
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 17, NO. 9, SEPTEMBER 1999 1537

Designing a CORBA-Based High
Performance Open Programmable Signaling

System for ATM Switching Platforms
Mun Choon Chan,Member, IEEE,and Aurel A. Lazar,Fellow, IEEE

Abstract—ATM switching platforms are well suited for trans-
porting multimedia streams with quality-of-service (QOS) re-
quirements. This paper describes the system design of a high
performance connection management system for xbind, a flexible
open programmable signaling system for ATM switching plat-
forms. The latency and throughput of call processing is improved
by caching, message aggregation, and processing of requests in
parallel. Using a set of general purpose UNIX work stations, we
are able to attain a maximum throughput of close to 600 000 call
operations/h (setup and delete) with an average call setup time
of 85 ms. With a low traffic load of 3600 call operations/h, an
average call setup latency of 11 ms can be obtained. The system is
adaptive. By adjusting various control parameters, the connection
manager(s) can be dynamically configured to trade off between
throughput and call setup time.

Index Terms—ATM, common object request broker architec-
ture (CORBA), open programmable signaling system.

I. INTRODUCTION

DISTRIBUTED multimedia services, such as video confer-
encing, video-on-demand, and collaborative distributed

environments, require flexible signaling platforms and trans-
port networks that support quality-of-service (QOS). Due
to the high bandwidth supported and connection-oriented
nature, ATM switching platforms are well suited for supporting
multimedia flows with long holding times.

On ATM switching platforms, information transport requires
the establishment of a communication path between two end-
points. Such a task is performed by a connection management
system that coordinates operations among a set of distributed
software modules. While standards exist for the provisioning
of ATM connectivity services [e.g., the user/network interface
(UNI) and network/node interface (NNI)], many recent ap-
proaches (e.g., xbind [5], TINA [17], DCAN [6], and DCPA
[7], [18]) provide network services by exploiting advances
in distributed system technologies to give more flexibility
to service creation and deployment. In these approaches,
interactions among signaling entities are expressed in terms
of high level operations. Signaling entities run on a general

Manuscript received May 1, 1998; revised April 1, 1999. This work was
supported in part by the Department of the Air Force, Rome Laboratory,
under Contract F30602-94-C-0150.

M. C. Chan is with Bell Laboratories, Lucent Technologies, Holmdel, NJ
07733 USA (e-mail: munchoon@lucent.com).

A. A. Lazar is with the Department of Electrical Engineering,
Columbia University, New York, NY 10027-6699 USA (e-mail:
aurel@ctr.columbia.edu).

Publisher Item Identifier S 0733-8716(99)05602-4.

purpose distributed computing platform that provides an open
and uniform access to abstractions modeling the local states
of networking resources.

While these approaches meet the flexibility requirement, the
use of general purpose platforms and programming languages
[e.g., Java, C++, and common object request broker archi-
tecture (CORBA)] often leads to problems in performance.
In [11], extensive performance measurements of various mid-
dleware implementations are shown. In order to improve the
performance, two complementary approaches are possible.
First, performance improvement can be achieved through op-
timization of the middleware implementation, independent of
the application [3]. Second, application specific optimization
can be performed. The approach in this paper falls in the
second category.

The main contribution of this paper is to demonstrate
how a high performance ATM connection management sys-
tem can be built on a general purpose distributed platform,
such as CORBA, and what kind of tradeoffs are involved.
The three techniques used to improve the performance are:
1) application-level caching; 2) aggregation of connection
requests; and 3) parallel connection setup. The first two
techniques reduce the number of interactions among objects,
and the last technique reduces the connection setup time.
Asynchronous interactions are also used so that multiple
connection requests can be processed at the same time.

The behavior of the throughput-delay characteristics of
the designed connection management system is studied with
respect to two control parameters. For various load conditions,
these control parameters can be used to achieve the desired
tradeoff among resource utilization, call setup latency, and
call throughput. The system is implemented in C++/CORBA
and operates on general purpose UNIX workstations. Its call
throughput performance is comparable to the switching perfor-
mance in the backbone networks for heavy traffic load (10
calls/h) and can achieve low end-to-end application-level call
setup latency (10 ms) for light traffic load. The results
demonstrate that an open distributed platform can provide
greater flexibility for service creation and allows the design
of high performance connection management systems.

The paper is organized as follows. Section II describes the
connection management framework, and Section III presents
the measurement setup and a set of reference measurements.
Section IV presents the performance results, including the
behavior of the throughput-delay characteristics of the con-

0733–8716/99$10.00 1999 IEEE

1538 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 17, NO. 9, SEPTEMBER 1999

Fig. 1. Object invocation in the xbind connection management system.

nection management system with respect to two control pa-
rameters.

