1530 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 16, NO. 8, OCTOBER 1998
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Abstract—The decorrelating detector is known to eliminate low. Examples include: the decorrelating detector [3]; the
multiaccess interference when the signature sequences of thedecision feedback detector [4]; the minimum mean squared
users are linearly independent, at the cost of enhancing the error (MMSE) detector [5]; and the multistage detectors [6]
Gaussian receiver noise. In this paper, we present a blind adaptive . ' . )
decorrelating detector which is based on the observation of The q§correlat|ng dete.Ctor (31, [_7] achieves the same asymp-
readily available statistics. The algorithm recursively updates the totic efficiency as the optimal multiuser detector and has linear
filter coefficients of a desired user by using the output of the (in terms of the number of users) computational complexity.
current filter. Due to the randomness of the information bits The decorrelating detector was shown to eliminate the mul-
transmitted and the ambient Gaussian channel noise, the filter ;o .ceqq interference totally, if the signature sequences of the
coefficients evolve stochastically. We prove the convergence of . . .
the filter coefficients to a decorrelating detector in the mean USErs are linearly independent, at the cost of enhancing the ad-
squared error (MSE) sense. We develop lower and upper bounds ditive white Gaussian (AWG) receiver noise. The decorrelating
on the MSE of the receiver filter from the convergence point detector of [3] and [7] is centralized and noniterative. The con-
and show that with a fixed step size sequence, the MSE can bestryction of the decorrelating detector filter for a certain user

made arbitrarily small by choosing a small enough step size. . :
With a time-varying step size sequence, the MSE converges 1o requires the knowledge of the signature sequences of all the

zero implying an exact convergence. The proposed algorithm is interfering users, as well as the signature sequence of the user
distributed, in the sense that no information about the interfering  Of interest. In addition, for a@v-user system, the construction
users such as their signature sequences or power levels is neededequires inversion of th&/ x NV crosscorrelation matrix. Blind

The algorithm requires the knowledge of only two parameters  gqantive algorithms are desirable in order to overcome the
for the construction of the receiver filter of a desired user: . .
the desired user’s signature sequence and the variance of theneed for kr?owle.dge abolut the parameters of th? '”terfe“”g
additive white Gaussian (AWG) receiver noise. This detector, for USers, and iterative algorithms are needed to avoid the matrix

an asynchronous code division multiple access (CDMA) channel, inversion which may have a large computational complexity.

converges to the one-shot decorrelating detector. A blind adaptive algorithm based on the minimization of the
Index Terms—Code division multiple access (CDMA), decor- Output energy was given in [8]. This algorithm was shown to
relating detector, multiuser detection. converge to the MMSE multiuser detector [5].

In [9], an adaptive multiuser detector which converges to
the decorrelating detector is proposed. This detector still needs
the signature sequences of all users. In [10], blind algorithms

ODE division multiple access (CDMA) systems suffehased on signal subspace tracking are investigated and two
from thenear—far effecbecause of the nonorthogonalitya|gorithms which converge to the decorrelating and MMSE
of the users’ signature sequences. Multiuser detection [hltiuser detectors are proposed. The blind adaptive decorre-
can be used to overcome the near—far problem by exploiti[gging detector (BADD) proposed in [10] needs information
the known structure of the multiple access interference oyt the variance of the AWG channel noise and the number
effectively dem_odulate the nonor_thogonal_signals of the usegs.sers, both of which can be estimated, again, by using the
It was shown, in [2], that the optimal multiuser detector hassaubspace tracking techniques. The computational complexity
computational complexity which increases exponentially with the algorithm of [10] isSO(GIN) per iteration wheres is
the number of active users. Several suboptimum detectgsg processing gain an¥ is the number of active users.
have been proposed to achieve a performance comparable i, this paper, we present a blind adaptive multiuser detector
that of the optimum detector, while keeping the complexityich yses observables that are readily available at the receiver
and which converges to a decorrelating detector. The detector
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at iterationn + 1, in terms of the MSE of the filter coefficientsvector ¢. Thenc¢ should satisfy the following condition:
at iterationn and investigate the conditions under which the
MSE sequence converges to zero. Two kinds of algorithms,

using a fixed step size sequence and a time dependent step\§iz&e... is the first unit vector inV dimensional space, i.e.,
sequence, are proposed. For the algorithm using a fixed sfep_ 1 ¢ o ... 0] and « is a nonnegative real number.

. . .o Gl
size, we obtain the lower and upper bounds for the limitingq, ,ation (2) states that the receiver filter for the desired (first)
MSE asn approaches infinity in terms of the step size. Wgger should be orthogonal to the signature sequences of all
show that the limiting MSE can be made arbitrarily small by, jnterfering users, and it should have a nonzero correlation

choosing a small enough step size. On the other hand, Wey, the desired user. Here, this nonzero correlation is equal
directly prove the convergence of limiting MSE to zero wheg, e scaling factor. It is not difficult to show that the bit

atime-varying step size sequence of a special structure is usgd, ra1e (BER) performance of the decorrelating detector is

~ The computational complexity of the proposed algorithi,qensitive to scaling of the filter, as long as the filter eliminates
is O(G) per iteration. The proposed algorithm requires thgye mtiaccess interference totally. The reason for this is that
knowledge of only two parameters for the construction of thge sealar factor multiplies both the received power level of

filter coefficients for a desired user: the desired user’s signatyt@ qesired user and the AWGN. Thus. for any nonnegative
sequence and the variance of the AWG noise (AWGN). The e of o, we have a decorrelating detector with the same

variance of the AWGN is a fixed quantity (not time varyingger performance. The importance of using# 1 will be

and can be estimated easily, perhaps before the informatiQiyent in the next section, where we will avoid the need for
transfer starts, when only the samples of AWGN can Rge ynowledge about the received power of the desired user
observed Wltho_ut any interference at the output pf an arb_ltr%y a particular selection oft.

