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Three-Dimensional Motion Estimation
of Objects for Video Coding

Giancarlo CalvagnoMember, IEEE,Roberto RinaldoMember, IEEE,and Luciano Shaiz

Abstract—In this work, three-dimensional (3-D) motion esti- first approach computes the two-dimensional (2-D) field of
mation is applied to the problem of motion compensation for jnstantaneous velocities or optic flow based on local spatial
video coding. We suppose that the video sequence consists O&nd temporal luminance gradients [5]. The optic flow map is

the perspective projections of a collection of rigid bodies which . . . . .
undergo a rototranslational motion. Motion compensation can segmented, and different regions are associated with distinct

be performed on the sequence once the shape of the objectsPbjects in the scene. Constraints aadpriori information
and the motion parameters are determined. We show that the about the scene are used to estimate the actual object motion
motion equations of a rigid body can be formulated as a non- and structure. It has been observed that this approach is very

linear dynamic system whose state is represented by the motion g qiiive to noise since it is based on the use of differential
parameters and by the scaled depths of the object feature points. .
An extended Kalman filter is used to estimate both the motion OPerators. Also, good results are obtained only for smooth and

and the object shape parameters simultaneously. The inclusion Small motion in the scene [5], [6].
of the shape parameters in the estimation procedure adds a set The alternative approach, which is usually followed in the

of constraints to the filter equations that appear to be essential computer vision literature, basically consists of three steps

for reliable motion estimation. Our experiments show that the . . s . .
proposed approach gives two advantages. First, the filter can [4]: extracting a set of characteristic points on the object

give more reliable estimates in the presence of measurementCalled features, establishing a correspondence between points
noise in comparison with other motion estimators that separately in adjacent frames by matching the features, and finally,
compute motion and structure. Second, the filter can efficiently computing the structure and motion parameters based on the
track abrupt motion changes. Moreover, the structure imposed faature matches.

by the model implies that the reconstructed motion is very natural - . . . .
as opposed to more common block-based schemes. Also, the Our attention will focus on low bit-rate coding of videocon-

parameterization of the model allows for a very efficient coding ference sequences. Because of the highly constrained content

of motion information. of the considered video material and of the low rate of image
Index Terms—mage coding, Kalman filtering, motion analysis, acquisition, which allows for large motion between successive
motion compensation, video signal processing. frames, feature-based methods are very good candidates for

motion estimation.
In this paper, we will consider a model which describes
the global motion of the objects in the scene, and we will
FFICIENT video coding techniques usually take adshow that such a model is effective to perform the motion
vantage of the temporal redundancy between adjac&mimpensation step in a video coder. In particular, it can be
frames in the image sequence to greatly reduce the dat®d in an object-oriented coder [3] to perform the motion
transmission rate. A way to accomplish this is by estimatingpmpensation of model compliance objects.
the displacement between frames of image elements, whichn our work, we exploit some of the results on the problem
can be individual pixels [1], picture blocks of fixed dimensiomf “structure and motion” recovery that has been addressed
(as in block matching motion compensation [2]), or groups @ the field of computer vision [7]-[15]. This problem arises,
pixels corresponding to moving objects in the scene [3]. for example, in applications such as autonomous navigation
Typical video sequences consist of a few moving rigidnd robot vision. The most basic formulation of the “structure
objects and a static background. In particular, videoconferenged motion” recovery problem consists of estimating the
scenes have an almost fixed scene content, consisting of ffa@slation and rotation parameters and structure of an object
head and shoulders of the speaker and the background. fhe 3-D space.
movement of the speaker mainly consists of the global move-|n this paper, we show that the motion equations of a
ment of the shoulders and head, which can be approximatedig&l body can be formulated as a nonlinear dynamic system
rigid objects, and of the local motion due to facial expressiaghose state is represented by the motion parameters and by
changes and speech. the scaled depths of the object feature points. An extended
Two basic approaches to three-dimensional (3-D) motiqtaiman filter is then used to estimate the object motion and
estimation have been proposed in the literature [4]. TRgructure, represented in our formulation by the scaled depths
of the features, from which successive frames can be predicted.

I. INTRODUCTION

Manuscript received September 1, 1996; revised March 1, 1997. In our approach, the 3-D object structure and the motion
The authors are with the Dipartimento di Elettronica e Informatica, Uni- . .

versita di Padova, Padova 35131, Italy. parameters are estimatsihultaneouslyrather than computed
Publisher Item Identifier S 0733-8716(98)00308-4. from inaccurate measurements and estimates, as is often done
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Let X;(t) = [X;(¥),Yi(t), Z:i(t)]* denote the coordinates
of the generic point of a rigid body at timet. The velocity of
any pointi of the rigid body can be represented by the sum of
a translation velocitwko(t) and a rotation velocity, namely