II. DESCRIPTION OF THECONNECTION

MANAGEMENT FRAMEWORK

A. Description of xbind

Our approach to flexible service creation in an ATM switch-
ing platform is based on the concept of a broadband kernel.
The broadband kernel incorporates an organized collection
of interfaces, called the binding interface base (BIB), and
a set of algorithms that runs on top of these interfaces.
The principal aim of the broadband kernel is to provide
an open programming environment that facilitates the easy
creation of network services and mechanisms for efficient
resource allocation. xbind is a prototype implementation of
the broadband kernel concept [2]. In this paper, we restrict the
discussion to the xbind connection management system.

Fig. 1 shows how objects are invoked in a xbind connection
management system, where objects are organized in a planar
structure. There is a clear distinction between the control
(or signaling) plane and the transport (or data) plane. In
the signaling plane CORBA objects communicate over an
IP network. Due to their scalability and resilience to partial
failure, IP-based networks are ideal for the transport of short
control messages with little or no call holding times. On the
other hand, the transport of multimedia with long holding times
is ideally supported by an ATM switching platform. Due to
the inherent stateful nature, an ATM switching platform can
provide a much higher degree of predictability and is highly
suited for the transport of streams with QOS requirements.

The lowest of the three planes is the data transport plane
(the U-plane), which contains a set of interconnected ATM
switches. The middle plane, the D-plane, exports a set of BIB
interfaces that allows network resource to be controlled and
monitored. Pertaining to the connection control are three
object types, namely the QOSMapper, RouteObject, and
SwitchServer. The QOSMapper provides the mapping of
QOS requirements between the user and network domains.
The RouteObject provides a path in the network between two
endpoints, and the SwitchServer provides generic hardware
independent interfaces to manipulate the resources on an
ATM switch. These BIB interfaces are open. They are
implemented on a CORBA/IDL platform and are the same
regardless of operating system and hardware. For example,
in our system, the same SwitchServer interface is exported

by ATM switches from four different vendors (FORE, NEC,
ATML, and Scorpio). In general, multiple instantiation of
these objects can be supported. A name service is used to
locate the required service objects.

Connection management algorithms reside on the C-plane.
Many classes of connection management algorithms can run
on the set of defined BIB interfaces. The description of the
connection management system described in this paper is
only an example of a system that is tuned for high perfor-
mance. For examples of other connection management systems
implemented in the same framework, refer to [16].

B. Description of a Connection Setup

A graphic representation of a generic connection setup
procedure is shown in Fig. 2. In step 1, a client application
program, e.g. a video conference manager, sends a request
to the ConnectionManager to setup a connection between the
two hosts. The ConnectionManager maps the user-level QOS
to network-level QOS. QOS abstractions for network resources
may be defined for each traffic class using a specific cell
loss and a cell delay requirement. Service abstractions for
customer premises equipment such as PC’s and workstations
are specified in terms of frame rate and frame loss. In our
framework, QOSmapper [4] translates the QOS specification
specified in frame to QOS specifications specified in ATM
cells and vice versa. This is shown as step 2. The resource
specification is based on abstractions that are independent of
the details of the system hardware.

In step 3, based on the QOS requirements, a path in the
network is obtained from the RouteObject to connect these
two endpoints. Routes are updated asynchronously by a Router
object not shown in the figure.

Using the route obtained in step 3, resource reservation
requests are sent in steps 4–6 to each of the SwitchServer
objects. In the figure, only one ATM switch is shown (SS2).
SS1 and SS3 are hosts. Resources are broadly divided into
two groups: system resources (buffer, bandwidth, CPU cycles,
etc.), and identifiers in the switch fabric for cell transport.
The first group of resources are “homogenous.” For example,
10 Mbit/s bandwidth on one switch is always “compatible”
with 10 Mbit/s on another. As a result, reservation can be
performed in a single step. This is, however, not true for
switching identifiers.

Each ATM cell contains a header with routing information
and payload. The two key information fields for switching
purposes are the virtual channel identifier (VCI) and the virtual
path identifier (VPI). In order to ensure the correct delivery of
ATM cells, given the input port at which an ATM cell arrives
and the input VCI/VPI field in its header, the cell must be
routed to the correct output port, and the VCI/VPI header of the
outgoing cell must have the appropriate value substituted. The
process of setting up this information in the cell routing table
is done in two phases and is illustrated in Fig 3. In phase one
(steps 4–6 of Fig. 2), an output VPI/VCI pair is obtained from
the output port of each of the first two ATM switches located
in the path of the call. In phase two (steps 7–9 of Fig. 2), the
output VPI/VCI pair of the upstream switch is mapped into the

CHAN AND LAZAR: DESIGNING A CORBA-BASED HIGH PERFORMANCE SIGNALING SYSTEM 1539

Fig. 2. Execution of a connection setup request.

Fig. 3. Setting up the switching tables in an ATM switching platform.

input VPI/VCI pair of the downstream switch, and thereby, the
channel is committed. In our description, the output VPI/VCI
of the appropriate port of each intermediate switch is reserved
first and then followed by the input VPI/VCI, but note that
the reverse (input followed by output) is also possible. In step
10 of Fig. 2, the ConnectionManager returns the status of the
connection setup to the client program.