(nonzero) receiver filter. In such a case, a rghable est_lmate\Ne first note that (2) has more than one solution, because
of the variance of the AWGN can be obtained by times pas a7 equalities and? unknowns and, typically > N.

averaging the squares of the output of the receiver filtefho nique decorrelating detector for the first ugeis given
Another implementation alternative is to allocate a unit energy [3] as

filter that is orthogonal to all the of the signatures being
used. In this case, again, the square of the output of the d=ST (SST)flel. A3)
filter will be an unbiased estimate for the noise variance.
In the latter case, since the filter is orthogonal to all thiget us denote any solution of (2) @&sthen, by inserting (2)
signatures, one can continue to have estimates for the ndi® (3), we obtain (assuming = 1 for the time being)
variance while the users are transmitting and the decorrelating .
receiver filter coefficients are being updated. Until Section VI d=S" (SST) S¢ (4)
we will assume that the noise variance is known perfectly. — Pe (5)
In Section VI we investigate the effects of using estimated '
values of noise variance on the convergence of the proposgste thatP = ST(S557)~'S is the projection matrix which
algorithm. projects any vector onto the column spaceSdf. Also note

In the fOIIOWing section we will brleﬂy summarize thethat the column space OST is the subspace Spanned by
well known decorrelating detector and develop the necessggy. -, 85, i.e., the subspace which was previous|y denoted

Sc = wey (2)

background for the presentation of the BADD. as £. Therefore, although (2) has more than one solution, all
of the solutions have the same projection outoand this
II. THE DECORRELATING DETECTOR projection is equal to the unique decorrelating detector solution

: . of [3].
Un.t" Section V, where the convergence of the_propo_se(i Let A be anN x N dimensional diagonal matrix, with the
algorithm for an asynchronous CDMA channel will be in-

vestigated, we will assume a synchronous CDMA syste rece_iveq PowWer O.f uset, p; bei_ng its_ ith diagonal eI_emeTnt.
Throughout this paper binary phase-shift keying (BPSK) mo@_[ultlplymg both sides of (2), first with4 and then with$
ulation is assumed in order to simplify the analysis. wee obtain
will use G dimensional vectos; to denote the preassigned S ASc = ap;s:. (6)
unique signature sequence of usetet us define anV x G
dimensional matrixS with its (¢, j)th element beings;);, the We observe that although (6) hésequations inz unknowns,
jth component ofs;. Therefore, the rows of (equivalently it does not have a unique solution fer since (G — N)
the columns ofST) are the signature sequences of the useigenvalues ofS" AS are equal to zero. The solution spaces
For future use, we define a subspdci G dimensional vector Of (2) and (6) are related as stated in the following lemma.
space to be the subspace spanned by the signature sequendegmma 1:1f s;,---, sy are linearly independent, then all
of the users, i.e., solutions of (2) and (6) coincide.
A proof for Lemma 1 is given in the Appendix.
L =span{sy,---,sy} = column space o§". (1)  Letus defined = ST AS. At this point we choose: = 1/p;

i i i and devise the following gradient descent algorithm:
We consider the decorrelating detector for the first user,

without loss of generality, and represent it bgzadimensional e(n+1) =c(n) — p(Acn) — s1). (7)
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Note that the iterative algorithm given in (7) converges to tHEherefore, using (11), the deterministic iteration of (7) can be
solution of (6) and equivalently, by Lemma 1, to the solutiowritten in an exact form as

of (2). The fact that the solution of (2) is not unique is noted eln+1) = ¢(n) — u[(E |:,,_,,_T:| _ O_QI)c(n) _ 31:|- (12)

earlier. Note that, for any
- N - Note thatrr™ — o2 is an unbiasedestimate forA matrix.
PAc=S5 (SS ) 85 ASc=S5 ASc=Ac.  (8) |n order to obtain a practical algorithm, we replagérr '] in

] . ) ] . (12) with the estimate:(n)r ' (n) wherer(n) is the received
This means that for ang(n), Ac(n) lies entirely in£. Since signal vector at theith iteration

s1 € L by definition, the correction term added &6r) at
every iteration in (7) is always if. Starting fromn =0, by  ¢(n+1) =¢(n) — u[(r(n)rT(n) - 02I>c(n) - 31] (13)

induction we obtain . o
Before analyzing the convergence of (13), we state it in terms

