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Abstract—The decorrelating detector is known to eliminate
multiaccess interference when the signature sequences of the
users are linearly independent, at the cost of enhancing the
Gaussian receiver noise. In this paper, we present a blind adaptive
decorrelating detector which is based on the observation of
readily available statistics. The algorithm recursively updates the
filter coefficients of a desired user by using the output of the
current filter. Due to the randomness of the information bits
transmitted and the ambient Gaussian channel noise, the filter
coefficients evolve stochastically. We prove the convergence of
the filter coefficients to a decorrelating detector in the mean
squared error (MSE) sense. We develop lower and upper bounds
on the MSE of the receiver filter from the convergence point
and show that with a fixed step size sequence, the MSE can be
made arbitrarily small by choosing a small enough step size.
With a time-varying step size sequence, the MSE converges to
zero implying an exact convergence. The proposed algorithm is
distributed, in the sense that no information about the interfering
users such as their signature sequences or power levels is needed.
The algorithm requires the knowledge of only two parameters
for the construction of the receiver filter of a desired user:
the desired user’s signature sequence and the variance of the
additive white Gaussian (AWG) receiver noise. This detector, for
an asynchronous code division multiple access (CDMA) channel,
converges to the one-shot decorrelating detector.

Index Terms—Code division multiple access (CDMA), decor-
relating detector, multiuser detection.

I. INTRODUCTION

CODE division multiple access (CDMA) systems suffer
from thenear–far effectbecause of the nonorthogonality

of the users’ signature sequences. Multiuser detection [1]
can be used to overcome the near–far problem by exploiting
the known structure of the multiple access interference to
effectively demodulate the nonorthogonal signals of the users.
It was shown, in [2], that the optimal multiuser detector has a
computational complexity which increases exponentially with
the number of active users. Several suboptimum detectors
have been proposed to achieve a performance comparable to
that of the optimum detector, while keeping the complexity
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low. Examples include: the decorrelating detector [3]; the
decision feedback detector [4]; the minimum mean squared
error (MMSE) detector [5]; and the multistage detectors [6].

The decorrelating detector [3], [7] achieves the same asymp-
totic efficiency as the optimal multiuser detector and has linear
(in terms of the number of users) computational complexity.
The decorrelating detector was shown to eliminate the mul-
tiaccess interference totally, if the signature sequences of the
users are linearly independent, at the cost of enhancing the ad-
ditive white Gaussian (AWG) receiver noise. The decorrelating
detector of [3] and [7] is centralized and noniterative. The con-
struction of the decorrelating detector filter for a certain user
requires the knowledge of the signature sequences of all the
interfering users, as well as the signature sequence of the user
of interest. In addition, for an -user system, the construction
requires inversion of the crosscorrelation matrix. Blind
adaptive algorithms are desirable in order to overcome the
need for knowledge about the parameters of the interfering
users, and iterative algorithms are needed to avoid the matrix
inversion which may have a large computational complexity.
A blind adaptive algorithm based on the minimization of the
output energy was given in [8]. This algorithm was shown to
converge to the MMSE multiuser detector [5].

In [9], an adaptive multiuser detector which converges to
the decorrelating detector is proposed. This detector still needs
the signature sequences of all users. In [10], blind algorithms
based on signal subspace tracking are investigated and two
algorithms which converge to the decorrelating and MMSE
multiuser detectors are proposed. The blind adaptive decorre-
lating detector (BADD) proposed in [10] needs information
about the variance of the AWG channel noise and the number
of users, both of which can be estimated, again, by using the
subspace tracking techniques. The computational complexity
of the algorithm of [10] is per iteration where is
the processing gain and is the number of active users.