~ Xi(t) = 20t) A Xi(t) + Xo(t) 1)
where 2(t) = [Qx (1), Qy (1), Qz(t)]* is the vector of the
- angular velocities. Thus, six parameters are sufficient to char-
acterize the motion. We can rewrite (1) in matrix form as
Xi(t) = Q) Xi(t) + Xo(t) (2)
\
where
~ 0 —Qz(t) Qy(t)
2)=| Qz(t) 0 —Qx(t) (3)
Image Plane _Qy(t) Qx (t) 0
Fig. 1. Reference coordinate system. is a skew symmetric matrix. The continuous time equation (2)

can be solved to derive a discrete-time equation Xo(¢),
in the literature [9], [12], [16]. The inclusion of the shapé@mely

parameters in the estimation procedure adds a set of constraints Xi(t+1) = ROX;(t) + T(b). (4)
to the filter equations that appear to be essential for reliable
motion estimation. If £2(¢) is constant betweehandt + 1, as we will assume in

Some authors recently proposed the simultaneous estimafid®@ following, we have, in particular,
of motion and structure [17], [18], and demonstrated its ap- ¢
: : oL ) : R(t) =520
propriateness for motion estimation. Our recursive formulation =

permits us to take into account previous measurements in T(t) =[Tx(t), Ty (), Tz()]*
the estimation process. As a matter of fact, the optimization t+l Q) (11— 5
procedure of the Kalman filter can make use of the motion and = /t e Xo(r)dr. (5)

structure information from the past entire sequence, rather than

from a few frames as done in [17] and [18]. The experimenthft Xi(t) denote the vector of the coordinates of pairdn

results confirm that the proposed technique can give reliabfi¢ image plane at time The coordinates on the image plane

estimates in the presence of noise and despite abrupt mof#f related to the 3-D coordinates by perspective projection,

variations. In particular, our formulation proved to be essenti&f Shown in Fig. 1. Assuming a focal length equal to one, we

for motion compensation of real-world video sequences. obtain
In Section Il, we review two motion estimation methods )

already reported in the literature, and we describe the proposed z;(t) = = | Yi(t)/Z:(¢) |. (6)

algorithm. In Sections Il and IV, we present some experi- ‘

mental results on synthetic and real-world video sequences,. . .

confirming the increased robustness of the proposed met o9 (4), one can easily derive

compared to the other considered solutions. In Section V, R(&)Z;(t)x:(t) + T(t)

some conclusions are drawn. mt+1) = R3(t)Z;(t)x;(t) + Tz (¢t) %

where R;(t) denotes the third row of matri(¢) and 7’z (¢)

is the third component of vectdF(t), as specified by (5).

Equation (7) gives the position on the image plane of the
In this section, we formulate the problem of the estimatioprojected point at time# + 1 when one knows its position at

of the 3-D motion parameters of a rigid object from perspectitame ¢, the rotation matrixR(t), the translation vecto¥(¢),

projections of object points onto the image plane. In particulaand the depthZ;(¢).

we review two estimation methods already proposed in thelt is clear from (7) that the projected point coordinates at

literature, and present an original formulation that appearstime ¢ + 1 depend on the point deptt;(¢) as well as on the

have superior performance in the case of noisy measurementstion parameter®(¢) andZ'(t). Note that coordinateg; (¢)

The new formulation was essential for successful motiafescribe the 3-D shape of the object. Since we are dealing

estimation of real-world video sequences. with rigid bodies, the object shape does not change in time, and
In the following, we suppose that the Cartesian referentieerefore it is possible to calcula#(t+1) and Z;(t) through

system is centered at the pupil of the observer, thexis a simple triangulation process, once the motion parameters

points forward and coincides with the optical axis, while th&(t), T'(¢) and the projections;(¢), z;(¢ + 1) are known.

X andY axes are parallel to the image plane and form with In the application at hand, i.e., motion estimation in a video

Z a right-handed reference (see Fig. 1). coding system, we can determine the projections onto the

Il. PROBLEM FORMULATION
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image plane of a set of characteristic points,femtures of This relation holds for the projected coordinate vectefs +
the 3-D object in successive frames. This requires findirig and«;(¢) in place ofX;(t 4+ 1) and X,(¢). Hence, we can
a set of point projections which can be easily tracked aasily rewrite (8) forz;(t + 1) andz(¢) in the form of the
the image sequence, typically located along edges or insigpipolar constraint”

highly textured areas. From the measured coordinat )

and z;(t + 1) in successive frames, we will show tha?git is 2i(t+1)'Qzi(t) =0, =1 N )
indeed possible to compute the motion paramelit9, T(t) where we defined

and the 3-D structure parametefgt) up to a scale factor. In

a practical environment, projections(t) andz; (t+1) will be Q(t) £ T(H)R(), (10)

affected by observation noise, and therefore the measurement B 0 =Tz(t) Ty(t)

of parameters becomes a typical estimation problem. T(t) 2 | Tz(t) 0 —Tx(t)|. (11)
As a consequence of the feature-based approach, the struc- Ty (t) Tx(t) 0

ture parameter;(t) will be estimated only for a limited set Matrix @ in (10), where we drop the dependence fram

of points. For the pixels that do not correspond to featu;gr notation simplicity, is referred to in the literature as the

projections, the use of (7) requires that the object structure,is . o
essential matrix.

extrapolated fromz;(¢). Our approach is to suppose that the We note that the epipolar constraint is linear gn By

objects of the scene have smooth surfaces: as a consequ nees, .
. S : ?bm ding a column vectog by stacking one after the other the
the depth of a generic point is approximated by means o

a . )
g ; . transposed rows df, we can arrange the epipolar constraints

weighted sum of the depths of the neighbor feature pomts.for thF; N featureaj;z)oints in the fogr]m of apIiFr)1ear system of
In the next subsections, we will describe three algorithms

