
482 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 16, NO. 4, MAY 1998

Anonymous Connections and Onion Routing
Michael G. Reed,Member, IEEE, Paul F. Syverson, and David M. Goldschlag

Abstract—Onion routing is an infrastructure for private com-
munication over a public network. It provides anonymous con-
nections that are strongly resistant to both eavesdropping and
traffic analysis. Onion routing’s anonymous connections are bidi-
rectional, near real-time, and can be used anywhere a socket
connection can be used. Any identifying information must be
in the data stream carried over an anonymous connection. An
onion is a data structure that is treated as the destination address
by onion routers; thus, it is used to establish an anonymous
connection. Onions themselves appear different to each onion
router as well as to network observers. The same goes for
data carried over the connections they establish. Proxy-aware
applications, such as web browsers and e-mail clients, require
no modification to use onion routing, and do so through a
series of proxies. A prototype onion routing network is running
between our lab and other sites. This paper describes anonymous
connections and their implementation using onion routing. This
paper also describes several application proxies for onion routing,
as well as configurations of onion routing networks.

Index Terms—Anonymity, communications, Internet, privacy,
security, traffic analysis.

I. INTRODUCTION

I S INTERNET communication private? Most security con-
cerns focus on preventing eavesdropping,1 i.e., outsiders

listening in on electronic conversations. But encrypted mes-
sages can still be tracked, revealing who is talking to whom.
This tracking is called traffic analysis and may reveal sensitive
information. For example, the existence of inter-company
collaboration may be confidential. Similarly, e-mail users
may not wish to reveal who they are communicating with
to the rest of the world. In certain cases anonymity may
be desirable, for example, anonymous e-cash is not very
anonymous if delivered with a return address. Web-based
shopping or browsing of public databases should not require
revealing one’s identity.

This paper describes how a freely available system,
onion routing, can be used to protect a variety of Internet
services against both eavesdropping and traffic analysis
attacks from both the network and outside observers. This
paper includes a specification sufficient to guide both re-
implementations and new applications of onion routing.

Manuscript received March, 1997; revised September, 1997. This work
was supported by the Office of Naval Research and by the Defense Advanced
Research Projects Agency.

M. G. Reed and P. F. Syverson are with the Naval Research Laboratory,
Center For High Assurance Computer Systems, Washington, D.C. 20375-
5337 USA (e-mail: reed@itd.nrl.navy.mil; syverson@itd.nrl.navy.mil).

D. M. Goldschlag is with Divx, Herndon, VA 20170 USA (e-mail:
david.goldschlag@divx.com).

Publisher Item Identifier S 0733-8716(98)01110-X.
1Internet Engineering Task Force. HTTP://www. ietf. org.

We also discuss configurations of onion routing networks
and applications of onion routing, including virtual private
networks (VPN’s), Web browsing, e-mail, remote login, and
electronic cash.2

One purpose of traffic analysis is to reveal who is talking
to whom. The anonymous connectionsdescribed here are
designed to be resistant to traffic analysis, i.e., to make it
difficult for observers to learn identifying information from the
connection (e.g., by reading packet headers, tracking encrypted
payloads, etc.). Any identifying information must be passed as
data through the anonymous connections. Our implementation
of anonymous connections, onion routing, provides protection
against eavesdropping as a side effect. Onion routing provides
bidirectional and near real-time communication similar to
TCP/IP socket connections or ATM AAL5 [6]. The anonymous
connections can substitute for sockets in a wide variety of
unmodified Internet applications by means of proxies. Data
may also be passed through a privacy filter before being
sent over an anonymous connection. This removes identifying
information from the data stream, to make communication
anonymous too.

Although onion routing may be used for anonymous com-
munication, it differs from anonymous remailers [7], [15]
in two ways: communication is real-time and bidirectional,
and the anonymous connections are application independent.
Onion routing’s anonymous connections can support anony-
mous mail as well as other applications. For example, onion
routing may be used for anonymous Web browsing. A user
may wish to browse public Web sites without revealing his
identity to those Web sites. That requires removing infor-
mation that identifies him from his requests to Web servers
and removing information from the connection itself that
may identify him. Hence, anonymous Web browsing uses
anonymized communication over anonymous connections. The
Anonymizer [1] only anonymizes the data stream, not the
connection itself. So it does not prevent traffic analysis attacks
like tracking data as it moves through the network.

This paper is organized in the following way: Section II
presents an overview of onion routing. Section III presents
empirical data about our prototype. Section IV defines our
threat model. Section V describes onion routing and the appli-
cation specific proxies in more detail. Section VI describes the
implementation choices that were made for security reasons.
Section VII describes how onion routing may be used in a wide
variety of Internet applications. Section VIII contrasts onion
routing with related work, and Section IX presents concluding
remarks.

2Preliminary versions of portions of this paper have appeared in [23], [13],
[19], and [14].

U.S. Government work not protected by U.S. copyright.



REED et al.: ANONYMOUS CONNECTIONS AND ONION ROUTING 483

II. ONION ROUTING OVERVIEW

In onion routing, instead of making socket connections
directly to a responding machine, initiating applications make
connections through a sequence of machines calledonion
routers. The onion routing networkallows the connection
between theinitiator and responderto remain anonymous.
Anonymous connections hide who is connected to whom, and
for what purpose, from both outside eavesdroppers and com-
promised onion routers. If the initiator also wants to remain
anonymous to the responder, then all identifying information
must be removed from the data stream before being sent over
the anonymous connection.

Onion routers in the network are connected by longstand-
ing (permanent) socket connections. Anonymous connections
through the network are multiplexed over the longstanding
connections. For any anonymous connection, the sequence of
onion routers in a route is strictly defined at connection setup.
However, each onion router can only identify the previous
and next hop along a route. Data passed along the anonymous
connection appear different at each onion router, so data cannot
be tracked en route, and compromised onion routers cannot
cooperate by correlating the data stream each sees. We will
also see that they cannot make use of replayed onions or
replayed data.

A. Operational Overview

The onion routing network is accessed via a series of
proxies. An initiating application makes a socket connection to
anapplication proxy. This proxy massages connection message
format (and later data) to a generic form that can be passed
through the onion routing network. It then connects to an
onion proxy, which defines a route through the onion routing
network by constructing a layered data structure called an
onion. The onion is passed to theentry funnel, that occupies
one of the longstanding connections to an onion router and
multiplexes connections to the onion routing network at that
onion router. That onion router will be the one for whom the
outermost layer of the onion is intended. Each layer of the
onion defines the next hop in a route. An onion router that
receives an onion peels off its layer, identifies the next hop,
and sends the embedded onion to that onion router. The last
onion router forward data to anexit funnel, whose job is to pass
data between the onion routing network and the responder.

In addition to carrying next-hop information, each onion
layer contains key seed material from which keys are gen-
erated for crypting3 data sent forward or backward along the
anonymous connection. (We defineforward to be the direction
in which the onion travels andbackward as the opposite
direction.)

Once the anonymous connection is established, it can carry
data. Before sending data over an anonymous connection,
the onion proxy adds a layer of encryption for each onion
router in the route. As data move through the anonymous
connection, each onion router removes one layer of encryption,
so it arrives at the responder as plaintext. This layering

3We define the verbcrypt to mean the application of a cryptographic
operation, be it encryption or decryption.

occurs in the reverse order for data moving back to the
initiator. Therefore data that have passed backward through
the anonymous connection must be repeatedly post-crypted to
obtain the plaintext.

