above adaptive quantization scheme with non-uniform thresholds and
reconstruction levels is superior to both the UQ and the AQ schemes. The the AQFW-NU
and AQBW-NU are superior to NUQ because they use smaller ranges for quantization of
the LSP parameters. Also, the AQFW-NU and AQBW-NU are superior to AQ because

they use better quantizers for individual LSP parameters.

However, to implement this quantization scheme, the conditional density function and
the non-uniform reconstruction levels using the conditional densities are needed. In fact,
if b; is the number of quantization bits for encoding the :th LSP parameter, the number

of conditional density functions which must be precomputed is the following:

i—1
p E b
1=2

In the case where p = 10, the computation of so many conditional density functions and

the corresponding optimal quantizers is rather impractical.

To alleviate this difficulty, an approximation of these conditional densities can be
used. Specifically, suppose the support of the density of w; is diseretized (uniformly)

into M; subintervals, each of which is represented by one point, say B;1,08:,2,,Bi,m;-
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Then the desired conditional density p(w;+1|®;) is approximated by one of p(wi+1|8i,m <

@i < Bim+1), m=1,2,...,M; — 1. In this case, the total number of conditional density

functions which must be computed is:

4. Performance Results

We have studied the performance of the LSP-based speech coding system at different
rates using the various quantization algorithms described in Section 3 on a long sequence
of speech samples. The spectral distortion measure is used for objective comparison of
these quantization schemes. In what follows we will describe and discuss some of our
results. Some information about the contents of speech data samples and the experimental
conditions are summarized in Table 1. The experimental conditions here are nearly the

same as those used in {12], except the difference of language.
4.1. LSP Parameter Distribution

The distribution range and histogram of the LSP parameters are computed for the
sequence of speech samples described in Table 1. These results are illustrated in Table 2 and
Fig. 1. In Table 2 and Fig. 1, w; is converted to f;, using the relationship f; = (w;/27)- fs,
Hz, where f, is the sampling frequency. These values are used as the boundary points of the
quantization ranges for various quantization schemes described in Section 3. A discretized
version of the probability density function of each parameter is also computed over the
appropriate range with 9 bits (2° discretization intervals). These approximations to the

density functions are used to design the optimum quantizers described in Section 3.2.

4.2. Spectral Sensitivity

To determine how the quantization bits should be allocated to the different LSP
parameters, we need to have a measure of the sensitivity of the system to the effect of

quantization in individual LSP parameters. Since the spectral distortion is used as a
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measure of the system performance, we have computed the spectral sensitivity of individual

LSP parameters.

The spectral sensitivity associated with an LSP parameter, say w; is defined as fol-
lows. Suppose w; is perturbed by a small amount é and suppose this perturbation results
in an average spectral distortion SD(6). Then, the spectral sensitivity of w; is defined
as SD(6)/6. For the speech data base used in our studies, the spectral sensitivity of the
different LSP parameters are computed and illustrated in Table 3. For comparison pur-
poses, the spectral sensitivity results for Japanese speech [12] are also included in Table
3. In view of the results in Table 3, there is no significant difference between the spectral
sensitivity of the LSP parameters of English and Japanese. Only w; and w2, which are
closely related to the first formant frequency, have a slightly higher sensitivity compared

with other parameters.
4.3. Performance Comparison

Based on the spectral sensitivity results tabulated in Table 3, we have adopted a
uniform bit allocation among all LSP parameters as they appear to be almost equally

sensitive to the quantization noise. The average spectral distortion is defined as follows.

N
1 1
SD:—g —
Nn=1<7r/o

Where Sy (w) and gn(w) are the spectra of the nth speech frame without quantization

T

(log Sn(w) — log Sy, (w))zdw> ,  (dB)? (3.9)

and with quantization, respectively and N is the total number of frames. The spectral

distortion measure is known to have a good correspondence with subjective measures [13|.

In our experiments, all speech samples which are used to extract the parameter dis-
tribution ranges, are used to compute the average spectral distortion. In AQFW-NU
or AQBW-NU, to simplify the design and implementation, we have considered a rather
heuristic, but efficient, modification of Algorithm VI. Specifically, let us assume that
A1,Ap, -+, Ay are the step sizes of the optimum quantizer for the sth LSP parameter
in the non-adaptive case. Then, in the adaptive case, namely AQFW-NU and AQBW-NU,

if the range of the parameter is shrunk due to adaptation, the values of the step sizes
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A1,Aq, -+, Ay are reduced by the same proportionality factor. This argument is based

on the assumption that the shape of the conditional densities are more-or-less similar to

that of the marginals and only the ranges vary.