c(n) = Pe(n) + ¢(0) — Pe(0). (9) of available observations and list the parameters needed at
each iteration. We note that the output of the receiver filter
Therefore, if the iterative algorithm (7) is started in thef the desired user at time is y(n) = ' (n)c(n). Thus, the
subspacel, implying ¢(0) = Pc(0), then from (9) we will implementation oriented version of the algorithm (13) is
havec(n) = Pe¢(n) for all n. In this casec(n) will always
stay irfﬁ), and i(t v)vill converge to the scal(ed) version of the  €(n+1) =1 +0°pe(n) - u(r(n)y(n) —s1).  (14)
unique decorrelating detector solutioh= (1/p:)d asn goes Sincer(n) and y(n) are readily available at the input and
to infinity. Note that the algorithm converges to the scalegutput of the receiver filter that is under construction, only
version ofd, the decorrelating detector of [3] and [7], insteagwo system parameters are needed to be known in order to
of converging tod becausex was chosen to be/p; instead run the algorithm: the signature sequence of the desired user
of 1. Note also thatl andc* = (1/p1)d have the same BER s, and the variance of the AWGN?2. The variance of the
performance as discussed earlier. AWGN is a fixed quantity which can be easily estimated before
The restriction that the iterations should be started jin  the communication starts by using the outputs of a nonzero
order for algorithm (7) to converge to a decorrelating detectqgceiver filter as discussed in Section 1.
is fairly mild. Selectionse(0) = 0,¢(0) = s; or any linear
combination of the signature sequences imp()) € L, V. CONVERGENCE OF THEBADD
satisfying the convergence condition of (7). The S|gnature|n this section we will investigate the convergence of the

sequences of all of the users must be known for the algorit . . .
given in (7). Also, the algorithm of (7) is an off-line algorithmrg%zgmp:/oep;ifd n aSSectlon lll. Let us define the zero mean
n m(n)

in the sense that it does not utilize any real time measureme'it

or observations. The algorithm of (7) can be run before the n(n) = (TTT _A_ UQI)c(n). (15)

real information transmission of mobiles to the base station

start. After running the algorithm for some time, the filteNoting that Ac* = s;, we can write the stochastic iterations

coefficients would converge to the decorrelating detector filték3) and (14) as

and then the communication can be started. In this paper, our _ _ o

aim is to develop a blind adaptive algorithm which would en+1) = e(n) = ulA(cn) — <) +nin)] (16)

converge to the decorrelating detector solution, in a stochasbigbtractinge* from both sides of (16) and definingn) =

sense, by using real random measurements while the userscarg — ¢* we obtain

actwt_a and trgnsmntmg b|t§. To this end, we W|Il_propo§e an €(n + 1) = e(n) — u(Ae(n) +n(n)). (17)

algorithm which can be viewed as the stochastic version of

the deterministic algorithm given in (7). Note that||e(n)]|?, the norm ofe(n), is a measure of the dis-

tance of the receiver filter at iterationfrom the convergence

. A BADD point. In order to relate the distance measures at iterations

) ] . _andn + 1, we square both sides of (17) and obtain
The received base band signal before the receiver filters

can be written as lle(n + D)II” =|le(n)]|> — 2ue(n) " Ae(n)
N + 21°€(n) " An(n) — 2ue(n) 'n(n)
7= Z VDiais; +n (10) + 12e(n) T A%e(n) + 1 |ln(n)|)?.  (18)

i=1

Taking the conditional expectation of both sides of (18),
wherea; is the information bit(d-1, equiprobably)p; is the conditioned one(n) = ¢, and observing thaE[n(n)|e(n) =
power, s; is the signature sequence of usgrandn is a ¢] = 0 yields

H H T — 2
Gaussian random vector with zero mean &lan ' | = o°1. Eflle(n + 1)|2le(n) = o] = [lel|? 24T Ae + 12T Ae

Note that
N + 12 Elln(n)|Ple(n) = ¢ (19)

Elrr"]=> pisis] +0°I= A+0°L (11) Wwe will be using the results of the following lemmas to
=1 develop bounds for the right-hand side of (19).
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Lemma 2: If Pe = 0 thene' Ac = 0 ande' A%¢ = 0. If mean squared error (MSE) of the filter coefficients at iteration

Pe # 0 then there exist < kg < k1 < oo, such that n + 1 from ¢*, in terms ofb,,
kollel|> <e" Ae < ky||¢||> and (1 — 2pky + k2130,
12Ilell? < €T A% < B2 le]%. (20) < bogs < (1= 2p1ko + (K2 + e1) )by + cop®. (30)
Lemma 3: There exist0 < ¢y < ¢; < oo, such that By defining
0 < E[lln(n)|?|e(n) = €] < co + cile]|*. (1) ap=1—2puko+ (K2 +c)p® o1 =1—2uky +k2p? (31)

The proofs of Lemmas 2 and 3 can be found in the Appendi¥e can rewrite (30) as
If Pe = 0, we can develop the following lower and upper )
bounds for the right-hand side of (19), using Lemmas 2 and 3 a1bp, < bpy1 < aoby +cop” (32)

E[lle(n + 1)||?le(n) = ¢, Pe = 0] < (14 pi?c1)]l€]|* + cou®  We observe from (32) that the nonnegative sequéncés
(22) sandwiched between the two sequences generated according to
Ellle(n + D)|Ple(n) = € Pe = 0] > [|e||? (23) W, 11 = aobl, + cop? andbll,, = oy b!. These two sequences
’ = ’ converge to finite numbers if and only jf is chosen such
If Pe # 0, the following lower and upper bounds for thethat|ao| <1 and|a:| <1. Note that bothy, andc; are equal
right-hand side of (19) can be obtained, using, again, Lemni&sl atu = 0. We also note that both, and«, are locally