: L= equations, namel
that solve the problem of motion and structure estimation. The y

first is due to Longuet-Higgins [9], and only uses information x(z(t),z(t+1))g=0. (12)

from two consecutive frames. The method is not recursive, and ] ] ) ) )

does not pose any convergence problem. On the other hafe X is an N x 9 matrix whoseith row is built from the

this procedure proved to be very sensitive to feature positifffiture projected coordinate components, namely,

measurement noise. _ . (i (t 4+ V)as (), @it + Dy (), ma(t + 1), ya(t + D)z (2),
The second algorithm, which was recently introduced by

Soattoet al. [12], defines the Longuet-Higgins algorithm in vt + Dyilt), vilt + 1), 2:(8), i(t), 1.

a recursive formulation based on the Kalman filter. In our |n summary, from known feature projection coordinates on

simulations on synthetic and real-world video sequences, ti@ image plane, we can build matrixx(t),z(t + 1)) and

algorithm performance proved to be significantly better thaglve (12) to find the essential matrix.; > 8 and the feature

that of the original approach by Longuet-Higgins, but stilllistribution is not pathologic, the solution of the homogeneous

not adequate in the case of very noisy measurements anddpstem (12) is a subspace of dimension one. To determine

motion estimation of real-world video sequences. Q, up to its sign, we need an additional constraint, and in
The last algorithm is original, and is the main contribution ofe following, we will assumd|T|| = 1. This ambiguity is

the paper. It is based on the Kalman filter, and includes objegit simply a mathematical artifact, but a consequence of the

shape parameters into the filter state equations. In particuldGt that a point at deptt¥ translating by a vectofl’ has

the object feature scaled depths estimatedy the algorithm, exactly the same projected coordinates on the image plane as

together with the motion parameters, rather tluafculated a point at depthnZ translating byaI”. Therefore, matrixQ

via a triangulation process from noisy measurements apgn be determined only to within a scale factor. It is important

imprecise estimates oR(t) and T°(t). In our experiments, to note that the rank of matrix is exactly eight when the

we found that this approach gives reliability to the estimatiomeasurements are not corrupted by noise, while it becomes

procedure, at the expense of the necessity to send the scalg@ in the presence of noise. In this case, system (12) does

depths to the decoder as part of the filter state. Despite &t have any nontrivial solution, and one has to estingatg

additional cost, the proposed procedure appears to be Vaf¥ans of squared error minimization.

promising in comparison to more common block-based motion Once@ is known, the necessity of factoring it int8 and

estimation schemes. T arises. This can be done by computing the singular value
decomposition of the & 3 matrix@ [19]. As a matter of fact,
A. Motion and Structure Estimation from Two Frames it is immediate to verify that we can writ& as
Longuet-Higgins developed an algorithm that performs mo- T=vZAVT (13)

tion and structure estimation using two consecutive frames [9].
Suppose we are given the perspective projectiony ééature Wwhere

points of the rigid body in two consecutive frames. From (4), 0 =1 0 1 0 0

we deduce that the vecto®; (¢t + 1), R(¢)X,(t), andT'(¢) Z=1|1 o0 0|, A=[0 1 0 (14)
are coplanar. As a consequence, their triple product is zero, 0 0 1 0 0 0

namely

andV is any orthogonal matrix whose third columns The
X;(t+D)T(TH)ARBHX(E))) =0, i=1,---,N. (8) interpretation of (13) derives from the fact tHEtA v = Tw
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for all vectorsw, and that the outer product can indeed bB. Motion Estimation in Local Coordinates

computed by first changing the coordinate system so that thegyatioet al. [12] impose the epipolar constraint to compute
third axis is aligned withl’, by computing the transformed qtion and structure from measurements on a sequence of
vectory component perpendicular 1 (this is done by setting ore frames. They formulate the problem in terms of the
to zero its third coordinate), by rotating the result by* 90 jjengification of a nonlinear implicit dynamic system. As a

and finally by changing the coordinates back to the originglatier of fact, one can suppose that abrupt changes of motion

cqordinatg system. All of this is done in.(13) by multiplications, ;o ot very likely in typical video sequences. This makes it

with ma'.[nc'esV.T, 4, Z, andv, respectively. convenient to use the information of more than two frames to
Substituting in (10), we obtain estimate motion and structure with greater accuracy. Using (4)

T T and (5), one can derive an expression Rf) as a function
@=VZAV R=UAW". (19) of Qgt)) (Rodrigues’ formula [11p]). The e};‘se)ntial matXt)

Equation (15) represents the singular value decompositiedn therefore be represented as a function of the translation

of the essential matrix [20]. Due to the indetermination in th&(t) and of the angular velocity2(t).

sign of @, we will have to consider two possible solutions for As noted before, the norm of the translation is not ob-

matrix R, namely servable from measurements on the image plane. We will
_ _ estimate only its direction, which we will represent in spherical
e coordinates by specifying two angle(t) and 7},(t) on
R=U]|1 0 0|W the unit sphere. In summarg)(¢) can be computed from a
0 0 s five-dimensional (5-D) vector, namely
and i i .
0 10 T f(t) = [Te(t)7T¢(t)7QT] . (18)
R=U|-1 0 O|W
| 0 0 s] In the lack of assumptions about motion, a simple random