By layering cryptographic operations in this way, we gain
an advantage over link encryption. As data move through the
network it appears different to each onion router. Therefore,
an anonymous connection is as strong as its strongest link,
and even one honest node is enough to maintain the privacy
of the route. In link encrypted systems, compromised nodes
can trivially cooperate to uncover route information.

Onion routers keep track of received onions until they
expire. Replayed or expired onions are not forwarded, so
they cannot be used to uncover route information, either by
outsiders or compromised onion routers. Note that clock skew
between onion routers can only cause an onion router to reject
a fresh onion or to keep track of processed onions longer than
necessary. Also, since data are encrypted using stream ciphers,
replayed data will look different each time it passes through
a properly operating onion router.

Although we call this system onion routing, the routing that
occurs here does so at the application layer of the protocol
stack and not at the IP layer. More specifically, we rely
upon IP routing to route data passed through the longstanding
socket connections. An anonymous connection is comprised
of portions of several linked longstanding multiplexed socket
connections. Therefore, although the series of onion routers
in an anonymous connection is fixed for the lifetime of that
anonymous connection, the route that data actually travels be-
tween individual onion routers is determined by the underlying
IP network. Thus, onion routing may be compared to loose
source routing.

Onion routing depends upon connection-based services that
deliver data uncorrupted and in order. This simplifies the
specification of the system. TCP socket connections, which are
layered on top of a connectionless service like IP, provide these
guarantees. Similarly, onion routing could easily be layered on
top of other connection based services, like ATM AAL5.

Our current prototype of onion routing considers the net-
work topology to be static and does not have mechanisms
to automatically distribute or update public keys or network
topology. These issues, though important, are not the key parts
of onion routing and will be addressed in a later prototype.

B. Configurations

As mentioned above, neighboring onion routers are neigh-
bors in virtue of having longstanding socket connections
between them, and the network as a whole is accessed from
the outside through a series of proxies. By adjusting where
those proxies reside it is possible to vary which elements
of the system are trusted by users and in what way. (For
some configurations it may be efficient to combine proxies that
reside in the same place, thus they may be only conceptually
distinct.)

1) Firewall Configuration: In thefirewall configuration, an
onion router sits on the firewall of a sensitive site. This onion
router serves as an interface between machines behind the



484 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 16, NO. 4, MAY 1998

firewall and the external network. Connections from machines
behind the firewall to the onion router are protected by other
means (e.g., physical security). To complicate tracking of
traffic originating or terminating within the sensitive site,
this onion router should also route data between other onion
routers. This configuration might represent the system interface
from a typical corporate or government site. Here the applica-
tion proxies (together with any privacy filters) and the onion
proxies would typically live at the firewall as well. (Typically,
there might only be one onion proxy.)

There are three important features of this basic configura-
tion.

• Connections between machines behind onion routers are
protected against both eavesdropping and traffic analysis.
Since the data stream never appears in the clear on the
public network, this data may carry identifying informa-
tion but communication is still private. (This feature is
used in Section VII-A.)

• The onion router at the originally protected site knows
both the source and destination of a connection. This
protects the anonymity of connections from observers
outside the firewall but also simplifies enforcement of
and monitoring for compliance with corporate or govern-
mental usage policy.

• The use of anonymous connections between two sensitive
sites that both control onion routers effectively hides their
communication from outsiders. However, if the responder
is not in a sensitive site (e.g., the responder is some
arbitrary Web server), the data stream from the sensitive
initiator must also be anonymized. If the connection
between the exit funnel and the responding server is
unencrypted, the data stream might otherwise identify the
initiator. For example, an attacker could simply listen in
on the connections to a Web server and identify initiators
of any connection to it.

2) Remote Proxy Configuration:What happens if an ini-
tiator does not control an onion router? If the initiator can
make encrypted connections to some remote onion router, then
he can function as if he is in the firewall configuration just
described, except that both observers and the network can tell
when he makes connections to the onion router. However,
if the initiator trusts the onion router to build onions, his
association with the anonymous connection from that onion
router to the responder is hidden from observers and the
network. In a similar way, an encrypted connection from
an exit funnel to a responder hides the association of the
responder with the anonymous connection.

Therefore, if an initiator makes an anonymous connection
to some responder, and layers end-to-end encryption over that
anonymous connection, the initiator and responder can identify
themselves to one another, yet hide their communication from
the rest of the world.

Notice, however, that the initiator trusts the remote onion
router to conceal that the initiator wants to communicate with
the responder and to build an anonymous connection through
other onion routers. The next section describes how to shift
some of this trust from the first onion router to the initiator.

3) The Customer-ISP Configuration:Suppose, for exam-
ple, an Internet Services Provider (ISP) runs a funnel
that accepts connections from onion proxies running on
subscribers’ machines. In this configuration, users generate
onions specifying a path through the ISP to the destination.
Although the ISP would know who initiates the connection,
the ISP would not know with whom the customer is
communicating, nor would it be able to see data content.
So the customer need not trust the ISP to maintain her
privacy. Furthermore, the ISP becomes acommon carrier
that carries data for its customers. This may relieve the ISP of
responsibility for both whom users are communicating with
and the content of those conversations. The ISP may or may
not be running an onion router as well. If he is running an
onion router, then it is more difficult to identify connections
that terminate with his customers; however, he is serving as a
routing point for other traffic. On the other hand, if he simply
runs a funnel to an onion router elsewhere, it will be possible
to identify connections terminating with him, but his overall
traffic load will be less. Which of these would be the case for a
given ISP would probably depend on a variety of service, cost,
and pricing considerations. Note that in this configuration, the
entry funnel must have an established longstanding connection
to an onion router just like any neighboring onion router (cf.
Section V-F for a description of how these are established).
But, in most other cases, where the funnel resides on the
same machine as the onion router, establishing an encrypted
longstanding connection should not be necessary because the
funnel can be directly incorporated into the onion router.

III. EMPIRICAL DATA

We invite readers to experiment with our prototype of
onion routing by using it to anonymously surf the Web, send
anonymous e-mail, and do remote logins. For instructions,
please seehttp://www.onion.router.net/ .

One should be aware that accessing a remote onion router
does not completely preserve anonymity because the connec-
tion between a remote machine and the first onion router is
not protected. If that connection were protected, one would be
in the remote proxy configuration, but there would still be no
reason to trust the remote onion router. If one had a secured
connection to an onion router one trusted, our onion router
could be used as one of several intermediate routers to further
complicate traffic analysis.

We have recently set up a 13-node distributed network of
government, academic, and private sites. However, at press
time we have not yet gathered performance data for this
network. The data we present are for a network running on
a single machine. In our experimental onion routing network,
five onion routers run on a single Sun Ultra 2 2170. This
machine has two 167-MHz processors and 256 MB of mem-
ory. Anonymous connections are routed through a random
sequence of five onion routers. Connection setup time should
be comparable to a more distributed topology. Data latency,
however, is more difficult to judge. Clearly, data will travel
faster over socket connections between onion routers on the
same machine than over socket connections between different



REED et al.: ANONYMOUS CONNECTIONS AND ONION ROUTING 485

machines. However, on a single machine the removal or
addition of layers of encryption is not pipelined, so data latency
may be worse.

Onion routing’s overhead is mainly due to public key
cryptography and is incurred while setting up an anonymous
connection. On our Ultra 2, running a fast implementation of
RSA [2], a single public key decryption of a 1024-b plaintext
block using a 1024-b private key and a 1024-b modulus, takes
90 ms. Encryption is much faster, because the public keys
are only 16 b long. (This is why RSA signature verification
is cheaper than signing.) So, the public key cryptographic
overhead for routes spanning five onion routers is just under
0.5 s. This overhead can be further reduced, either with
specialized hardware, or even simply on different hardware
(a 200-MHz Pentium would be almost twice as fast).