The experimental results are summarized in Fig. 2. A few comments about these

results are in order.

(1)
(2)

Clearly, AQFW, AQBW, DQ and NUQ are superior to UQ.

The NUQ method has a performance which is nearly the same as AQFW or AQBW
with uniform quantization. This is an indication of the fact that the LSP parameters
do not possess a uniform distribution and that noticeable performance improvements
can be obtained through the use of optimal non-uniform quantizers. Also, our experi-
mental results indicate that the AQBW is slightly superior to AQFW. The reason for
this is that in AQBW the LSP parameters of lower order, possessing higher spectral

sensitivity, are quantized with smaller step sizes than in AQFW,

Adaptive bit allocation in adaptive quantization method (AQFW-AB or AQBW-AB)
is not very effective in reducing quantization bits. This is because the cases where the
quantized range is less than half of full range do not occur very often, and hence the

performance is nearly the same as AQFW or AQBW.

The adaptive and non-uniform quantization methods (AQFW-NU and AQBW-NTU)
have offered the best results in reducing the spectral distortion at a given bit rate.
Specifically, for the same value of the spectral distortion, the adaptive non-uniform
quantization scheme (AQFW-NU or AQBW-NU) requires about 6 bits/frame fewer
than the uniform case. Using the AQFW-NU or AQBW-NU algorithms, a spectral
distortion of 1 dB2, which is established as the difference limen of spectral distortion
[14], can be obtained with about 32 bits/frame. This corresponds to approximately a
20% bit reduction compared with the PARCOR-based speech coding system described
in [15].

5. Summary and Conclusions
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We have studied several issues related to quantizer design and performance in LSP
speech coding. Several quantization and dequantization algorithms for LSP parameters
are proposed and their performances are compared to each other. Among these, the
differential quantization algorithm and the adaptive quantization algorithms utilize the

ordering property of the LSP parameters.

The rate vs. average spectral distortion performance of the different quantization

schemes are determined experimentally.

According to the experimental results, the algorithm which combines the non-uniform
step size quantizers with an adaptive encoder offers the best performance. Using this

method, an average spectral distortion under 1dB2 can be achieved with only 32 bits/frame.

The performance of these algorithms on out-of-the-training-sequence-data remained
to be studied. Also, a more careful study of the effect of the optimal design of the quan-

tizers based on the actual conditional probability density functions of the LSP parameters

appears to be necessary.
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Table 1 Experimental Conditions

(Speech Data)

Speakers

Sentences
Sampling Frequency
(LSP Analysis)
Frame Period
Window
Analysis Order

Total Number
of Frames

2 Male and 2 Female
4 Sentences/Speaker

8 KHz

10 msec

30 msec Hamming Window

10 (wl,wz,. . ,wlo)

5,445
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Table 2 LSP Parameter Distribution Range

[KHz]
min 1% | max 1%

LSP | min tail tail max
f1 0.05 0.05 0.50 0.55
fa 0.14 0.18 0.88 1.13
f3 0.37 0.44 1.26 1.44
fa 1069 | 0.78 1.66 1.82
fs 0.83 0.94 2.06 2.25
fo | 127| 1.36 2.44 2.57
f7 1.52 1.74 2.78 2.89
fs 2.04 2.26 3.14 3.24
fo 2.57 2.80 3.52 3.61
fio | 3.06 3.30 3.80 3.86
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Table 3 Spectral Sensitivity of LSP Parameters

[dB/Hz]
Language
LSP English Japanese!12]
Parameter
w1 0.018 0.022
we 0.016 0.020
w3 0.013 0.013
wq 0.012 0.014
ws 0.014 0.015
we 0.012 0.014
wr 0.012 0.012
wg 0.012 0.014
wg 0.011 0.012
w10 0.012 0.011
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Figure 2: Relationship Between Bit Rate/Frame

and Spectral Distortion in Various Quantization Methods