) ) walk model is assumed for the dynamicségt)
wheres = det(U) det(W), and two possible solutior® =

+Us3, where U3 denotes the last column df. It is easy E(t+1) = &(t) +ne(t) (19)

to verify from (15) that all of the four possibilities, when

combined using the product in (10), actually result@nor wheren,(t) is the model noise. The epipolar equation (12) rep-
—Q, and are therefore acceptable in principle. We will see iesents a constraint between feature coordinate measurements
the following that the positive depth constraint permits us tand the motion vectog(t). We therefore obtain a nonlinear

resolve the ambiguity fol? and T’ (see below). implicit model for motion dynamics, namely

The depths of the feature pointg;(t), Z;(t + 1) can
be computed by triangulation. The corresponding equations {f(t +1) =&(t) +ne(t), (20)
can be derived by computing the vector product of (4) with | x(¥(t) —w(t),y(t + 1) — w(t + 1))g(&(t)) = 0.

z;(t + 1) which, of course, gives zero )
In (20), y(t) = =(¢) + w(t) represents the noisy measurement

X(t+ D) Axi(t+1) of the feature positiom(t) andw(t) is the observation noise.
=RX; () Azi(t+ 1)+ T Azi(t+1) The estimation scheme for the system st is based on
— Z,O)(Rei(t) Azt + 1)+ T Azit+1) = 0 an implicit extended Kalman filter (IEKF) [21]. The equations
¢ ¢ ¢ ¢ ’ for the IEKF update and prediction steps are given in the
Then, we compute the scalar product wh; () Az, (¢ +1) Appendix.
and obtain As noted above, the correspondence betwgeénandQ(t)
is not injective. To avoid that the IEKF may converge to
(T Azt + 1), Rai(t) At + 1)>_ (16) the wrong solution, one has to check that the positive depth
[Rei(t) As(t + 1)1 condition is satisfied at each step of the Kalman filter. Once
the estimatef(t | t) of £(t) is computed, it is possible to
calculateR and’, and apply the triangulation equations (16)
(17) and (17) to find the depths.

Zi(t) = —

In a similar way, one can show that

(T A Rx;(t),z:(t + 1) A Rz, (1))

Zi(t+1) = - llzi (t + 1) A Ras(t)]]2

Equations (16) and (17) allow us to resolve the ambiguity dn- 1he Proposed Algorithm

T and R. Actually, the visibility of the features implies that In this section, we propose an algorithm that simultane-
Z;(t) > 0andZ;(t+1) > 0. This condition is satisfied if, and ously estimates the object motion and structure, without using
only if, both the correct sign dI” and the right solution foR triangulation. This is obtained by including depths in the state
are chosen. It should be noted again tHaft) and Z;(t + 1) vector of the dynamic system describing the motion of the
are determined to within a positive scale factor given by thabject.

norm of 7. Such an unknown scaling factor does not prevent We define byZ(t) = XX, Z;(t)/N the average depth,
us from using (7) in a motion compensation scheme, as soorbgss;(t) = Z;(t)/Z(t) the scaled depth, and by(t) =

the depth and the translation are scaled by the same quantlfyt)/Z(¢) the scaled translation. Using this position, (7)
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becomes The state estimat(t | ¢) can be used to predict the feature
R(t)s;(t)xi(t) + T(t) positions at time + 1 from their positions at timé by means
zi(t+1) = Ro(t)si(t)ai(t) + T2 (1) (21) of (21). We remark that the inclusion of the scaled depts)

. . - . in the filter state is essential to obtain reliable motion estimates
We can interpret (21) as an implicit relation between the

. in the case of very noisy observations and of simulations with
coordinates;(t) and the statd(¢), T(t), si(t),i =1,---, N, y y

. . | ] real video sequences, as will be confirmed by the experimental
of a nonlinear system governing the motion of the rigid bod

L X ) Yesults of the next sections.
Our objective is to estimate the system state, i.e., the object

motion parameters and the scaled depths of the features, from
the feature projectionsi(t). In the foIIowing, we derive the I1l. A PPLICATION TO SYNTHETIC SEQUENCES

state ypdate quatlons for the system: . In this section, we will present some simulation results
AS n the previous supsectlon, we wil u@(t).lnstead OT relative to the three methods described in the previous section
R(¢) in the state equations, and assume for its dynammsari!d relative to synthetic image sequences.
random walk model In the first experiment, we considered a set of 30 points
20t +1) = 02(t) +np(t) (22) randomly selected inside a cube of side 1 m with centroid
(Pr?sitioned 2.5 m ahead of the viewer. This cloud of points
undergoes a rotational motion around a vertical axis passing
through its center of mass. In the camera coordinate system,
this corresponds to a rotation around the vertical axis with
Zi(t +1) = Ra(t)X(t) + Tz(t) angular velocityQy = 3°/frame, and a translation with
_ (Rg(t)si(t).’l:i(t) +Tz(t))Z(t) (23) velocit.y 2.5(1 — cosQy) m/frame a_llong theZ_axis _and
—2.5sin %y mfframe along theX axis. In our simulations,
and by assuming a random walk model also ®ft). We we considered a 60-frame-long sequence, and we observed
obtain ) the scene using a camera with a visual field of 5&d CIF
- T(t+1 Tt resolution (288x 352 pixels).
Tt+1)= ZEt+ 1; - R; (t)i(t()LTZ(t) Jr"T(t) (24) The cloud of points was projected onto the image plane,
~ N ' . and a zero-mean Gaussian white noise was added to the
wherez(t) = (1/N) ;Y s;(t)x;(t) andnT(t) is assumed to _ . : N :
be a zero-mean white noise. point coordinates(z;,y;), ¢ = 1,---,30,_to 5|mulat_e the_
. . measure error. For each of the three algorithms described in the
From (23), we derive the update equat|on~§@(*t) previous section, we report the results obtained by averaging
Zi(t + 1) . Rg.(t)si(t):ci(t) + Tz(t)