2 and 3 decreasing ag. increases, since
Ellle(n + Dl*le(n)=¢, Pe # 0] < (1 — 2k + (k] + e1)p?) ? — oky<0 and 2| ok <o, (33)
e +con® (24 =0 H lu=o
Eflle(n +1)|)?le(n) = €, Pe # 0] > (1 — 2uk1 + k3p®)|l¢]|>.  This means that we can always chogssmall enough so that
(25) ao|<1 and |ay| <1 (34)

An important observation toward the convergence proofis that . P
. . e iIn° which case the sequencé§ and 4!/ converge and the
the projection ofe(n) (equivalently the projection af(n)) on . .. . . .
) limiting MSE, i.e., lim,,_.., b,, has finite lower and upper
L would be nonzer@almost surely (a.s.)11]. This means that .
. : bounds. From the sandwich theorem, we have
for any n, the probability of the eventPe(n) = 0] is zero.

Similar to the deterministic result in (9), it can be shown, using 0< lim b < cop? 35
induction on (17), that (see also [12, eq. (16)]) S oo (35)
e(n) = Pe(n) + €(0) — Pe(0) a.s. (26) We can evaluate the value of the upper bound in the extreme
. case, whern — 0, as
If €(0) € £ thene(0) = Pe(0) and (26) can be written as
im0 g O o (3
e(n) = Pe(n) as. (27) o Rl T A 5 S A (36)

Note thaie(0) = ¢(0)—c", sincec” € £,¢(0) € Lis equivalent Therefore, if the step sizg:) is chosen to be extremely small,
to ¢(0) € L. Thus, (27) is valid if iteration (13) is startedthen the MSE of the filter coefficients from the convergence
in L. The upper bound o[[|e(n + 1)[|*[e(n) = €] can be point goes to zero as the number of iterations grows to infinity.
developed as follows: But note that ag: — 0, the numbersyy and a; go to one,
Ef|le(n + 1D)||e(n) = €] in which case the convergence rate goes to zero. Thus, we
5 observe the tradeoff between the limiting value of the MSE
= Effje(n + 1)|"|e(n) = ¢, Pe = 0] Prob[Pec = 0] and the convergence rate. If a large value is chosen as the step
+ E[|le(n 4 1)||*|e(n) = €, Pe # 0] Prob[Pe # 0] sizey, then the convergence rate is faster, but the limiting MSE
= E[|le(n + 1)|*|e(n) = ¢, Pe # 0] is larger and, if a small value is chosen as the step size, the
_ 2 2 2 2 limiting MSE is smaller, but the convergence rate is slower as
S (1= 2uko + (b + ey lell” + con (28) well. Hence, a time-dependent step size sequence, which takes
where we used the facBrob[Pe = 0] = 0 and Prob[Pe # large values at the beginning and smaller values at the end,
0] = 1 and the result in (24). Following similar steps to thosgay be preferable. An iteration indé€x)-dependent step size
in (28), and using the result given in (25), this time we cagequence can be used to accomplish this. Replacing the fixed
obtain the following lower bound for the same term: step sizep in (14) with the time varying step size sequence
a,, We obtain the new algorithm

e(n+1) = (14 c%a,)e(n) — ap(r(n)y(n) —s1).  (37)

Ellle(n+ D|Ple(n) = d = (1 = 2k + K2l (29)

Taking the expectation of both sides of the inequalities in (28)
and (29), with respect te(n), and lettingb,, = E[|le(n)||?], If the step size sequence satisfies two simple conditions, known
we obtain the following lower and upper bounds &gt ;, the as Robbins—Monro conditions [13] as shown in (38), then
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From the mutual independence of the transmitted bits and

User 1 | |
! ! the AWGN we have
i T ; N
. T : Efr(n)r’ ()] = > pi (ggi_ﬁ;_z) + 5%_13;_1) + T

Async. user i : % " I oy

! ' 2N-1

' ' = > pss) +0°1

=1
Synec. Sync. user (2i-1) _ A 2
user (2i-2) =A+ol (40)
Fig. 1. Asynchronous CDMA model. wherep,, , andp,; , are equal tg;, since they denote the re-

ceived power levels of the two synchronous users representing
the filter coefficients converge to the decorrelating detecttcne asynchronou!s user .
L If the stochastic iteration (13) is used for the asynchronous
solution in the MSE sense : ) . . . )
system described in this section, the receiver filter of the
desired user will converge to the poigit where

oo

Zanzoo and iai<oo. (38)

n

ZE* = S1. (41)

We define a2N — 1) x G matrix S, with its sth row being
s;. Thus, S contains the signature sequences of the equivalent
gynchronous system witf2NV — 1) users. Equation (41) is

equivalent to

The convergence is stated in the following lemma, which
proved in the Appendix.
Lemma 4: Stochastic iteration given in (37) converges t
c¢* in the MSE sense, i.e.,
5TASe =5, (42)

lim Ee(n) — )] =0

e whereA is a(2N —1) x (2N —1) dimensional diagonal matrix
if a, satisfies the conditions of (38). with 4;; = ;- By Lemma 1 the solution of (42) is equal to

Note thata,, = a/(n + no), for anya>0 andng >0 is a the solution of

sequence which satisfies (38). 5S¢ = e, (43)

V. THE BADD IN AN ASYNCHRONOUSCDMA SYSTEM if the rows of S, equivalently the modified signature se-
guences, are linearly independent. This condition idlitiesar

independence assumption (L8 [7], which requires(2N —
1) < @G. In this paper, for the asynchronous channel, we will
assume that the LIA is in effect, as was done in [7].