In practice, our connection setup overhead does not appear
to add intolerably to the overhead of typical socket connec-
tions. Still, it can be further reduced. There is no reason that
the same anonymous connection could not be used to carry the
traffic for several “real” socket connections, either sequentially
or multiplexed. In fact, the specification for HTTP 1.1 defines
pipelined connections to amortize the cost of socket setup,
and pipelined connections would also transparently amortize
the increased cost of anonymous connection setup. We are
currently updating our Web proxy to be HTTP 1.1 compliant.

IV. THREAT MODEL

This section outlines our threat model. It does not intend
to quantify the cost of attacks, but to define possible attacks.
Future work will quantify the threat. First, some vocabulary. A
session is the data carried over a single anonymous connection.
Data are carried in fixed length cells. Because these cells
are multiply encrypted and change as they move through an
anonymous connection, tracking cells is equivalent to tracking
markers that indicate when cells begin. In a marker attack,
the attacker identifies the set of outbound connections that
some distinguished marker may have been forwarded upon.
By intersecting these sets for a series of distinguished markers
belonging to the same session, an attacker may determine, or
at least narrow, the set of possible next hops. In a timing
attack, the attacker records a timing signature for a session
that correlates data rate over time. A session may have a
very similar timing signature wherever it is measured over
a route, so cooperating attackers may determine if they carry
a particular session.

We assume that the network is subject to both passive and
active attacks. Traffic may be monitored and modified by both
external observers and internal network elements, including
compromised onion routers. Attackers may cooperate and
share information and inferences. We assume roving attackers
that can monitor part, but not all, of the network at a time.

Our goal is to prevent traffic analysis, not traffic confirma-
tion. If an attacker wants to confirm that two endpoints often
communicate, and he observes that they each connect to an
anonymous connection at roughly the same time, more often
than is statistically expected, it is reasonable to infer that the
endpoints are indeed communicating. Notice that this attack

is infeasible if endpoints live in protected networks behind
trusted onion routers on firewalls.

If the onion routing infrastructure is uniformly busy, then
passive external attacks are ineffective. Specifically, neither the
marker nor timing attacks are feasible, since external observers
cannot assign markers to sessions. Active attacks are possible,
because reducing the load on the system makes the network
easier to analyze (and makes the system not uniformly busy).

Passive internal attacks require at least two compromised
onion routers. Since onion routers can assign markers to a
session, both the marker and timing attacks are possible.
Specifically, timing signatures can be broadcast, and other
compromised onion routers can attempt to find connections
with matching timing signatures.

Another attack that is only feasible as an internal attack
is the volume attack. Compromised onion routers can keep
track of the number of cells that have passed over any given
anonymous connection. They can then simply broadcast totals
to other compromised onion routers. Cell totals that are close
to the same amount at the same time at different onion routers
are likely to belong to the same anonymous connection.4

Active internal attacks amplify these risks, since individual
onion routers can selectively limit traffic on particular connec-
tions. An onion router, for example, could force a particular
timing signature on a connection and advertise that signature.

V. ONION ROUTING SPECIFICS

A. Onion Routing Proxies

A proxy is a transparent service between two applications
that would usually make a direct socket connection to each
other but cannot. For example, a firewall might prevent direct
socket connections between internal and external machines. A
proxy running on the firewall may enable such connections.
Proxy-aware applications are becoming quite common.

Our goal has been to design an architecture for private
communication that would interface withunmodifiedappli-
cations, so we chose to use proxies as the interface between
applications and onion routing’s anonymous connections. For
applications that are designed to be proxy aware (e.g., WWW
browsers), we simply design appropriate interface proxies.
Surprisingly, for certain applications that are not proxy aware
(e.g., RLOGIN), we have also been able to design interface
proxies.

Because it is necessary to bridge between applications
and the onion routing network, proxies must understand
both application protocols and onion routing protocols.
Therefore, we modularize the design into components: the
application proxy, the onion proxy, and the entry funnel.
The application proxy bridges between a socket connection
from an application and a socket connection to the onion
proxy. It is the obligation of the application proxy to
massage the data stream so the onion proxy, the entry
funnel, and the exit funnel can be application independent.
Specifically, the application proxy must prepend to the
data stream astandard structurethat identifies the ultimate

4Thanks to Gene Tsudik for noting this attack and for helpful discussions.



486 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 16, NO. 4, MAY 1998

destination by either hostname/port or IP address/port.
Additionally, it must process a 1-byte return code from
the exit funnel and either continue if no error is reported
or report the onion routing error code in some application
specific meaningful way. The application proxy may also
contain an optional privacy filter for sanitizing the data
stream.

Upon receiving a new request, the onion proxy builds an
onion defining the route of an anonymous connection. (It
may use the destination address in the prepended structure
to help define the route.) It then passes the onion to the
funnel, and repeatedly precrypts the standard structure. Finally,
it passes the precrypted standard structure through the anony-
mous connection to the exit funnel, thus specifying the ultimate
destination. From this point on, the onion proxy blindly relays
data back and forth between the application proxy and the
onion routing network (and thus the exit funnel at the other
end of the anonymous connection). Of course, it must apply the
appropriate keystreams to incoming and outgoing data when
blindly relaying data.

The entry funnel multiplexes connections from onion prox-
ies to the onion routing network. For the services we have
considered to date, a nearly generic exit funnel is adequate.
Its function is to demultiplex connections from the last onion
router to the outside. When it reads a data stream from the
terminating onion router, the first datum received will be the
standard structure specifying the ultimate destination. The exit
funnel makes a socket connection to that IP address/port,
reports a one-byte status message back to the onion routing
network (and thus back to the onion proxy which in turn
forward it back to the application proxy), and subsequently
moves data between the onion routing network and the new
socket. (For certain services, like RLOGIN, the exit funnel
also infers that the new socket must originate from a trusted
port.) Entry and exit funnels are not application specific but
must understand the onion routing protocol, that defines how
multiplexed connections are handled.

As an example, consider the application proxy for HTTP.
The user configures his browser to use the onion routing
proxy. His browser may send the proxy a request likeGET
http://www.onion-router.net/index.html
HTTP1.0 followed by optional fields.

The application proxy is listening for new requests. Once
it obtains theGET request, it creates the standard structure
and sends it (along a new socket connection) to the onion
proxy, to inform the onion proxy of the service and destination
of the anonymous connection. The application proxy then
modifies theGETrequest toGET/index.html HTTP/1.0
and sends it directly (through the anonymous connection) to
the HTTP serverwww.onion-router.net , followed by
the optional fields. Notice that the server name andhttp://
are eliminated from theGET request because the connection
is made directly to the HTTP server.

The application proxy essentially makes a connection to
www.onion-router.net , and issues a request as if it were
a client. Once this request is transmitted to the server, all
proxies blindly forward data in both directions between the
client and the server until the socket is broken by either side.

Fig. 1. The standard structure.

For the anonymizing onion routing HTTP proxy, the appli-
cation proxy proceeds as outlined above with one change: It
is now necessary to sanitize the optional fields that follow the
GETcommand because they may contain identity information.
Furthermore, the data stream during a connection must be
monitored to sanitize additional headers that might occur
during the connection. For our current anonymizing HTTP
proxy, operations that store cookies on the user’s browser (to
track a user, for example) are removed. This reduces function,
so applications that depend upon cookies (like online shopping
baskets) may not work properly.