In this paper, we present a blind adaptive multiuser detector
which uses observables that are readily available at the receiver
and which converges to a decorrelating detector. The detector
is constructed via a distributed iterative algorithm, which
updates the receiver filter coefficients of a desired user by
using the previous output of the filter under construction. Since
the filter output is random, due to the randomness of the
multiaccess interference and existence of ambient Gaussian
channel noise, the algorithm evolves stochastically. We prove
the convergence of the filter coefficients to a decorrelating
detector in the mean squared error (MSE) sense. We develop
lower and upper bounds for the MSE of the filter coefficients
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at iteration , in terms of the MSE of the filter coefficients
at iteration and investigate the conditions under which the
MSE sequence converges to zero. Two kinds of algorithms,
using a fixed step size sequence and a time dependent step size
sequence, are proposed. For the algorithm using a fixed step
size, we obtain the lower and upper bounds for the limiting
MSE as approaches infinity in terms of the step size. We
show that the limiting MSE can be made arbitrarily small by
choosing a small enough step size. On the other hand, we
directly prove the convergence of limiting MSE to zero when
a time-varying step size sequence of a special structure is used.

The computational complexity of the proposed algorithm
is per iteration. The proposed algorithm requires the
knowledge of only two parameters for the construction of the
filter coefficients for a desired user: the desired user’s signature
sequence and the variance of the AWG noise (AWGN). The
variance of the AWGN is a fixed quantity (not time varying)
and can be estimated easily, perhaps before the information
transfer starts, when only the samples of AWGN can be
observed without any interference at the output of an arbitrary
(nonzero) receiver filter. In such a case, a reliable estimate
of the variance of the AWGN can be obtained by time-
averaging the squares of the output of the receiver filter.
Another implementation alternative is to allocate a unit energy
filter that is orthogonal to all the of the signatures being
used. In this case, again, the square of the output of the
filter will be an unbiased estimate for the noise variance.
In the latter case, since the filter is orthogonal to all the
signatures, one can continue to have estimates for the noise
variance while the users are transmitting and the decorrelating
receiver filter coefficients are being updated. Until Section VI
we will assume that the noise variance is known perfectly.
In Section VI we investigate the effects of using estimated
values of noise variance on the convergence of the proposed
algorithm.

In the following section we will briefly summarize the
well known decorrelating detector and develop the necessary
background for the presentation of the BADD.

II. THE DECORRELATING DETECTOR

Until Section V, where the convergence of the proposed
algorithm for an asynchronous CDMA channel will be in-
vestigated, we will assume a synchronous CDMA system.
Throughout this paper binary phase-shift keying (BPSK) mod-
ulation is assumed in order to simplify the analysis. We
will use dimensional vector to denote the preassigned
unique signature sequence of userLet us define an
dimensional matrix with its th element being the
th component of Therefore, the rows of (equivalently

the columns of are the signature sequences of the users.
For future use, we define a subspacein dimensional vector
space to be the subspace spanned by the signature sequences
of the users, i.e.,

column space of (1)

We consider the decorrelating detector for the first user,
without loss of generality, and represent it by adimensional

vector Then should satisfy the following condition:

(2)

where is the first unit vector in dimensional space, i.e.,
and is a nonnegative real number.

Equation (2) states that the receiver filter for the desired (first)
user should be orthogonal to the signature sequences of all
the interfering users, and it should have a nonzero correlation
with the desired user. Here, this nonzero correlation is equal
to the scaling factor It is not difficult to show that the bit
error rate (BER) performance of the decorrelating detector is
insensitive to scaling of the filter, as long as the filter eliminates
the multiaccess interference totally. The reason for this is that
the scalar factor multiplies both the received power level of
the desired user and the AWGN. Thus, for any nonnegative
value of , we have a decorrelating detector with the same
BER performance. The importance of using will be
evident in the next section, where we will avoid the need for
the knowledge about the received power of the desired user
by a particular selection of

We first note that (2) has more than one solution, because
it has equalities and unknowns and, typically,
The unique decorrelating detector for the first user,is given
in [3] as

(3)

Let us denote any solution of (2) asthen, by inserting (2)
into (3), we obtain (assuming for the time being)

(4)

(5)

Note that is the projection matrix which
projects any vector onto the column space of Also note
that the column space of is the subspace spanned by

i.e., the subspace which was previously denoted
as Therefore, although (2) has more than one solution, all
of the solutions have the same projection ontoand this
projection is equal to the unique decorrelating detector solution
of [3].