wheren)(t) is a zero-mean white noise. The update equati
for the scaled translatiofi(¢) can be derived by rewriting the
third equation of (7)

over 50 experiments. We used an initial null estimate for the
si(t+1) = — = = . (25) . . . .
Z(t+1) Rs.()EF(t) + Tz(t) translationT” and the angular velocity2 while the initial
Moreover. we have the constraint estimates of the scaled depthswere set to one.

N N Figs. 2—-4 show the estimation errors of the motion parame-
1 Z si(t) = 1 Z Z_i(t) —1. (26) ters, the point positions, and the scaled depths for the last frame
N N~ Z() of the synthetic sequence versus the standard deviation of the
In summary, the system equations are added noise in pixels. The solid lines represent the mean values

of the errors, while the dotted lines are obtained by adding

( “?(t +1) = 00) ;(1:)9 ®) and subtracting the error standard deviations. For each figure,
Tt+1)= R 0T (015500) + np(t) the first plot (a) shows the magnitude of the angular velocity
si(t+1) = R (0)s: ) ()4 T51) @) relative error, and the second plot (b) shows the magnitude

;, Be ) ()+14(t) > (27) of the translation relative error. The third (c) and fourth (d)
Z si(t) = N plots are relative to the angular velocity direction error and to
~ R the translation direction error (in degrees), respectively. The
‘ _ Rwysivzw+Tw fifth plot (e) shows the point position (on the image plane)
(zi(t+1) = R (t)s: ()T () + 15 (t) +1(?) prediction error (in pixels), and the last plot (f) shows the
wheren,, (t) andn,(t) are model noises that may take intsscaled point depths error.
account slow deformations of the object. It is interesting to note that the Longuet-Higgins algorithm

Defining the system state &(¢) = [2(2)7, T(t)T, s1(t), and the local coordinate algorithm do not converge when the
~.,sn(®)]T and observations byy(t) = [z:(t)7, standa}rd devauon of the added noise is greater than about
e ot + DT, an(t + DT]T + w(t), where 0.15 pixels, while the proposed method maintains convergence

and exhibits error values that increase almost linearly with the

w(t) is the observation noise, we may rewrite (27) as ) X
noise variance.

{f(t+1) = f(&(1),y(®)) +n(t) (28)  In the second experiment, we show that the proposed
h(€(®),y(t) —w(t)) =0 algorithm is capable of tracking fast motion changes in the
where#(t) is a function of the noises in (27) and ef¢). objects in the scene.

System (28) is nonlinear and implicit; therefore, we can A synthetic sequence of a rotating cloud of points with the
estimate and predict its state by means of the IEKF [21]. same characteristics of the first experiment is generated. In
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Fig. 2. Estimation errors using Longuet-Higgins’ algorithm. The solid lineFig. 3. Estimation errors using Soatto’s algorithm. The solid lines are the
are the mean values of the errors versus the standard deviation of the additiean values of the errors versus the standard deviation of the additive
Gaussian noise. The dotted lines are obtained by adding and subtractingGlagssian noise. The dotted lines are obtained by adding and subtracting the
error standard deviations to the mean values. (a) Angular velocity magnitusteor standard deviations to the mean values. (a) Angular velocity magnitude
relative error. (b) Translation magnitude relative error. (c) Angular velocityelative error. (b) Translation magnitude relative error. (c) Angular velocity
direction error (degrees). (d) Translation direction error (degrees). (e) Featdiection error (degrees). (d) Translation direction error (degrees). (e) Feature
position prediction error (pixels). (f) Scaled depths error. position prediction error (pixels). (f) Scaled depths error.

this case, the sequence is 100 frames long. Initially, the objaciccessfully predicted, such as shadows, specular surfaces, or
undergoes the same motion as in the previous experiment, #&mgkse corresponding to new objects appearing in the scene, can
after 50 frames, it inverts its direction of rotation. We usebe detected and coded as “model failure” regions. Similarly,
an initial null estimate for the translatidfi and the angular image areas where local movement occurs, like lips or eyes
velocity {2, while the initial estimates of the scaled depths in typical videoconference sequences, will cause large residual
were set to one. Fig. 5 shows the estimates of the translatioeabrs that must be properly detected and coded.

and rotational velocities as a function of the frame number. To test the proposed estimator with a real video sequence,
In the same figure, the estimated scaled depthand s, of we need to choose the feature points of the object in the
two features are shown. The ground truth is plotted as a dotfadt frame and track them in the following frames. For this
line. As can be seen from the plots, the Kalman filter takgmirpose, we used a multiresolution version of Lucas—Kanade’s
about 20 frames to converge. After that, it tracks the objealgorithm [10], [23]. This procedure consists of approximating

motion even after the abrupt inversion at frame 50. the luminance at timeé around the point at positiom with
a differentiable function/(«,¢). In addition, one supposes
IV. APPLICATION TO VIDEO SEQUENCES that the luminance variations are due only to translations.