B. Implementation

This section presents the interface specification between the
components in an onion routing system. To provide some
structure to this specification, we will discuss components in
the order that data would move from an initiating client to a
responding server.

There are four phases in an onion routing system: network
setup, that establishes the longstanding connections between
onion routers; connection setup, which establishes anonymous
connections through the onion router network; data move-
ment over an anonymous connection; and the destruction and
cleanup of anonymous connections. We will commingle the
discussion of these below.

C. Application Proxy

The interface between an application and the application
proxy is application specific. The interface between the appli-
cation proxy and the onion proxy is defined as follows: For
each new proxy request, the application proxy first determines
if it will handle or deny the request. If rejected, it reports an
application-specific error message and then closes the socket
and waits for the next request. If accepted, it creates a socket
to the onion proxy’s well-known port. The application proxy
then sends a standard structure to the onion proxy of the form
as shown in Fig. 1.

Version is currently defined to be 1.Protocol is either 1
for RLOGIN, 2 for HTTP, or 3 for SMTP.Retry Count
specifies how many times the exit funnel should attempt to
retry connecting to the ultimate destination. Finally, theAddr
Format field specifies the form of the ultimate destination
address: 1 for a NULL terminated ASCII string with the
hostname or IP address (in ASCII form) immediately followed
by another NULL terminated ASCII string with the destination
port number, and all others currently undefined. The ultimate
destination address is sent after this standard structure, and
the application proxy waits for a one byte error code before
sending data.



REED et al.: ANONYMOUS CONNECTIONS AND ONION ROUTING 487

Fig. 2. A single onion layer.

D. Onion Proxy

Upon receiving the standard structure, the onion proxy can
decide whether to accept or reject the request based on the
protocol, destination host, destination port, or the identity of
the application proxy. If rejected, it sends an appropriate error
code back to the application proxy, closes the socket, and
waits for the next request. If accepted, it proceeds to build
the onion and connects to the entry funnel of the first onion
router, through the network, and to the exit funnel of the last.
It next sends the standard structure to the exit funnel over the
anonymous connection, and then passes all future data to and
from the application proxy and anonymous connection. The
repeated pre- and post-cryptions and packaging of the standard
structure and subsequent data is discussed later in Section V-F.

E. Onions

To build the anonymous connection to the exit funnel, the
onion proxy creates an onion. An onion is a multilayered
data structure that encapsulates the route of the anonymous
connection starting from the onion router for that exit funnel
and working backward to the onion router at the entry funnel.

Each layer has the structure shown in Fig. 2.
As we will see below, the first bit must be zero for RSA

public key cryptography to succeed. Following the zero bit
is the Version Numberof the onion routing system, currently
defined to be 1.

The Back F field denotes the cryptographic function to be
applied to data moving in the backward direction (defined
as data moving in the direction opposite in which the onion
traveled, usually toward the initiator’s end of the anonymous
socket connection) usingkey defined below. TheForw F
field denotes the cryptographic function to be applied to data
moving in the forward direction (defined as data moving in the
same direction in which the onion traveled, usually toward the
responder’s end of the anonymous socket connection) using
key defined below. Currently defined cryptographic functions
are: 0 for Identity (no encryption), 1 for DES OFB (output
feedback mode) (56-b key), and 2 for RC4 (128-b key). The

Destination Addressand Destination Port indicate the next
onion router in network order and are both 0 for the exit funnel.
The Expiration Time is given in network order in seconds
relative to 00:00:00 UTC January 1, 1970 (i.e., standard UNIX
time(2) format) and specifies how long the onion router at this
hop in the anonymous connection must track the onion against
replays before it expires.Key Seed Materialis 128-b long and
is hashed three times with SHA to produce three cryptographic
keys (key key , and key ) of 128 b each (the first 8 bytes
of each SHA output are used for DES and the first 16 bytes
for RC4 keys).5

Since we use RSA public key cryptography with a mod-
ulus size of 1024 b, the plaintext block size is 1024 b
and must be strictly less than the modulus numerically. To
avoid problems, we force this relation by putting the most
significant bit first and setting it to 0 (the leading 0 above).
Furthermore, the innermost layer of the onion is padded on
the end with an additional 100 bytes prior to RSA encryption
being performed.

In version 1, an onion has five layers, but routes can be
shorter. An onion is formed iteratively, innermost layer first.
At each iteration, the first 128 bytes of the onion are encrypted
with the public key of the onion router that is intended to
decrypt that layer. The remainder of the onion is encrypted,
using DES OFB with an IV (initialization vector) of 0 and
key (derived fromKey Seed Materialin that layer as defined
above).6

Before discussing how onions and data are sent between
onion routers, we will define onion router interconnection.

F. Onion Router Interconnection

During onion network setup (not to be confused with anony-
mous connection setup), longstanding connections between

5Details on the cryptographic operations used in this paper can be found
in [16] and [20].

6We use DES to encrypt the onion and for link encryption between onion
routers because it has no licensing fees and can be used as a pseudoran-
dom number generator. However, we would be happy to use a stronger
pseudorandom number generator.



488 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 16, NO. 4, MAY 1998

Fig. 3. A generic cell.

neighboring onion routers are established and keyed. The
network topology is predefined and each onion router knows
its neighbors.

To remain connected to each of its neighbors, onion routers
must both listen for connections from neighbors and attempt
to initiate connections to neighbors. To avoid deadlock and
collision issues between pairs of neighbors, an onion router
listens for connections from neighbors with “higher” IP/port
addresses and initiates connections to neighbors with “lower”
IP/port addresses. “Higher” and “lower” are defined with
respect to network byte ordering. (This was an expedient way
to break symmetry. Ultimately we will want a more flexible
solution. For example, when an onion router goes down, it
should contact its neighbors upon coming back up. Requiring
the neighbors to try to contact the down router until it responds
is less efficient. This is not difficult to implement and we will
do so in the future.)

The protocol has two phases: connection setup and keying.
The initiating onion router opens a socket to a well-known
port of its neighboring onion router, and sends its IP address
and well known port (the port is included to allow multiple
onion routers to run on a single machine) in network order to
identify itself. The keying phase ensues, using STS [8] that
will generate two DES 56-b keys. The link encryption over
the longstanding connections is done by DES OFB with IV’s
of 0 and these two keys (one for data in each direction).

Once keyed, communication between onion routers is pack-
aged into fixed sizedcells, that allows for the multiplexing
of both anonymous connections and control information over
the longstanding connections. (Cell size was chosen to be
compliant with ATM.) In version 1 of the onion routing
system, there are four types of cells: PADDING (0), CREATE
(1), DATA (2), and DESTROY (3).

Cells have the structure shown in Fig. 3.
TheAnonymous Connection Identifier(ACI) andCommand

fields are always encrypted using the link encryption between
neighboring nodes. Additionally, theLength and Payload
fields are encrypted using the link encryption between neigh-
boring nodes if the command is either PADDING (0) or
DESTROY (3). For CREATE (1) commands, the length is
link encrypted, but the payload is already encrypted because it
carries the onion. For DATA (2) commands, the length and en-
tire payload are encrypted using the anonymous connection’s
forward or backward cryptographic operations.

Each anonymous connection is assigned an ACI at each
onion router, which labels an anonymous connection when it is

multiplexed over the longstanding connection to the next onion
router. ACI’s must be unique on their longstanding connection
but need not be globally unique.