Let be an dimensional diagonal matrix, with the
received power of user being its th diagonal element.
Multiplying both sides of (2), first with and then with
we obtain

(6)

We observe that although (6) hasequations in unknowns,
it does not have a unique solution for since
eigenvalues of are equal to zero. The solution spaces
of (2) and (6) are related as stated in the following lemma.

Lemma 1: If are linearly independent, then all
solutions of (2) and (6) coincide.

A proof for Lemma 1 is given in the Appendix.
Let us define At this point we choose

and devise the following gradient descent algorithm:

(7)
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Note that the iterative algorithm given in (7) converges to the
solution of (6) and equivalently, by Lemma 1, to the solution
of (2). The fact that the solution of (2) is not unique is noted
earlier. Note that, for any

(8)

This means that for any lies entirely in Since
by definition, the correction term added to at

every iteration in (7) is always in Starting from by
induction we obtain

(9)

Therefore, if the iterative algorithm (7) is started in the
subspace implying then from (9) we will
have for all In this case, will always
stay in and it will converge to the scaled version of the
unique decorrelating detector solution as goes
to infinity. Note that the algorithm converges to the scaled
version of the decorrelating detector of [3] and [7], instead
of converging to because was chosen to be instead
of 1. Note also that and have the same BER
performance as discussed earlier.

The restriction that the iterations should be started in, in
order for algorithm (7) to converge to a decorrelating detector,
is fairly mild. Selections or any linear
combination of the signature sequences imply
satisfying the convergence condition of (7). The signature
sequences of all of the users must be known for the algorithm
given in (7). Also, the algorithm of (7) is an off-line algorithm
in the sense that it does not utilize any real time measurements
or observations. The algorithm of (7) can be run before the
real information transmission of mobiles to the base station
start. After running the algorithm for some time, the filter
coefficients would converge to the decorrelating detector filter
and then the communication can be started. In this paper, our
aim is to develop a blind adaptive algorithm which would
converge to the decorrelating detector solution, in a stochastic
sense, by using real random measurements while the users are
active and transmitting bits. To this end, we will propose an
algorithm which can be viewed as the stochastic version of
the deterministic algorithm given in (7).

III. A BADD

The received base band signal before the receiver filters
can be written as

(10)

where is the information bit equiprobably), is the
power, is the signature sequence of userand is a
Gaussian random vector with zero mean and
Note that

(11)

Therefore, using (11), the deterministic iteration of (7) can be
written in an exact form as

(12)

Note that is an unbiasedestimate for matrix.
In order to obtain a practical algorithm, we replace in
(12) with the estimate where is the received
signal vector at the th iteration

(13)

Before analyzing the convergence of (13), we state it in terms
of available observations and list the parameters needed at
each iteration. We note that the output of the receiver filter
of the desired user at time is Thus, the
implementation oriented version of the algorithm (13) is

(14)

Since and are readily available at the input and
output of the receiver filter that is under construction, only
two system parameters are needed to be known in order to
run the algorithm: the signature sequence of the desired user

and the variance of the AWGN The variance of the
AWGN is a fixed quantity which can be easily estimated before
the communication starts by using the outputs of a nonzero
receiver filter as discussed in Section I.

IV. CONVERGENCE OF THEBADD

In this section we will investigate the convergence of the
BADD proposed in Section III. Let us define the zero mean
random vector as

(15)

Noting that we can write the stochastic iterations
(13) and (14) as

(16)

Subtracting from both sides of (16) and defining
we obtain

(17)

Note that the norm of is a measure of the dis-
tance of the receiver filter at iterationfrom the convergence
point. In order to relate the distance measures at iterations
and we square both sides of (17) and obtain

(18)

Taking the conditional expectation of both sides of (18),
conditioned on and observing that

yields

(19)

We will be using the results of the following lemmas to
develop bounds for the right-hand side of (19).
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Lemma 2: If then and If
then there exist such that

and

(20)

Lemma 3: There exist such that

(21)

The proofs of Lemmas 2 and 3 can be found in the Appendix.
If we can develop the following lower and upper

bounds for the right-hand side of (19), using Lemmas 2 and 3

(22)

(23)