The convergence poirf* is the one-shot decorrelatof2],
[7] which is the decorrelating receiver filter when only one bit
of the desired user is considered. The one-shot decorrelator has
lower complexity than asynchronous decorrelating detectors,
which take into account the dependence of the received signal

Let 7; denote the delay of théth user. Without loss of
generality, we will assume that, the desired user's delay,
is equal to zero and; > 0, for i>1. As in [1], each
asynchronous interfering usér can be replaced with two
synchronous userg — 2 and2i — 1, with modified signature
sequences (see Fig. 1). The modified signature seques)ces
of these synchronous users are given as

i = { si(t) 0<t<m in different bit intervals. The one-shot decorrelating detector,
0 i<t <T, however, does suffer some loss in performance.
5 { 0 0<t<m
2—1 = . .
si(t) 7 <t<Ty VI. EFFECTS OFNOISE VARIANCE ESTIMATION

The proposed algorithm (14) requires that the variance of
the AWGN is known and used in the update of the filter
coefficients. In this section, we investigate the effect of missing
the exact value of noise varianeé.

N In wireless communication channels, unlike other parame-
— (a1 — 150 ()5 ters, such as channel gains that are subject to fading, noise
r(n) ;\/E(az(n Dozica tai(nfzia) +0 (39) variance is a fixed parameter. Although it is fixed, it is
unknown and needs to be estimated. There can be two ap-
where a;(n) denotes the information bit transmitted by useproaches.
¢ in the nth bit interval. In (39), for convenience, the de- 1) The noise variance can be estimated before the in-
sired (first) user is also written in terms of the signature of  formation transmission hence the update of the filter
two equivalent users. Note that the signature sequapde coefficients starts and this estimate (a fixed deterministic
identically zero ands; = s;. number) is used in every update of the filter.

where T, is the bit duration. In this case the chip sample
received signal before the receiver filter of the desired user
the nth bit interval is given as
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2) A real time estimator which produces a new (randonote that the random terrer(n)r' (n) — (A + 62I))e(n) in
estimate for the noise variance can be built, and it51) is identical ton(n) defined in (15) and, thus, (51) can
estimates can be used in the filter updates. The physibal written as
implementation of this estimator can be realized in many - N
ways. One method could be to allocate a unit energy e(n+1) =e(n) - “[A(c(”) —©) +"(”)}' (52)
filter » which is orthogonal to all signature sequence L . _—

being used by the users and use the output of this ﬁléubtractmgc from both sides of (52) and defining(n) as

for estimatings2. Since the filter is orthogonal to all t(r”) = ¢(n) — ¢ yields
signature sequences, the square of its output is equal to en+1)=n) — u(]l%(n) +77(ﬂ))- (53)

_ T 2
z=(v n) (44) Comparing (53) with (17), we observe that Lemmas 2 and 3 are
still valid and that the algorithm converges in the MSE sense.
Note, as well, that since there is a unique solutioncferhen
. 5 52 # o2, the arguments involving the projection onto signal
estimate ofo=. . .
; 5 btained bef the bit space are not necessary. Also not necessary is the condition

Whether an estimate ob* is obtained before the bit y4¢ he algorithm should be started in the signal space.

transmission starts and this same fixed estimate is used in everyqia thaté in (49) is a scaled version of the MMSE mul-

update of the filter coefficients, or a new unbiased estimateigser getector, where a reduced value for the noise variance is
used at each filter update is an implementation issue. Belqyg.q i.e.(o? — 52) is used instead of the true noise variance
we will investigate the performance of the proposed algorithie

in both cases.

wheren is the same as the in (10). Note that, since
v has unit energy,E[z] = ¢% and z is an unbiased

In two extreme cases the detectérreduces to a well
. _ . known multiuser detector: 2 = 0 thene is the true MMSE
A. Estimatingo Before Filter Updates multiuser detector and i#? = o2 thené is the decorrelating

In this section we assume that a deterministic nunaeis multiuser detector. Defining; asA; = Y1, pisis] +(o% -
used in place ob” in (14) [equivalently, in (13)]. From (13), 52)1, the filter in (49) can be written as= BA; 'si, where
the update equation becomes 8 is a positive factor. The signal to interference ratio (SIR) of

the desired (first) user is given by
cn+1)=cln)— u[(r(n)rT (n) — &QI> c(n) — 31}. (45)

- 2
SIR, — P1 (CTsl)
The deterministic version of the algorithm becomes L= Zp ,(éTS,)Q + UQ(eTé)
J J
. Jj#1L
dn+1) = e(n) — 1| Ac(n) ~ 51] (46) D& sisTE
— 1
where
N ¢ ijsjsj +02 |é
A=5TAS + (0% =D = pisis] +(a% — 67)1. (47) S
i=1 _ plc 3131 C (54)
- iy o : el (A +52)e
If 52 < o2, then A is a positive semidefinite matrix and the
algorithm in (46) converges deterministically and the one imsertinge = /3]11_131 yields
(45) in the MSE sense té satisfying )
~—1
- P1 (STA 31)
Ac= s, (48) SIR; = L (55)