To move an onion through the system, an onion router
peels off the outermost layer, identifying the next hop. It
checks the freshness (not expired and not replayed) of the
onion, computes the necessary cryptographic keys, initializes
the forward and backward cryptographic engines, chooses
a new ACI for the next hop in the new connection, and
then builds a data structure associated with that connection
that maps incoming to outgoing ACI’s and the cryptographic
engines associated with forward and backward data. Since
neighboring onion routers choose ACI’s for each other on the
thick pipe that they share, each is assigned half of the naming
space. The neighboring onion router with a “higher address”
chooses ACI’s in the top half of that space, while its neighbor
with the lower address chooses ACI’s from the bottom half
of that space. After the outermost layer of onion is peeled
off, the rest of the onion is padded randomly to its original
length, placed into CREATE cells, and then sent out in order
to the appropriate neighbor. The payload of the last cell is
padded with random bits to fill the cell if necessary (to avoid
traceability).

Data moves through an anonymous connection in DATA
cells. At each onion router both the length and payload fields of
a cell are crypted using the appropriate cryptographic engine.
The new cell is sent out to the appropriate neighbor. The
onion proxy must repeatedly crypt data to either add the
appropriate layers of cryption on outgoing data, or remove
layers of cryption from incoming data. When constructing a
DATA cell from a plaintext data stream, the cell is (partially)
filled, its true length is set, and all 45 bytes of the length and
payload fields are repeatedly crypted using the stream ciphers
defined by the onion. Therefore, when the cell arrives at the
exit funnel, the length field reflects the length of the actual
data carried in the payload.

If a connection is broken, a DESTROY command is sent to
clean up state information. The ACI field of the DESTROY
command carries the ACI of the broken connection. The length
and payload must be random. Upon receipt of a DESTROY
command, it is the responsibility of an onion router to forward
the DESTROY appropriately and to acknowledge receipt by
sending another DESTROY command back to the previous
sender. After sending a DESTROY command about a particu-
lar ACI, an onion router may not send any more cells along that
anonymous connection. Once an acknowledgment DESTROY



REED et al.: ANONYMOUS CONNECTIONS AND ONION ROUTING 489

message is received, an onion routing node considers the
anonymous connection destroyed and the ACI can be used
as a label for a new anonymous connection.

The PADDING command is used to inject data into a long-
standing socket to further confuse traffic analysis. PADDING
cells are discarded upon receipt.

Each onion router also re-orders cells moving through it. All
cells that arrive at an onion router within a fixed interval of
time on any connection are mixed pseudorandomly, except that
the order of cells in each anonymous connection is preserved.

G. Exit Funnel

When a routing node receives an onion withDestination
AddressandDestination Portof 0, it knows it is the terminal
onion router for the connection and passes the connection
not to another onion router, but to its own exit funnel. The
funnel proceeds to read the standard structure that will be the
first data across the anonymous socket connection, establishes
a connection to the ultimate destination as indicated, and
returns the status code. After this, it will blindly forward data
between the anonymous connection and the connection to the
responder’s machine.

VI. I MPLEMENTATION VULNERABILITIES

An implementation of a secure design can be insecure. In
this section, we describe several implementation decisions that
were made for security considerations.

Onions are packaged in a sequence of cells that must be pro-
cessed together. This onion processing involves a public key
decryption operation that is relatively expensive. Therefore, it
is possible to imagine an implementation that clears outgoing
queues while an onion is being processed, and then outputs
the onion. Therefore, any period of inactivity on the outbound
queues is likely to be followed by a sequence of onion cells
being output on a single queue. Such an implementation makes
tracking easier and should be avoided.

After processing at each onion router, onions are padded at
the end to compensate for the removed layer. This padding
must be random, since onions are not link encrypted between
onion routers. Similarly, the length and payload of a DE-
STROY command must be new random content at each onion
router; otherwise, compromised onion routers could track that
payload.

In a multithreaded implementation, there is a significant lure
to rely upon apparent randomness in scheduling to re-order
events. If re-ordering is important to the secure operation of
the system, deliberate re-ordering is crucial, because low level
system randomness may in fact be predictable.

There are two vulnerabilities for which we do not have
good solutions. If part of the onion routing network is taken
down, traffic analysis may be simplified. Also, if a longstand-
ing connection between two onion routers is broken, it will
result in many DESTROY messages, one for each anonymous
connection that was routed through that longstanding connec-
tion. Therefore, a compromised onion router may infer from
near simultaneous DESTROY messages that the associated
anonymous connections had some common route. Delaying

DESTROY messages hurts performance, since we require that
a DESTROY message propagate to the endpoints to take
down the connection that is visible to the user. Carrying
the DESTROY message through the anonymous connection
and garbage-collecting, dormant anonymous connections later
would be ideal, but we do not know how to efficiently
insert control information into a raw data channel, especially
considering our layered encryption. One possibility is for the
onion router on the initiator side of a break to send some
large predetermined number of one bits back to the initiator
followed by a message that the connection is destroyed. The
onion proxy could then check for such a signal after it strips off
each layer of each packet and notify the application proxy if it
receives the signal. The initiator can contact the responder out
of band, presumably through another anonymous connection,
authenticate itself by some means as the initiator of the broken
connection, and notify the responder of the break. Onion
routers can either be notified directly by the onion proxy after
some random delay or possibly garbage collect least recently
used ACI’s. We will continue to explore the feasibility of this
and other possibilities.7

VII. A PPLICATIONS

We first describe how to use anonymous connection in
virtual private networks (VPN’s), anonymous chatting ser-
vices, and anonymous cash. We then describe onion routing
proxies for three Internet services: Web browsing, e-mail,
and remote logins. These three onion routing proxies have
been implemented. Anonymizing versions of these proxies that
remove the identifying information that may be present in the
headers of these services’ data streams have been implemented
as well.

A. VPN’s

If two sites wanted to collaborate, they could establish one
or more long-term tunnels that would multiplex many socket
connections, or even raw IP packets, over a single anonymous
connection. This would effectively hide who is collaborating
with whom and what they are working on, without requiring
the construction of an individual anonymous connection for
each connection made. Such long-term anonymous connec-
tions between enclaves provide the analog of a leased line over
a public network. Note that the protection provided a VPN by
onion routing is broader than that provided by encrypting fire-
walls. Basic encrypting firewalls encrypt payloads only. Thus,
they protect confidentiality, but do nothing to protect against
traffic analysis.IPSEC (IP security) will protect traffic for
individual connections by encapsulating packets in encrypted
packets from the firewall, but this will not protect against
institutional level traffic analysis. Communication between two
such firewalls will still indicate a collaboration between the
sites behind them. Constant padding may be added, but this is
very expensive and, unless many unrelated sites agree to do
it, it still does not hide the existence of the VPN established
between those sites that are so padding.

7Thanks to Gene Tsudik for some of the fundamental elements of this
proposal.



490 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 16, NO. 4, MAY 1998

B. Anonymous Chatting

Anonymous connections can be used in a service similar to
IRC, where many parties meet tochat at some central server.
The chat server may mate several anonymous connections
carrying matching tokens. Each party defines the part of
the connection leading back to itself, so no party has to
trust the other to maintain its privacy. If the communicating
parties layer end-to-end encryption over the mated anonymous
connections, they also prevent the central server from listening
in on the conversation.