In the motion estimation framework we consider, one caferefore, denoting byl the displacement ok from time
think to use (7) to predict at time+ 1 the luminance of the ¢ t©0 ¢ + 1, one can write
pixel at positionz; (¢t + 1) by using the luminance of the pixel Iz, t)=Ix—d,t+ 1)~ I(z,t+1) - g'd (29)
z;(t) in the frame at time. Note that this luminance prediction
procedure will not be exact in general, but only in the particul ) ) :
case of a Lambertian object surface, of uniform illuminatiopduared error solution faf over a regiony around pointz.
and of a pure object translation [22]. Moreover, we shoulf® find
take into account occlusions between objects. In practice, one Gd=e¢e (30)
can think that it is possible to obtain a good approximation forh
the pixel luminance at timeé+ 1, and that it can be improvedW ere
by coding the residual error between the actual luminance and G = Z g9’ e= Z (I(z,t) — I(xz,t +1))g. (31)
its prediction. Moreover, the luminance regions that cannot be Tew Tew

é{\chereg = grad I. Using (29), we determine the minimum
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1 Fig. 5. Estimates of the motion parameter for the synthetic sequence.
0 0 A A .
0 0.5 1 1.5 2 0 0.5 1 15 2 that some of the state variables in the Kalman filter are
(e) ® reinitialized from time to time to take into account the new

Fig. 4. Estimation errors using the proposed algorithm. The solid lines #@&tries in the feature set.
the mean values of the errors versus the standard deviation of the additivé=or each region, the proposed Kalman filter was used to

Gaussian noise. The dotted lines are obtained by adding and subtracting%g(ﬁmate the motion parameters and the scaled depths Frame
error standard deviations to the mean values. (a) Angular velocity magnitude ’

relative error. (b) Translation magnitude relative error. (c) Angular velocittt time¢ + 1 was predicted from frame at timeusing the
direction error (degrees). (d) Translation direction error (degrees). (e) Featestimated parameters. To all of the image pixels that are not

position prediction error (pixels). (f) Scaled depths error. features, we assigned a scaled depth obtained as a weighted
average of the estimates of the scaled degils| ¢) of the

System (30) allows one to find the displacement of a featui@ature points, namely

and, if the eigenvalues of the matrf are nonzero, it has

N
a unique solution. In practice, due to the presence of noise, sz@i(t | £)

to avoid ill conditioning of matrixG and to obtain a reliable i1

solution, the eigenvalues must be greater than a threshold. This s(t) = N (32)
suggests considering only those feature points that correspond sz

to local maxima of the minimum eigenvalue Gf i=1

Iq the first group of expe@ment;, we tested the quallty qfhe weights were empirically setto; = (| —;|+|y—v;|) =3
motion compensation obtained with the proposed techniayg. ioie into account the distance between the generic pixel
The feature extraction and trackmg procedgre was app“@gordinates{x,y) and the coordinate@r;, y;) of featurei. To
to the CIF test video sequence “Miss America,” temporallyyqp, pixelX (t) of the three regions, we applied (21), using the
sampled at 15 frames/s. We suppose that the sequencgqgigesponding motion parameters and estimated scaled depth
already segmented into three regions, corresponding to {3€predict the pixel coordinates(t + 1) at time¢ + 1. The
head, the shoulders, and the background (see Fig. 6) [24]|4fhinance value of pixek(t + 1) at time¢ + 1 is set to the
our tests, the sequence is manually segmented. same luminance value dft) at timet. We assume no motion

The features obtained using Lucas—Kanade's algorithm wefethe background, and the corresponding pixels are simply
classified into two groups corresponding to the regions of theplicated from timet to ¢ + 1.
head and the shoulders (see Fig. 6). The number of featuregve report the results relative to the prediction of frame
selected and tracked were 27 and 14 for the regions corgs from the original frame 54 using the proposed algorithm.
sponding to the head and the shoulders of “Miss AmericaFor comparison purposes, the results are compared with the
respectively. As explained above, the estimator takes as inpuédiction obtained using a block matching procedure. Block
at each step the positions of the features on two consecutiwatching was performed using 2616 blocks, motion vectors
frames, and yields the estimated state. In order to cope withthe range—15 to 415, and half-pixel refinement. We also
possible feature occlusions, we always use in the algorithm ttensider the case of using frame 54 as an estimate of frame
features extracted with the best matches. Thus, it is possibE with no motion compensation.
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Fig. 7. Original frame 58 of “Miss America.”

(b)

Fig. 6. The two regions used for the test on the video sequence “Miss ) s o
America.” The features computed by Lucas—Kanade’s algorithm are markgl§- 8. Predicted frame 58 of “Miss America.
with crosses.