If the following lower and upper bounds for the
right-hand side of (19) can be obtained, using, again, Lemmas
2 and 3

(24)

(25)

An important observation toward the convergence proof is that
the projection of (equivalently the projection of on

would be nonzeroalmost surely (a.s.)[11]. This means that
for any the probability of the event is zero.
Similar to the deterministic result in (9), it can be shown, using
induction on (17), that (see also [12, eq. (16)])

a.s. (26)

If then and (26) can be written as

a.s. (27)

Note that since is equivalent
to Thus, (27) is valid if iteration (13) is started
in The upper bound on can be
developed as follows:

(28)

where we used the facts and
and the result in (24). Following similar steps to those

in (28), and using the result given in (25), this time we can
obtain the following lower bound for the same term:

(29)

Taking the expectation of both sides of the inequalities in (28)
and (29), with respect to and letting
we obtain the following lower and upper bounds for the

mean squared error (MSE) of the filter coefficients at iteration
from in terms of

(30)

By defining

(31)

we can rewrite (30) as

(32)

We observe from (32) that the nonnegative sequenceis
sandwiched between the two sequences generated according to

and These two sequences
converge to finite numbers if and only if is chosen such
that and Note that both and are equal
to 1 at We also note that both and are locally
decreasing as increases, since

and (33)

This means that we can always choosesmall enough so that

and (34)

in which case the sequences and converge and the
limiting MSE, i.e., has finite lower and upper
bounds. From the sandwich theorem, we have

(35)

We can evaluate the value of the upper bound in the extreme
case, when as

(36)

Therefore, if the step size is chosen to be extremely small,
then the MSE of the filter coefficients from the convergence
point goes to zero as the number of iterations grows to infinity.
But note that as the numbers and go to one,
in which case the convergence rate goes to zero. Thus, we
observe the tradeoff between the limiting value of the MSE
and the convergence rate. If a large value is chosen as the step
size , then the convergence rate is faster, but the limiting MSE
is larger and, if a small value is chosen as the step size, the
limiting MSE is smaller, but the convergence rate is slower as
well. Hence, a time-dependent step size sequence, which takes
large values at the beginning and smaller values at the end,
may be preferable. An iteration index -dependent step size
sequence can be used to accomplish this. Replacing the fixed
step size in (14) with the time varying step size sequence

we obtain the new algorithm

(37)

If the step size sequence satisfies two simple conditions, known
as Robbins–Monro conditions [13] as shown in (38), then
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Fig. 1. Asynchronous CDMA model.

the filter coefficients converge to the decorrelating detector
solution in the MSE sense

and (38)

The convergence is stated in the following lemma, which is
proved in the Appendix.

Lemma 4: Stochastic iteration given in (37) converges to
in the MSE sense, i.e.,

if satisfies the conditions of (38).
Note that for any and is a

sequence which satisfies (38).

V. THE BADD IN AN ASYNCHRONOUSCDMA SYSTEM

Let denote the delay of theth user. Without loss of
generality, we will assume that the desired user’s delay,
is equal to zero and for As in [1], each
asynchronous interfering user can be replaced with two
synchronous users and with modified signature
sequences (see Fig. 1). The modified signature sequences,
of these synchronous users are given as

where is the bit duration. In this case the chip sampled
received signal before the receiver filter of the desired user at
the th bit interval is given as

(39)

where denotes the information bit transmitted by user
in the th bit interval. In (39), for convenience, the de-

sired (first) user is also written in terms of the signature of
two equivalent users. Note that the signature sequenceis
identically zero and

From the mutual independence of the transmitted bits and
the AWGN we have

(40)

where and are equal to , since they denote the re-
ceived power levels of the two synchronous users representing
the asynchronous user

If the stochastic iteration (13) is used for the asynchronous
system described in this section, the receiver filter of the
desired user will converge to the point where

(41)

We define a matrix with its th row being
Thus, contains the signature sequences of the equivalent

synchronous system with users. Equation (41) is
equivalent to

(42)

where is a dimensional diagonal matrix
with By Lemma 1 the solution of (42) is equal to
the solution of

(43)

if the rows of equivalently the modified signature se-
quences, are linearly independent. This condition is thelinear
independence assumption (LIA)of [7], which requires

In this paper, for the asynchronous channel, we will
assume that the LIA is in effect, as was done in [7].