. sf]ll_lsl + 5231'—]11_231
If 2 <o?, then A is invertible and _ _
If we denote the value of the SIR of the desired (first) user

e=A sy (49) obtained whers? is used asSIR, (57), then it is not difficult
to show thatSIR,(52) is a decreasing function &?. When
The convergence of the stochastic iteration (45%tcan be 6% = 0, the highest value of SIR is attained. This result is
shown by writing (45) as expected because, & = 0, the detectore is the MMSE
multiuser detector and MMSE is known to maximize the SIR
c(n+1)=¢(n)— u[(r(n)rT(n) ~A+A- 521)6(71) —31} among all linear detectors [5]. Whe# is increased tor?,
(50) the decorrelating detector is reached.
so that (48) implies
) B. Estimatings? at Every Filter Update
e(n+1) =¢n) - “[A(c(”) - 5) + (T(”)TT(”) In this section, we will investigate the convergence of
< .9 the stochastic decorrelating detector algorithm where a new
B (A+a I )c(n)}' (51) random unbiased estimate of is used in every update of
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Average NSE of the desired user (BADD)
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Fig. 2. Averaged normalized squared error (NSE) of the desired user.
the filter coefficients. Let5?(n) denote the estimate af? Lemma 5: There exist0 < ¢y < ¢1 < o0, such that
at iterationn, since we assume that the estimate is unbiased - )
E[6%*(n)] = o?. As discussed earlier, one possible way of 0< E[l6(n)["le(n) = €] < co + cullel|. (59)

obtaining such an estimate is to allocate a filiethat is T
: . e
orthogonal to all signatures being used. Then the square &rh
the output of the filter is an unbiased estimate #8r In this
section we will assumes? = (v'n)?.
The filter update equation is given as

proof of Lemma 5 can be found in the Appendix.
us, if an unbiased estimate for the noise variance is
available, the proposed algorithm that uses the random noise
variance estimates in every filter update converges to the
decorrelating detector in the MSE sense.

1) = - Tn)—62(n)I —s1|. (56
cn+1) = eln) u[(T(n)T (n)=o"(n) )c(n) Sl} (56) VIl. SIMULATION RESULTS
The fixed point of this algorithm would bé for which the  |n the simulations, we consider a synchronous CDMA

expected value of the correction ter.m on the right-hand Si@?stem withlV = 6 users, using randomly generated signature
equals zeroAe = s, the decorrelating detector. From (56kequences with a processing gain @f = 31. Powers of

we have the users are assigned so that the final SIR of all users
. will be 20 dB. Thus, the power of théth user is found by
c(n+1) =c(n) — p[(r(n)r' (n) — A pi = 10002[I""];; whereI' = §S7 is the crosscorrelation

+ A— 62(71)])0(71) — 31] matrix. The algorithm is run for 100 times and averaged results

N are plotted in the figures. In Fig. 2, we plot the averaged
=c(n) — p[A(cn) — &) + (r(n)r " (n) P 9 J " J

o normalized squared error (NSE) of the filter coefficients of
—-A-o I)C(”)] the desired (first) user versus iteration indexwhere NSE at
=c(n) — plAc(n) — &) + 8(n)] (57) iterationn is defined as
_ T 29 o _ lle(n) —e*1?
where @(n) = (r(n)r"(n) — A — 62I)c(n). Subtractinge NSE(n) = e
from both sides of the final equation in (57) and defining
é(n) = e(n) — ¢ yields The curves in Fig. 2 correspond to the blind adaptive decorre-
lating detector algorithms with fixed step size for different step
&n+1)=en) — plAe(n) + 6(n)]. (58) size values and that with a time dependent step size sequence
of the form ofa,, = 1/(n 4+ no) with no = 5. We observe
Comparing (58) with (17), we see that Lemma 2 applied that, if the step sizg: is too large, then the algorithm does not
¢(n) is still valid. In order to complete the convergence proafonverge: see increasing NSE curve foe 0.1 in Fig. 2. We
we need the following lemma, similar to Lemma 3. also observe that for large step size values the convergence

(60)
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Average SIR of the desired user (BADD)
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Fig. 3. Averaged SIR of the desired user.

rate is fast, but the limiting NSE is large too: compare thihe difference where SIR’s converge visible, we assumed a
curves corresponding te = 0.01 andx = 0.001 in Fig. 2. lower target SIR of 5 dB~ 3.16) and a highly loaded system
Averaged (over 100 runs) SIR of the desired (first) user {8V = 20) for the same processing g&ai¢¥ = 31). We observe
plotted in Fig. 3 for the same system. At iterationthe SIR from Fig. 5, that the average SIR of the desired user converges
of the desired user is calculated as to the value predicted by the theoretical result in (55).
We also ran the algorithm given in (56), where a new
estimate of the noise variance is obtained at every update of the

T 2
SIR(n) = P13y cn)) . (61) filter coefficients. We observed that the average SIR converges
> pilsen))? +o%(cT(n)e(n)) to the same value when the algorithm is run with perfect
i#l knowledge of the noise variance [algorithm in (13)]. The

averaged SIR’s in both cases follow almost exact trajectories.

We observe that the convergence of the SIR’s taangetSIR ~ Since there is no visible difference between the SIR'’s in both
(which is 20 dB in this experiment) is quantitatively similacS€S, we do not include the figure in this paper.
to the convergence of the NSE to zero.