TABLE | around the lips and the eyes, the prediction procedure can

REsuLTs FORDIFFERENT PREDICTION METHODS APPLIED TO THE give less satisfactory results, as expected. As an example, the
PREDICTION OF FRAME 58 OF THE VIDEO SEQUENCE “M ISS AMERICA” prediction of frame 50 from frame 46 gives an MSE32.2
‘ Proposed method t Block matching | No compensation with our method and an MSE 22.1 with block matChing'

The procedure was also tested on the video sequence
“Flower Garden.” In this case, the scene contains only one
rigid body (neglecting the flowers and the people movements),

In Table I th d MSE) betw ¢ and segmentation is not required. We considered 150 features
n Table |, the mean-squared error ( ) between fAMB|ected as in the previous test. For the feature tracking step,

58 and its prediction is given for the three cases. We can g€ ohtained better results using a correlation method in place
that the MSE of the proposed solution is slightly greater thaj} | ,cas—Kanade'’s algorithm. In particular, we used blocks of
the MSE obtained with block matching, although the visugl ;. g pixels around each feature position, and searched in the
quality of the image predicted using the 3-D model is superigew frame for the blocks that minimize the squared error using
and, as will be shown later in more detail, its coding can half-pixel resolution. Figs. 9 and 10 show the original and the
more efficient. Fig. 7 shows the original frame 58 of “Mispredicted frame 11 of “Flower Garden,” respectively, while
America,” while Fig. 8 shows the frame predicted using theig. 11 shows the frame prediction error. Table Il summarizes
proposed method. In the presence of relevant local motithre results for this experiment.

MSE | 17.3 ] 10.4 | 73.6
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Fig. 9. Original frame 11 of “Flower Garden.” Fig. 11. Prediction error for frame 11 of “Flower Garden.”

TABLE 1
RESULTS FORDIFFERENT PREDICTION METHODS APPLIED TO THE PREDICTION
OF FRAME 11 OF THE VIDEO SEQUENCE “FLOWER GARDEN”

‘ Proposed method ‘ Block matching [ No compensation

MSE | 539 \ 274 | 1310

TABLE Il
AVERAGE NUMBER OF BITS REQUIRED TO
CobpE EACH OBJECT OF A PREDICTED FRAME

object average # of bits
eyes and mouth 754
head 168.3
shoulders 824
borders 300
total 1304.7

Fig. 10. Predicted frame 11 of “Flower Garden.”

an efficient way to code model compliance objects. We use
The second group of experiments is relative to a codi ithmetic coding to code the innovation of the Kalman filter

scheme that is complete enough to give realistic indicatioH¥t is sufficient to reconstruct the motion parameters at the
on the performance of the proposed technique, but does fscoder. As mentioned above, feature occlusions are taken into
consider all of the possible difficulties that may arise in a pra@ccount by reinitializing some of the filter state variables. A
tical implementation of a video coder. The test is relative to tHgligible amount of side information is used to notify such
image sequence “Miss America” at 15 frames/s. As for the firafl event to the decoder.

group of experiments, the sequence is manually segmented anfihe first frame of the sequence was coded in intraframe
the region borders are coded using the algorithm describedm@de using a target bit rate of 12 kbits. A larger number of bits
[25]. Inside the face, the region of the eyes, the mouth, and tiseused for the region of the head (0.4 bpp), while the region
chin are automatically detected using the algorithm presentfdthe shoulders is coded with 0.2 bpp, in order to obtain a
in [26]. Two small elliptical regions around the eyes and letter quality for the region of greater interest. In this test, we
square region for the mouth and chin are labeled as moded an intraframe every 15 coded frames (which correspond
failure regions. The difference between these regions and theirl s) with an overall bit rate of 30 kbits/s. Table Il shows
motion-compensated prediction is coded using an adaptatiorifuf average number of bits used to code each region and
the algorithm of [27] for the case of arbitrarily shaped regionghe region borders for the 14 predicted images between two
To avoid error propagation in the motion estimation procedurgjccessive intraframes. In particular, the first entry in the table
we introduce a feedback scheme, and use the feature positispecifies the average number of bits needed to code the eyes
relative to thedecodedbrevious image. The estimated state iand mouth region with the algorithm of [27]. The other entries
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40 ; ; : . . . . to the problem of motion estimation for video coding. The
proposed method compares favorably with respect to other
algorithms that solve the problem of “structure and motion”
estimation, and is very reliable in spite of noise.

The estimated motion parameters for each object in the
scene, modeled as the projections of a 3-D rigid body, are used
for frame prediction in a motion-compensated video coder. The
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%So_ constraints imposed by the model guarantee that the motion in
& the reconstructed video sequence is very natural compared to
& ] simpler and more common block-based schemes. Moreover,
o6 _ the simple parametrization of the model allows for a very

efficient coding of motion information.
ar 1 The results reported in this paper confirm that the proposed
ol 4 method could be conveniently used in a complete video coding
scheme, with appropriate coding of the residual between
% 7 s s w0 1o 12 1 1o the original and predicted frame. Of course, future work is

Frame #

required to solve the segmentation problem and to take into

Fig. 12. PSNR for frames 60-140 of the reconstructed sequence “Miggcount occlusions and scene changes.
America.”