The convergence point is the one-shot decorrelator[2],
[7] which is the decorrelating receiver filter when only one bit
of the desired user is considered. The one-shot decorrelator has
lower complexity than asynchronous decorrelating detectors,
which take into account the dependence of the received signal
in different bit intervals. The one-shot decorrelating detector,
however, does suffer some loss in performance.

VI. EFFECTS OFNOISE VARIANCE ESTIMATION

The proposed algorithm (14) requires that the variance of
the AWGN is known and used in the update of the filter
coefficients. In this section, we investigate the effect of missing
the exact value of noise variance

In wireless communication channels, unlike other parame-
ters, such as channel gains that are subject to fading, noise
variance is a fixed parameter. Although it is fixed, it is
unknown and needs to be estimated. There can be two ap-
proaches.

1) The noise variance can be estimated before the in-
formation transmission hence the update of the filter
coefficients starts and this estimate (a fixed deterministic
number) is used in every update of the filter.
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2) A real time estimator which produces a new (random)
estimate for the noise variance can be built, and its
estimates can be used in the filter updates. The physical
implementation of this estimator can be realized in many
ways. One method could be to allocate a unit energy
filter which is orthogonal to all signature sequences
being used by the users and use the output of this filter
for estimating Since the filter is orthogonal to all
signature sequences, the square of its output is equal to

(44)

where is the same as the in (10). Note that, since
has unit energy, and is an unbiased

estimate of

Whether an estimate of is obtained before the bit
transmission starts and this same fixed estimate is used in every
update of the filter coefficients, or a new unbiased estimate is
used at each filter update is an implementation issue. Below,
we will investigate the performance of the proposed algorithm
in both cases.

A. Estimating Before Filter Updates

In this section we assume that a deterministic numberis
used in place of in (14) [equivalently, in (13)]. From (13),
the update equation becomes

(45)

The deterministic version of the algorithm becomes

(46)

where

(47)

If then is a positive semidefinite matrix and the
algorithm in (46) converges deterministically and the one in
(45) in the MSE sense to satisfying

(48)

If then is invertible and

(49)

The convergence of the stochastic iteration (45) tocan be
shown by writing (45) as

(50)
so that (48) implies

(51)

Note that the random term in
(51) is identical to defined in (15) and, thus, (51) can
be written as

(52)

Subtracting from both sides of (52) and defining as
yields

(53)

Comparing (53) with (17), we observe that Lemmas 2 and 3 are
still valid and that the algorithm converges in the MSE sense.
Note, as well, that since there is a unique solution forwhen

the arguments involving the projection onto signal
space are not necessary. Also not necessary is the condition
that the algorithm should be started in the signal space.

Note that in (49) is a scaled version of the MMSE mul-
tiuser detector, where a reduced value for the noise variance is
used, i.e., is used instead of the true noise variance

In two extreme cases the detectorreduces to a well
known multiuser detector: if then is the true MMSE
multiuser detector and if then is the decorrelating
multiuser detector. Defining as

the filter in (49) can be written as where
is a positive factor. The signal to interference ratio (SIR) of

the desired (first) user is given by

(54)

Inserting yields

(55)

If we denote the value of the SIR of the desired (first) user
obtained when is used as then it is not difficult
to show that is a decreasing function of When

the highest value of SIR is attained. This result is
expected because, at the detector is the MMSE
multiuser detector and MMSE is known to maximize the SIR
among all linear detectors [5]. When is increased to
the decorrelating detector is reached.