The blind adaptive decorrelating detector of [10] is also VIIl. CONCLUSION

implemented for the same system, and the SIR of the desireq,, s paper we presented an iterative and distributed blind
user is plotted as a function of iteration index in Fig. 44aptive decorrelating detector algorithm, which is based on
for different values of the forgetting factoff (see [14]). In the observation of the available statistics, and studied its
comparing Figs. 3 and 4, we see that for this instance thgnyvergence. The update equation of the algorithm needs
blind adaptive decorrelating detector in this work outperformfe observation of the chip sampled input signal before the
that of [10]. receiver filter and the output of the filter with the current

The aim of the following experiment is to verify thefiiter coefficients. For the implementation of the algorithm
theoretical results of Section VI by running the propose@ construct the decorrelating receiver filter of a user, only
algorithm with a mismatch in the noise variance. First, we Us$go parameters are needed to be known: the user's signature
the approach detailed in Section VI-A, where we obtain afequence and the variance of the AWG receiver noise.
estimate forz? once before the bit transmission starts and use\We studied the convergence of the proposed algorithm both
this estimate in every filter update as in (45). The algorithfiar a fixed step size sequence and for a time-varying step size
is run for three values of*: 62 = o2 for 8 = 1 (exact sequence. For the first case, we developed the conditions of
knowledge ons?), 3 = 0.8 (20% error in estimation), and having lower and upper bounds on the MSE and showed that
£ = 0.5 (50% error in estimation). Fig. 5 shows the averagas the step size goes to zero the algorithm converges in the
SIR in these three cases, along with the convergence pdit&E. For the second case, we directly proved the convergence
SIR, calculated from (55) as horizontal lines. In order to make the MSE.
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Fig. 4. Averaged SIR of the desired user (algorithm of [10]).
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Fig. 5. Averaged SIR of the desired user with mismatch in noise variance. Noise variance estimate is calculated only once before the filter updates.
Noise variance used in the updatés’ = j3o?.

APPENDIX A: both sides by firsft and then withS ' yieldsS ' AS¢ = apys:,
ADDITIONAL PROOFS and the proof of the first part is complete. Now lete a
Proof of Lemma 1:We need to show that i, .- - -, sx solution of (6). ThenS ' ASe = apys; and equivalently

are linearly independent, then 1) any solution of (2) is also a
solution of (6), and 2) any solution of (6) is also a solution of

(2). Let ¢ be a solution of (2). Thei$¢ = «we;. Multiplying  Note that any vector multiplyings™ yields a linear super-

ST(ASEé— apre;) =0. (62)
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position of the columns of ", i.e., §Tv = 3.~ | a;s;, for + 3 3> piy/bivpraiajarsin s;s)
any vectora. Combined with the independencesf, - - -, sn, i 5k
(62) implies + Z Z NN AN
ASé — apre; =0. (63) cC
Multiplying both sides of (63) withA™* yields Sé = e, zi:zj:\/l’_\/l’_m a;sin' ns;
completing the second part of the proof. O S
Proof of Lemma 2:First note that A is a positive + Z Vpiaisin nn

semidefinite matrix and its eigenvalues are nonnegative. To be '
specific, since the rank of is NV which is typically much less + Z Z Z V/Diy/DjA /Praia;ains; s;8;
thanG, (G — N) eigenvalues of4 are zero and the remaining i j ok
N eigenvalues are positive. Sinde: € £ by (8), eigenvectors + TS STy

i i | e ' Pi/P;0;Q;NS,; S;10
of A are either completely i with positive eigenvalues, or EZ: EJ: VPV, !

completely out of£ (meaning that their projections ontf

are zero) with zero eigenvalues. In this case, Lemma 2 is a + EZ\/E\/EW%"SZ‘T”SJT
simple result of Rayleigh quotient [15], which states that for Y
any symmetric matrixp and vectorz + Z Vpiains; nn'
M 2 T M 2
)‘min |$|| S z Mz S )‘max |‘1"|| (64) +n'n,T ZZ \/E\/Z)_Jazajszsj
where A, and MM are the smallest and the largest eigen- Cd
values of M. Note that in (20)k; and k, are equal to the +an' Z\/p_iaisinT —i—nnTnZ\/p_iaisiT
largest and the smallest nonzero eigenvalued .of O i i
Proof of Lemma 3:Using (15), and noting that(n) = +an" an'. (68)

¢(n) — ¢*, we observe that
) . . R Let 7; denote theth term on the right-hand side of (68). Note
Ellln(n)|"le(n) = €] = (e+ ") E[(rr — (A+071)) that

(rrT = (A+0?D)]