C. Anonymous Cash

Certain forms of e-cash are designed to be anonymous and
untraceable, unless they are double spent or otherwise misused.
However, if a customer cannot contact a vendor without
identifying himself, the anonymity of e-cash is undermined.
For transactions where both payment and product can be
conveyed electronically, anonymous connections can be used
to hide the identities of the parties from one another [22].

How can the customer be prevented from taking his pur-
chase without paying for it (e.g., by closing the connection
early) or the vendor be prevented from taking the customer’s
e-cash without completing the transaction? This is a hard
problem [11], [4]. In the case of a well-known vendor, a
practical solution is to require customers to pay first. The
vendor is unlikely to deliberately cheat its customers because
it may be caught in an audit.

D. Remote Login

We proxy remote login requests by taking advantage of
the option-l username to rlogin . The usualrlogin
command is of the form:

rlogin -l username server.
To userlogin through an onion routing proxy, one would

type
rlogin -l username@server proxy

whereproxy refers to the onion routing proxy to be used and
both usernameand server are the same as specified above.
A normal rlogin request is transmitted from a privileged port
on the client to the well-known port for rlogin (513) on the
server as:

where username on clientis the username of the individual
invoking the command on the client machine,username on
server is either the-l field (if specified) or the username of
the individual invoking the command on the client machine
(if no -l is specified), and theterminal type is a standard
termcap/linespeed specification. The server responds with a
single zero byte if it will accept the connection, or breaks the
socket connection if an error has occurred or the connection is
rejected. Our normal rlogin proxy therefore receives the initial
request:

The proxy creates an anonymous connection to the RLOGIN
port on theservermachine and proceeds to send it a massaged
request of the form:
0 username 0 username 0 terminal type 0
Once this request is transmitted to the server, the proxy

blindly forwards data in both directions between the client
and server until the socket is broken by either side.

Notice that the onion router does not send theserver
the client’s username on the client, so communication is
anonymous, unless the data-stream subsequently reveals more
information.

E. Web Browsing

Proxying HTTP requests follows the IETF HTTP V1.0
Specification [3]. An HTTP request from a client through an
HTTP proxy is of the form:
GET http://www.server.com/file.html HTTP/1.0

followed by optional fields. Notice that an HTTP request from
a client to a server is of the form:
GET /file.html HTTP/1.0

also followed by optional fields. The server name and protocol
scheme are missing, because the connection is made directly
to the server.

As an example, a complete request from Netscape
Navigator to an onion router HTTP proxy may look like this:
GET http://www.server.com/file.html HTTP/1.0

Referer: http://www.server.com/index.html

Proxy-Connection: Keep-Alive

User-Agent:Mozilla/3.0 (X11; I;SunOS 5.4 sun4m)

Host: www.server.com

Accept: image/gif, image/x-xbitmap, image/jpeg

The proxy must create an anonymous connection to
www.server.com , and issue a request as if it were a client.
Therefore, the request must be massaged to remove the server
name and scheme, and transmitted towww.server.com
over the anonymous connection. Once this request is
transmitted to the server, the proxy blindly forward data in
both directions between the client and server until the socket
is broken by either side.

For privacy filtering of HTTP, the proxy proceeds as out-
lined above with one change. It is now necessary to sanitize
the optional fields that follow theGETcommand because they
may contain identity information. Furthermore, the data stream
during a connection must be monitored, to sanitize additional
headers that might occur during the connection.

The Anonymizer[1] also provides anonymous Web brows-
ing. Users can connect to servers through the Anonymizer and
it strips off identifying headers. This is essentially what our
filtering HTTP proxy does. But packets can still be tracked and
monitored. The Anonymizer could be used as a front end to the
onion routing network to provide effective protection against
traffic analysis. We discuss this further in Section VIII.

F. Electronic Mail

Electronic mail is proxied by utilizing the
user@host@proxy form of e-mail address instead



REED et al.: ANONYMOUS CONNECTIONS AND ONION ROUTING 491

of the normal user@host form. This form should work
with most current and older mail systems. Under this form,
the client contacts the proxy server’s well-known SMTP
port (25). Instead of the normal mail daemon listening to
that port, the proxy listens and interprets what it receives
following a strict state machine: wait for a validHELO
command, wait for a validMAIL From: command, and
then wait for a validRCPT To: command. Each command
argument is temporarily buffered. Once theRCPT To:
command has been received, the proxy proceeds to create
an anonymous connection to the destination server and
relays the HELO and MAIL From: commands exactly
as received. TheRCPT To: command is massaged and
forwarded. Any subsequentRCPT To: commands are
rejected. Once theDATArequest is transmitted to the server,
the proxy forwards data in both directions from the client
and server. An example of e-mail fromjoe@sender.com
on the machinesender.com to mary@recipient.com
via the onion.com onion router is given below. Joe
types mail mary@recipient.com@onion.com . First
the communications from the client onsender.com to
the onion router SMTP proxy ononion.com is given,
followed by the communications from the exit funnel to
recipient.com :
220 onion.com SMTP Onion Routing Network .
HELO sender.com

250-onion.com -- Connection from

250 sender.com (2.0.0.1) .
MAIL From: joe@sender.com

250 Sender is joe@sender.com .
RCPT To: mary@recipient.com@onion.com

The proxy massages theRCPT To: line to make the
addressmary@recipient.com and makes an anonymous
connection torecipient.com . It then replays the massaged
protocol to recipient.com :
220-recipient.com Sendmail 4.1/SMI-4.1 ready

220 at Wed, 28 Aug 96 15:15:00 EDT

HELO Onion.Routing.Network

250-recipient.com Hello Onion.Routing.Network

250 [2.0.0.5], pleased to meet you

MAIL From: joe@sender.com

250 joe@sender.com... Sender ok

RCPT To: mary@recipient.com

250 mary@recipient.com... Recipient ok

DATA

354 Enter mail, end with "." on a line by itself

At this point, the proxy forward data in both directions, until
a line containing only a period is sent from the sender to the
recipient:
This is a note

.
The proxy forwards the line containing only a period to the

recipient, and forwards the recipient’s response to the sender.
At that point, the proxy sendsQUIT to the recipient, reads the
response, and closes the connection to the recipient. The proxy
then waits for a command from the sender; if that command
is QUIT, the proxy sends a response and closes its connection
to the sender:

250 Mail accepted

QUIT

221 onion.com Service closing transmission chan-

nel

If the command is notQUIT, then it is MAIL, and the
protocol repeats. Anything else prompts an error response, and
the proxy waits for the next correct command.

For the privacy filtered proxying of electronic mail, the
proxy proceeds as outlined above with a few changes. It is
now necessary to sanitize both theMAIL From: command
and the header portion of the actual message body. Sanitization
of the MAIL From: command is trivial with a simple
substitution ofanonymous for joe@sender.com . For the
header sanitization, we have taken the conservative approach
of deleting all headers, but this may be modified in the future to
only remove identifying information and leave the remaining
header information intact.

VIII. C OMPARISONS WITH RELATED WORK

Chaum [5] defines a layered object that routes data through
intermediate nodes, calledmixes. These intermediate nodes
may re-order, delay, and pad traffic to complicate traffic
analysis. In mixes, the assumption is that a single perfect
mix adequately complicates traffic analysis, but a sequence
of multiple mixes is typically used because real mixes are
not ideal. Because of this, mix applications can use mixes in
fixed order, and often do. Onion routers differ from mixes in at
least two ways: Onion routers are more limited in the extent to
which they delay traffic at each node because of the real-time
expectations that the applications demand of socket connec-
tions. Also, in a typical onion routing configuration, onion
routers are also entry points to the onion routing network, and
traffic entering or exiting at those nodes may not be visible.
This makes it hard to track packets, because they may drop out
of the network at any node, and new packets may be introduced
at each node. While onion routing cannot delay traffic to
the extent that mixes can, traffic between onion routers is
multiplexed over a single channel and is link encrypted with
a stream cipher. This makes it hard to parse the stream.