B. Estimating at Every Filter Update

In this section, we will investigate the convergence of
the stochastic decorrelating detector algorithm where a new
random unbiased estimate of is used in every update of
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Fig. 2. Averaged normalized squared error (NSE) of the desired user.

the filter coefficients. Let denote the estimate of
at iteration since we assume that the estimate is unbiased

As discussed earlier, one possible way of
obtaining such an estimate is to allocate a filterthat is
orthogonal to all signatures being used. Then the square of
the output of the filter is an unbiased estimate for In this
section we will assume:

The filter update equation is given as

(56)

The fixed point of this algorithm would be for which the
expected value of the correction term on the right-hand side
equals zero: the decorrelating detector. From (56)
we have

(57)

where Subtracting
from both sides of the final equation in (57) and defining

yields

(58)

Comparing (58) with (17), we see that Lemma 2 applied to
is still valid. In order to complete the convergence proof

we need the following lemma, similar to Lemma 3.

Lemma 5: There exist such that

(59)

The proof of Lemma 5 can be found in the Appendix.
Thus, if an unbiased estimate for the noise variance is

available, the proposed algorithm that uses the random noise
variance estimates in every filter update converges to the
decorrelating detector in the MSE sense.

VII. SIMULATION RESULTS

In the simulations, we consider a synchronous CDMA
system with users, using randomly generated signature
sequences with a processing gain of Powers of
the users are assigned so that the final SIR of all users
will be 20 dB. Thus, the power of theth user is found by

where is the crosscorrelation
matrix. The algorithm is run for 100 times and averaged results
are plotted in the figures. In Fig. 2, we plot the averaged
normalized squared error (NSE) of the filter coefficients of
the desired (first) user versus iteration indexwhere NSE at
iteration is defined as

(60)

The curves in Fig. 2 correspond to the blind adaptive decorre-
lating detector algorithms with fixed step size for different step
size values and that with a time dependent step size sequence
of the form of with We observe
that, if the step size is too large, then the algorithm does not
converge: see increasing NSE curve for in Fig. 2. We
also observe that for large step size values the convergence
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Fig. 3. Averaged SIR of the desired user.

rate is fast, but the limiting NSE is large too: compare the
curves corresponding to and in Fig. 2.

Averaged (over 100 runs) SIR of the desired (first) user is
plotted in Fig. 3 for the same system. At iterationthe SIR
of the desired user is calculated as

(61)

We observe that the convergence of the SIR’s to thetargetSIR
(which is 20 dB in this experiment) is quantitatively similar
to the convergence of the NSE to zero.

The blind adaptive decorrelating detector of [10] is also
implemented for the same system, and the SIR of the desired
user is plotted as a function of iteration index in Fig. 4
for different values of the forgetting factor, (see [14]). In
comparing Figs. 3 and 4, we see that for this instance the
blind adaptive decorrelating detector in this work outperforms
that of [10].

The aim of the following experiment is to verify the
theoretical results of Section VI by running the proposed
algorithm with a mismatch in the noise variance. First, we use
the approach detailed in Section VI-A, where we obtain an
estimate for once before the bit transmission starts and use
this estimate in every filter update as in (45). The algorithm
is run for three values of : for (exact
knowledge on (20% error in estimation), and

(50% error in estimation). Fig. 5 shows the average
SIR in these three cases, along with the convergence point
SIR, calculated from (55) as horizontal lines. In order to make

the difference where SIR’s converge visible, we assumed a
lower target SIR of 5 dB 3.16) and a highly loaded system

for the same processing gain We observe
from Fig. 5, that the average SIR of the desired user converges
to the value predicted by the theoretical result in (55).

We also ran the algorithm given in (56), where a new
estimate of the noise variance is obtained at every update of the
filter coefficients. We observed that the average SIR converges
to the same value when the algorithm is run with perfect
knowledge of the noise variance [algorithm in (13)]. The
averaged SIR’s in both cases follow almost exact trajectories.
Since there is no visible difference between the SIR’s in both
cases, we do not include the figure in this paper.

VIII. C ONCLUSION

In this paper we presented an iterative and distributed blind
adaptive decorrelating detector algorithm, which is based on
the observation of the available statistics, and studied its
convergence. The update equation of the algorithm needs
the observation of the chip sampled input signal before the
receiver filter and the output of the filter with the current
filter coefficients. For the implementation of the algorithm
to construct the decorrelating receiver filter of a user, only
two parameters are needed to be known: the user’s signature
sequence and the variance of the AWG receiver noise.