. - E[T;]=0 i=2,35891214,15
(et ). (65) E[T}]| =0?A  i=4,6,11,13
Note thatE[rr "] = A + 021 from (11). Applying this result E[T7] =0%GA
to (65) yields E[Tyo] = o*prd
E[ln(n)|]*e(n) = €] = (e + c*)T{E |:T"'T’I‘TT:| E[Ti6] = (G +1)0*L
E[l=A+C (69)
—(A+ 021)2}
where 0 is the total receiver power, i.epr = %; p;,
e+ ). (66) pr > P B p

and C is given as

. . - T .
First, we will evaluateE[rr ' rr ' | below. Using (10), we note C— Z ZpipjsisiT n Z Zpipjsisjsjsf. (70)

that aly iy
v JF )
! — ZZ\/E\/ﬁakazswlT + <Z \/p_kawk> n' Note that since
k 4 k 2
C= % Z Zpipj (szs;r + sjs;r) (72)
+n<z \/IJ_kakskT> +nn'. (67) el
k C is positive semidefinite and symmetric. Combining the
Therefore results in (69) yields
T, T] — A2 2 2 4
LA D)D) WAV NV TV LI EfrrTrrT] = A+ C+(G+4)0” Ao prl+(G+Do L
i ko ) ) o
-azsisJTSkslT Inserting (72) into (66) and defining
2 2 4
+3 )Y VhiVBi/Praiajarsis] sin’ B=C+(G+2)0°A+o"prl +Go™l (73)
iié‘: o yields
+ V/Di\/Dj\/Pri0;018i8; NSy,
ik ! Ellln(n)|*le(n) = ¢ = (e +c") 'Ble+¢").  (74)
+ Z Z VPi\/D;0i0;8:8] nn' Note thatB is a positive definite matrix, sincd and C are
i positive semidefinite and > 0. Using Rayleigh quotient [15],
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and denoting the smallest and largest eigenvalue® dfy second term. Let.(x) be the unit step function whose value

Amin and A\, We obtain is 1 for nonnegativer and 0 otherwise. Then
) * (12 < 2 — n—1
Aminlle+¢'II* < Ellltm)|*le(r) = o i 0 S sy
S )\maXHf +c || . (75) nTmee k=ng
Using the fact thatja + |2 < 2(||al|2 + ||8||?). for any two =¢o lim Z a3 Pyin u(n —1—Fk) (84)
vectorsa and b, we obtain the desired result [,
0 < Ellln(n)|*le(n) = € < co + cullell? (76) =co »_ ai lim Bryin1u(n—1-k) (85)
k=n,
wherecy = 2\ max||c*]|? ande; = 22 pax. O -0 ’ (86)
Proof of Lemma 4:We need only the upper bound given
in (30). Replacingy: with a, we get sincelim, ., frn,—1 = 0 from (83). We could exchange

the limit and summation to obtain (85) from (84), because the

bpg1 < (1 — 2a,ko + (k] + cl)ai)bn + coaZ. (77) sum on the right side of (84) is absolutely convergent. Finally,
combining the results in (83) and (86) and the fact thais
We will follow Sakrison’s approach [16, pp. 60-61] in thea nonnegative sequence, we obtdin,, ... b, = 0 which

following derivation. Sincez,, is a monotonically decreasingconcludes the proof. O
sequence, there exigig andé, 0 < é < 2, such that fom > ng Proof of Lemma 5:Note thatf(n) can be written as
(1 — 2koan + (kf + cl)a;i) <(1— (2= 8koan). (78) O(n) = (r(n)rT(n) —A—5%I)c(n)
= T’ A+ ?—oAI
Furthermore, we can choosg such that forn > ny we have B (T(H)TT(H) (A 021) ((; o /Deln) 87
(1 — (2 — §)koa,) >0. For n > ng, the inequality (77) can =(r(n)r (n) = (A+07I) —al)e(n) (87)
be further bounded as wherez = 62 — o2 is a zero mean random variable. Note that
i Qi (T2 _ 2 Te ;
bor < (1= (2 = 6)koan)bn + a2co. (79) x is given asz = (v n)° — o wherewv's; =0 for all i. By

steps similar to those in the proof of Lemma 3, we get

Starting atn = no and executing the recursion repeatedl)E[Hg( NP le(n) = €] =(e+e) {E[rr rr ] — (A+0%0)?

yields —2E[zrr'] + E[2°|I}

nl (e+ o). (88)
bn S bngﬁng,n—l + Co Z aiﬁk—l—l,n—l (80)
k=no From the proof of Lemma 3, we have
where E |:’I"I‘T’I"I‘T:| —(A+o’)*=B (89)
’ 1—a(2— 8k 0< k< where B is a positive definite matrix. We need to evaluate

Brn = g[ a( ol " (81) E[urrT] and E[z?]. From (67), and the fact thak[z] = 0,
1, E>n. we can see thak[zrr '] = E[znn']. Then it is not difficult

to show that

;?crw(\)l<x< 1, we can use the inequality(1 — z) < —z to E[WTT} _ EH (an)Q B OQ}nnT} _ootwT. (90)

Bk,n = €xp (

< exp{—(2—6)kozn:aj}. (82)
j=F

By the first condition in (38), and the fact th&— &)k, > 0, the

exponent in the above equation diverges to negative infinkyste that Pe(n) # 0, thus¢ € £ almost surely, and

and we have (e+&)Tvw (e +&) = [(e+&Tv2 = 0 when Pe(n) # 0.
lim Bon_s = 0. (83) Thus, (92) can be written as

E[I0m)Ie(n) = = (¢ +&)T{B+ 20T }(c+&). (93)
This implies thatb,,3,, »—1 0on the right-hand side of (80)
goes to zero as goes to infinity. Now we will investigate the Since B is positive definite, the desired result follows. [

u’M:

Similarly, it can be shown that
n[l —a;(2 - 8)k
52 = 0)ko) E[z?] = 20*. (91)
Inserting (89)—(91) into (88) yields

E[|0(n)]|*[e(n) = €]
=(e+ é)T{B — 4otvu’ + 20’41}(6 +¢é). (92)
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