Anonymous remailers like Penet8 strip headers from re-
ceived mail and forward it to the intended recipient. They may
also replace the sender’s address with some alias, permitting
replies. These sorts of remailers store sensitive state: the
mapping between the alias and the true return address. Also,
mail forwarded through a chain of remailers may be tracked
because it appears the same to each remailer.

Mix based remailers like [7] and [15] use mixes to provide
anonymous e-mail services. Essentially, the mail message is
carried in the innermost layer of the onion data structure.
Another onion-type structure, used for a return address, can
be contained in the message. This makes the return path
self-contained and the remailer essentially stateless. Onion
routing shares many structures with Babel [15] but it uses
them to build (possibly long lived) application independent
connections. This makes anonymous connections accessible to
a wide variety of applications. For application to e-mail it has

8J. Helsingius, HTTP://www.penet.fi.



492 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 16, NO. 4, MAY 1998

both advantages and disadvantages. Onion routing’s service
makes an anonymous connection directly to the recipient’s
SMTP daemon. A disadvantage is that, because the connection
is made in real-time, there is less freedom in mixing, which
therefore might not be done as well. An advantage is that the
anonymous connection is separated from the application, so
anonymous e-mail systems are considerably simplified because
the application specific part does not have to move data
through the network. Furthermore, because the onion routing
network can carry many types of data, it has the potential to
be more heavily utilized than a network that is devoted only
to e-mail. Heavy utilization is the key to anonymity.

In [9], a structure similar to an onion is used to forward
individual IP packets through a network. By maintaining track-
ing information at each router, ICMP error messages can be
moved back along the hidden route. Essentially, a connection
is built for each packet in a connectionless service. Although
a followup paper [10] suggests that performance will be good,
especially with hardware based public key cryptography, our
experience suggests that both the cryptographic overhead of
building onions and the tracking of onions against replay is
not efficiently done on a packet-by-packet basis. However, it
is easy to imagine an onion routing proxy that collects IP
packets and forward them over some anonymous connection.
In this way, communication is anonymous at the IP layer,
but connections need not be built for each IP packet. This
anonymous IP communication may be more robust than our
current architecture: it could survive a broken anonymous
connection, since IP does not expect reliable delivery.

In [17], mixes are used to provide untraceable commu-
nication in an ISDN network. Here is a summary of that
paper. In a phone system, each telephone line is assigned to
a particular local switch (i.e., local exchange), and switches
are interconnected by a (long distance) network. Anonymous
calls in ISDN rely upon an anonymous connection between the
caller and the long distance network. These connections are
made anonymous by routing calls through a predefined series
of mixes within each switch. The long distance endpoints of
the connection are then mated to complete the call. (Notice
that observers can tell which local switches are connected.)
Also, since each phone line has a control circuit connection
to the switch, the switch can broadcast messages to each
line using these control circuits. So, within a switch a truly
anonymous connection can be established: A phone line makes
an anonymous connection to some mix. That mix broadcasts a
token identifying itself and the connection. A recipient of that
token can make another anonymous connection to the specified
mix, that mates the two connections to complete the call.

Our goal of anonymous connections over the Internet differs
from anonymous remailers and anonymous ISDN. The data are
different, with real-time constraints more severe than mail, but
somewhat looser than voice. Both HTTP and ISDN connec-
tions are bidirectional, but, unlike ISDN, HTTP connections
are likely to be small requests followed by short bursts of
returned data. Most importantly, the network topology of the
Internet is more akin to the network topology of the long
distance network between switches, where capacity is a shared
resource. In anonymous ISDN, the mixes hide communication

within the local switch, but connections between switches are
not hidden. This implies that all calls between two businesses,
each large enough to use an entire switch, reveal which
businesses are communicating. In onion routing, mixing is
dispersed throughout the Internet, which improves hiding.

Pipe-net9 is a proposal similar to onion routing. It has
not been implemented, however. Pipe-net’s threat model is
more paranoid than onion routings’: It attempts to resist
active attacks by global observers. For example, Pipe-net’s
connections carry constant traffic (to resist timing signature
attacks) and disruptions to any connection are propagated
throughout the network.

The Anonymizer is a Web proxy that filters the HTTP
data stream to remove a user’s identifying information, es-
sentially as our filtering HTTP proxy does. For example,
the Anonymizer will “strip out all references to your e-mail
address, computer type, and previous page visited before
forwarding your request [1].” This makes Web browsing
private in the absence of any eavesdropping or traffic analysis.
The Anonymizer is vulnerable in three ways. First, it must be
trusted. Second, traffic between a browser and the Anonymizer
is sent in the clear, so that traffic identifies the true destination
of a query, and includes the identifying information that the
Anonymizer would filter. Third, even if traffic between the
browser and the Anonymizer were encrypted, passive external
observers could mount the volume attack mentioned in Section
IV. The Anonymizer, however, is now readily available to
everyone on the Web.

LPWA10 [12] (formerly known as Janus) is a “proxy server
that generates consistent untraceable aliases for you that enable
you to browse the Web, register at web sites and open accounts,
and be ‘recognized’ upon returning to your accounts, all
while still preserving your privacy.” Like the previous two,
the LPWA proxy is at a server that is remote from the user
application. It is thus subject to the same trust and vulnerability
limitations.

It is possible, however, to shift trusted elements to the user’s
machine (or to a machine on the boundary between his trusted
LAN and the Internet). Shifting trust in this way can improve
the security of other privacy services like the Anonymizer,
NetAngels, and LPWA. Currently, those are centralized to
provide an intermediary that masks the true source of a
connection. If anonymous connections are used to hide the
source address instead, the other functions of these services
may run as a local proxy on the user’s desktop. Security is
improved because privacy filtering and other services are done
on a trusted machine and because communication is resistant
to traffic analysis. Also, there is no central point of failure.

Another approach to anonymous Web connections is
Crowds [20]. Crowds is essentially a distributed and chained
Anonymizer, with encrypted links between crowd members.
Web traffic is forwarded to a crowd member, who flips a
weighted coin and, depending on the result, forwards it either
to some other crowd member or to the destination. This makes
communication resistant to local observers.

9W. Dai. Pipe–net, Feb. 1995. Post to the cypherpunks mailing list.
10HTTP://lpwa.com: 8000/.



REED et al.: ANONYMOUS CONNECTIONS AND ONION ROUTING 493

IX. CONCLUSION

This paper describes anonymous connections, their real-
ization in onion routing, and some of their applications.
Anonymous connections are resistant to both eavesdropping
and traffic analysis. They separate the anonymity of the
connection from the anonymity of communication over that
connection. For example, two parties controlling onion routers
can identify themselves to each other without revealing the ex-
istence of a connection between them. This paper demonstrates
the versatility of anonymous connections by exploring their
use in a variety of Internet applications. These applications
include standard Internet services like Web browsing, remote
login, and electronic mail. Anonymous connections can also be
used to support virtual private networks with connections that
are resistant to traffic analysis and that can carry connectionless
traffic.