We studied the convergence of the proposed algorithm both
for a fixed step size sequence and for a time-varying step size
sequence. For the first case, we developed the conditions of
having lower and upper bounds on the MSE and showed that
as the step size goes to zero the algorithm converges in the
MSE. For the second case, we directly proved the convergence
in the MSE.
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Fig. 4. Averaged SIR of the desired user (algorithm of [10]).

Fig. 5. Averaged SIR of the desired user with mismatch in noise variance. Noise variance estimate is calculated only once before the filter updates.
Noise variance used in the updates:~�2 = ��2:

APPENDIX A:
ADDITIONAL PROOFS

Proof of Lemma 1:We need to show that if
are linearly independent, then 1) any solution of (2) is also a
solution of (6), and 2) any solution of (6) is also a solution of
(2). Let be a solution of (2). Then Multiplying

both sides by first and then with yields
and the proof of the first part is complete. Now letbe a
solution of (6). Then and equivalently

(62)

Note that any vector multiplying yields a linear super-
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position of the columns of i.e., for
any vector Combined with the independence of
(62) implies

(63)

Multiplying both sides of (63) with yields
completing the second part of the proof.

Proof of Lemma 2:First note that is a positive
semidefinite matrix and its eigenvalues are nonnegative. To be
specific, since the rank of is which is typically much less
than eigenvalues of are zero and the remaining

eigenvalues are positive. Since by (8), eigenvectors
of are either completely in with positive eigenvalues, or
completely out of (meaning that their projections onto
are zero) with zero eigenvalues. In this case, Lemma 2 is a
simple result of Rayleigh quotient [15], which states that for
any symmetric matrix and vector

(64)

where and are the smallest and the largest eigen-
values of Note that in (20) and are equal to the
largest and the smallest nonzero eigenvalues of

Proof of Lemma 3:Using (15), and noting that
we observe that

(65)

Note that from (11). Applying this result
to (65) yields

(66)

First, we will evaluate below. Using (10), we note
that

(67)

Therefore

(68)

Let denote theth term on the right-hand side of (68). Note
that

(69)

where is the total receiver power, i.e.,
and is given as

(70)

Note that since

(71)

is positive semidefinite and symmetric. Combining the
results in (69) yields

(72)
Inserting (72) into (66) and defining

(73)

yields

(74)

Note that is a positive definite matrix, since and are
positive semidefinite and Using Rayleigh quotient [15],
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and denoting the smallest and largest eigenvalues ofby
and we obtain

(75)

Using the fact that for any two
vectors and we obtain the desired result

(76)

where and
Proof of Lemma 4:We need only the upper bound given

in (30). Replacing with we get

(77)

We will follow Sakrison’s approach [16, pp. 60–61] in the
following derivation. Since is a monotonically decreasing
sequence, there exists and such that for

(78)

Furthermore, we can choose such that for we have
For the inequality (77) can

be further bounded as

(79)

Starting at and executing the recursion repeatedly
yields

(80)

where

(81)

For we can use the inequality to
show

(82)

By the first condition in (38), and the fact that the
exponent in the above equation diverges to negative infinity
and we have

(83)

This implies that on the right-hand side of (80)
goes to zero as goes to infinity. Now we will investigate the

second term. Let be the unit step function whose value
is 1 for nonnegative and 0 otherwise. Then

(84)

(85)

(86)

since from (83). We could exchange
the limit and summation to obtain (85) from (84), because the
sum on the right side of (84) is absolutely convergent. Finally,
combining the results in (83) and (86) and the fact thatis
a nonnegative sequence, we obtain which
concludes the proof.

Proof of Lemma 5:Note that can be written as

(87)

where is a zero mean random variable. Note that
is given as where for all By

steps similar to those in the proof of Lemma 3, we get

(88)

From the proof of Lemma 3, we have

(89)

where is a positive definite matrix. We need to evaluate
and From (67), and the fact that

we can see that Then it is not difficult
to show that

(90)

Similarly, it can be shown that

(91)

Inserting (89)–(91) into (88) yields

(92)

Note that thus almost surely, and
when

Thus, (92) can be written as

(93)

Since is positive definite, the desired result follows.
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