APPENDIX
EXTENDED KALMAN FILTERING FOR
IMPLICIT MEASUREMENT CONSTRAINTS

We are interested in building an estimator for the state
process{(t) described by the difference equation

Et+1) = fE#) +o(®),  &0)=¢& (33)

where v(t) is the model noise. We will assume the(t) is
zero-mean Gaussian white noise with autocorrelation matrix
R, ie.,u(t) € N(0,R,). We suppose there is a measurable
quantityz(¢) related tc€(¢) by means of the implicit constraint

h(&(), (1)) = 0. (34)

We will assume that the functions and . are differentiable,
and that the quantity:(¢) is known via a noisy measurement

y(t) = =(t) +w(t) (35)

with w(t) € A(0, R,,). In summary, we consider the model

Fig. 13. Reconstructed frame 96 of “Miss America.”

specify the number of bits used to code motion information and { L+ 1) = 1) +v(t), £(0) =¢, (36)

borders for the model compliance regions. We note that model R(&(t),y(t) —w(t)) = 0.

compliance objects, which need only motion information, are

coded with a small amount of bits in comparison with modéﬂoreover we will assume(t), w(t), §, incorrelated.
failure objects. Fig. 12 shows the PSNR for frames 60-140We will denote byé(t | t) the estimate of the state(t)
(where relatively large motion is present in the scene) of @ time ¢ based on measuremenfg(r):7 < ¢} and with
reconstructed sequence. Although the PSNR figures maydfé+ 1 | ?) the prediction of the state at time+ 1 from
inferior to those obtainable with other conventional schem&¥asurementsy(r):7 < ¢}.

like H263, the visual quality is quite good and superior at low As Wwill be seen, the equations for the IEKF are derived by
bit rates. Fig. 13 shows the reconstructed frame 96 of “Mi$igearizing functionsf and ~ and using a standard Kalman
America.” Besides the low bit rate, the visual quality of thédlter estimator for the linearized model.

decoded sequence is quite good, especially when compared to

block-based coding schemes. A. Prediction Step
_ We linearize the state dynamics (33) around the estimate
V. CONCLUSION &(t | t). Defining the Jacobian matrix
Statistical-based motion estimation has been widely used in of
computer vision [12], and more recently in video coding [28]. F(t) £ = (37)

In this work, a modification of the scheme of [12] is applied 9 £l
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and neglecting higher order terms in the Taylor expansion, wéiere

obtain from (33)

E(t+1) = fEE | 1) + FB)(ER) - & [ 1) + (D). (38)

The best estimate of(t + 1) based on measurements

{y(7):7 < t} is, from (38)
a) &(t+1]t) = fEE|1). (39)

The prediction errosé(t) = £(t) — &(t | t) obeys the
dynamics

SE(t+1) =€t +1) — é(t+1|t)
= [(E@) +o(t) - fEE| 1)), (40)
By linearizing f(&(t)) aroundé(t | t), we rewrite (40) as

8(t+1) = f(é(tAl 1) + FO)EW) - &t | 1) +v(t)
— FE(t 1) = F(H)6E(t) + v(?). (41)

d Lit+1)=-Pit+1|HCHt+DTAE+1D)™  (49)
e) At+1)=C{t+1)Pt+1]t)Ct+1)T
+ R,.(t) (50)
) Pt+1|t+1)=r¢+1)Pt+1|0r¢t+1)*
+L(t+ )R, (t+ DLt + 1)1 (51)
0) I'(t+1)=I+L(t+1)C(t+1) (52)

with R, (t+1) the covariance matrix of the noisgt), namely
h) R,(t+1)=D(t+1)R,(t+1)Dt+1)T.  (53)
Equations a)-h), together with initial conditions
£(0]0) =E[], P(0]0) =E[€o&s]

constitute the Kalman filter. Here, [E denotes statistical
expectation.

The quantityh(&(t + 1 | t),y(t + 1)) takes the place of
the innovation in the traditional linear Kalman filter, so it is

From (41), we can derive an approximation of the predictigtflled thepseudoinnovation

error variance (the so-callegseudovariande P(t + 1 | ),
namely

b) P(t+1|t)=F®P(t|t)F' +R,. (42)
We will need (42) in the update step of the Kalman filter.

B. Update Step
We linearize (34) at timet + 1 around the prediction

£(t +1 | t) and the new measuremegt + 1), namely
0=h(€(t+1),a(t+ 1)) = h(Et + 1| t),y(t + 1))
+C(t+1)6&(t+1) — D(t + Dw(t +1) (43)

with
Ct+1) =& o (44)
29 Et+110),9(t+1)
Dit+1)= on ) ) (45)
WY ¢ r1in,ye+1)
Therefore, we have
h(EE+1]1),y(t + 1))
~—Ct+1)6t+1)+nt+1) (46)
wheren(t) is the process defined by
n(t) = D(t)w(t). (47)

It is important to note that the linear Kalman filter gives
the minimum prediction error variance among all estimators,
when the model and the measurement noises are Gaussian. It
is optimal among all linear estimators when the noises are not
Gaussian. On the other hand, when the model is not linear, as
in the case considered above, the extended Kalman filter does
not guarantee optimality.
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