Anonymous connections may be used as a new primitive
that enables novel applications in addition to facilitating secure
versions of existing services [19]. Besides exploring other
novel applications, future work includes a system redesign to
improve throughput and an implementation ofreply onions
[14], [18]. Reply onions are basically reply addresses that en-
able connections to be established back to an anonymous party.
We will be implementing other mechanisms for responding
to anonymous connections as well. We are also beginning
a detailed analysis of onion routing to enable a quantitative
assessment of resistance to traffic analysis.

The onion routing network supporting anonymous connec-
tions can be configured in several ways, including a firewall
configuration and a customer-ISP configuration, that moves
privacy to the user’s computer and may relieve the carrier of
responsibility for the user’s connections.

Onion routing moves the anonymous communications infra-
structure below the application level, properly separating com-
munication and applications. Because the efficacy of mixes
depends upon sufficient network traffic, allowing different
applications to share the same communications infrastructure
increases the ability of the network to resist traffic analysis.

ACKNOWLEDGMENT

The authors have had helpful comments from and discussion
with people too numerous to mention. They note especially the
help of B. Pfitzmann, G. Tsudik, and J. Washington. They also
thank the anonymous referees, the Levien family for hosting
the onion dinner, and the Isaac Newton Institute for hosting
one of the authors while some of this work was done. The
fast UltraSparc implementation of RSA was done by T. Acar
and Ç. K. Koç.

REFERENCES

[1] The Anonymizer [Online]. Available WWW: http://www.
anonymizer.com.

[2] T. Acar, B. S. Kaliski Jr., and ¸C. Koç, “Analyzing and comparing
montgomery multiplication algorithms,”IEEE Micro., vol. 16, no. 3,
pp. 26–33, June 1996.

[3] T. Berners-Lee, R. Fielding, and H. Frystyk, (19xx). [Online]. pre-
sented at theHypertext Transfer Protocol—HTTP/1.0, Available FTP:
ftp://ds.internic.net/rfc/rfc1945.txt.

[4] L. J. Camp, M. Harkavey, B. Yee, and J. D. Tygar, “Anonymous Atomic
Transactions,”Second USENIX Workshop on Electronic Commerce,
Oakland, CA, Nov. 1996.

[5] D. Chaum, “Untraceable electronic mail, return addresses, and dig-
ital pseudonyms,”Commun. ACM, vol. 24, no. 2, pp. 84–88, Feb.
1981.

[6] D. E. Comer, Internetworking with TCP/IP, Vol. 1: Principles,
Protocols, and Architecture. Engelwood Cliffs, NJ: Prentice-Hall,
1995.

[7] L. Cottrell, Mixmaster and Remailer Attacks, [Online]. Available WWW:
http://obscura.obscura.com/�loki /remailer/remailer-essay.html.

[8] W. Diffie, P. C. van Oorschot, and M. J. Wiener, “Authentication and
authenticated key exchanges,”Designs, Codes, and Cryptography, vol.
2, pp. 107–125, 1992.

[9] A. Fasbender, D. Kesdogan, and O. Kubitz, “Variable and scalable
security: Protection of location information in mobile IP,” presented
at the 46th IEEE Vehicular Technology Society Conf., Atlanta, GA,
Mar. 1996.

[10] , “Analysis of security and privacy in mobile IP,” presented at
the Fourth Int. Conf. on Telecommunication Systems Modeling and
Analysis, Nashville, TN, Mar. 1996.

[11] M. Franklin and M. Reiter, “Fair exchange with a semi-trusted third
party,” presented at the Fourth ACM Conf. on Computer and Commu-
nications Security, Zurich, Switzerland, Apr. 1997.

[12] E. Gabber, P. Gibbons, Y. Matias, and A. Mayer, “How to make
personalized web browsing simple, secure and anonymous,”Finan-
cial Cryptography’97, (LNCS vol. 1318) R. Hirschfeld, Ed. Berlin:
Springer-Verlag, 1997, pp. 17–31.

[13] D. Goldschlag, M. Reed, and P. Syverson, “Privacy on the Internet,”
INET’97, Kuala Lumpur, Indonesia, June, 1997.

[14] D. Goldschlag, M. Reed, and P. Syverson, “Hiding routing information,”
in Information Hiding, R. Anderson, Ed., (LNCS vol. 1174). New
York: Springer-Verlag, pp. 1996, 137–150.

[15] C. Gülcü and G. Tsudik, “ Mixing e-mail withBabel,” presented at the
1996 Symp. on Network and Distributed System Security, San Diego,
CA, Feb. 1996.

[16] A. Menezes, P. van Oorschot, and S. Vanstone,Handbook of Applied
Cryptography. Boca Raton, FL: CRC Press, 1997.

[17] A. Pfitzmann, B. Pfitzmann, and M. Waidner, “ISDN-Mixes: Un-
traceable communication with very small bandwidth overhead,” in
Proc. GI/ITG Conf.: Communication in Distributed Systems, Mannheim,
Germany, Feb., 1991, pp. 451–463.

[18] M. G. Reed, P. F. Syverson, and D. M. Goldschlag, “Proxies for
anonymous routing,” inProc.12th An. Computer Security Applications
Conf., San Diego, CA, 1996, pp. 95–104.

[19] M. Reed, P. Syverson, and D. Goldschlag, “Protocols using anony-
mous connections: Mobile applications,” presented at the 1997 Security
Protocols Workshop, Paris, France, Apr. 1997.

[20] M. Reiter and A. Rubin, “Crowds: Anonymity for Web Transac-
tions (preliminary Announcement),” DIMACS Tech. Rep., 97-15, April,
1997.

[21] B. Schneier,Applied Cryptography: Protocols, Algorithms and Source
Code in C. New York: Wiley, 1994.

[22] D. Simon, “Anonymous communication and anonymous cash,” in
Advances in Cryptology—CRYPTO’96, (LNCS vol. 1109), N. Koblitz
Ed. New York: Springer-Verlag, 1996, pp. 61–73, 1996.

[23] P. Syverson, D. Goldschlag, and M. Reed, “Anonymous connections
and onion routing,” inProc. 1997 IEEE Symp. on Security and Privacy,
Oakland, CA, May 1997, pp. 44–54.

Michael G. Reed(S’91–M’97) received the Bach-
elor of Science degree in both computer science
and electrical engineering from Cornell University,
Ithaca, NY, in 1994. He is currently pursuing the
Ph.D. degree in computer security at the University
of Maryland, College Park.

He is with the Naval Research Laboratory’s Cen-
ter for High Assurance Computer Systems exploring
many different aspects of computer, network, and
information security. Other research interests in-
clude high performance computer networks, high

performance chip and system architectures, and micro-kernel operating system
designs.



494 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 16, NO. 4, MAY 1998

Paul F. Syverson received the Ph.D. degree in
philosophy (specializing in logic) from Indiana Uni-
versity in 1993, master’s degrees in philosophy and
mathematics from Indiana University, both in 1988,
and an A.B. in philosophy from Cornell University,
Ithaca, NY, in 1981.

Since 1989 he has worked at the U.S. Naval
Research Laboratory, primarily on epistemic and
temporal logics for analyzing cryptographic pro-
tocols and secure computing systems. His current
focus is the design and analysis of protocols and

systems for anonymity and for accountability.

David M. Goldschlag received the Ph.D. degree in
computer science from the University of Texas at
Austin in 1992.

He is with Divx, Herndon, VA, where he works
on intellectual property protection. He did computer
security research at the U.S. Naval Research Labora-
tory and the National Security Agency. His research
interests are in cryptography, security, automated
theorem proving, and system design and analysis.