C. Designing an xbind ConnectionManager

In a distributed environment, a connection manager has to
take into account that the vast majority of the computations
in a call setup are performed in the communications layer
for processing of remote requests with small arguments. The
processing can be inefficient in the following ways. Since
the messages are small, the overhead of processing them can
be large relative to the messages themselves. In addition, a
significant portion of the total call processing time can be
spent on waiting for remote operations to complete.

Based on these observations, we designed an xbind connec-
tion manager with the following features:

• caching of network states—store or prefetch resources so
as to minimize the number of remote procedure calls;

• aggregate access to node server objects—aggregate access
requests to remote objects as much as possible so as to
reduce processing overhead;

• overlap communication and computation through par-
allelization—design the system to run with maximum

amount of parallelization so that processors can be kept
busy as much as possible.

Our main objectives are: 1) reduction of the number of
remote invocations and 2) the hiding of latency of remote
invocations to the extent practically possible.

1) Caching of Network States:As shown in Fig. 2, the
connection manager performs remote invocations on three
classes of objects: the QOSMapper, the RouteObject, and
the SwitchServer object. The performance of the connection
manager is improved by caching for each of these objects a
subset of their states. The five types of network states stored
or cached are output (or input) switching identifiers, QOS
mapping, route, bandwidth and buffer resources, and existing
connection states.

For all these states, except for switching identifiers, the
caching idea is pretty straightforward. Caching of states works
well if the states cached have not changed, or in the case that
they have changed, the out-of-date state might introduce some
inefficiency but computation will still be correct and the state
will eventually be updated (the so called soft-state). Caching
of switching identifiers will be described in detail here, and
the rest will be discussed briefly at the end of this section.

The problem of reserving switching identifiers is similar
to a two-phase commit problem. All connected SwitchServer
have to agree on the virtual path identifier/virtual connection
identifier (VPI/VCI) pair to use. The idea for caching is to
perform phase 1 of the reservation (steps 4–6 of Fig. 2) in

1540 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 17, NO. 9, SEPTEMBER 1999

advance, instead of performing the computation on-demand.
The VCI/VPI pairs obtained in advance are stored in a cache
using the output port identifier and the switch identifier as the
key. The result is that the connection manager obtains control
over a set of available output VPI/VCI pairs that it requests
in advance from the SwitchServers which can be used for any
connection request whose path includes the specific output port
and switch pair. During connection setup time, the connection
manager simply looks for an available VPI/VCI pair with the
correct key in its cache. If an available output VPI/VCI pair
is found (a cache hit) for each switch/port on the path of the
call, then the channel reservation process can be performed in
a single step to the switch (phase 2 only). If no free VPI/VCI
pair is available (cache miss), the normal two-phase operation
is performed.

An alternative to performing the phase 1 only reservation
is to perform both phases in advance, which effectively
creates a number of end-to-end VC. The latter approach is
similar to the VP approach and has the advantage of reducing
signaling load in the network. No additional operation in
the network is needed during connection setup if there are
enough resources reserved in advance. The disadvantage is
that resource utilization is not as efficient as a “pure-VC”
approach, and there is a tradeoff between signaling load and
resource utilization [12]–[14]. Our approach can be seen as an
intermediate step between the “pure-VC” and the VP approach.
Reservations are performed only locally, not end-to-end. How
the resource is being used in an end-to-end manner is decided
during connection setup time.

An additional comment is that if there are multiple copies
of connection managers running, in order to avoid contention,
all connection managers must agree on which portion of the
name space to cache in advance. Therefore, cached either only
the input port VPI/VCI pairs or the output port VPI/VCI pairs,
but not both at the same time. Note that there is no restriction
or coordination needed with respect to exactly what VPI/VCI
ranges can be used. Locating the appropriate connection man-
ager, QOSMapper, or RouteObject is a configuration issue and
will not be discussed in this paper. Generally, such mappings
are managed by object servers or traders.

By keeping the available VPI/VCI pairs on the connec-
tion managers instead of putting them in the SwitchServer
that directly controls the switch, the resource state of the
ATM network is partitioned and distributed to the higher
level controllers (in this case, the connection managers). This
partitioning and distribution process can be performed in two
ways.

In the first approach, the number of VPI/VCI pairs re-
served per port per switch is competitively decided among
the controllers reserving the resources. Thus, each connection
manager adjusts the number of entries (VCI/VPI pairs) kept in
its cache depending on the call arrival and departure statistics
and how much it is willing to pay for a low latency call
setup. In the second approach, the size of the partitions is
controlled by a distributed algorithm that attempts to optimize
the partitioning of the name spaces on the network level. The
two approaches differ in that, in the first case, the allocation
process is performed using the rules of a competitive game,

whereas in the second approach, the partitioning process is
performed in a cooperative manner. Combinations of the two
approaches above are also possible. In Section IV-A, we study
a competitive algorithm where a connection manager attempts
to minimize the number of VCI’s kept in the cache while
trying to maximize cache hits.

For caching of routes, it is observed that during repeated call
setups, patterns of call requests emerge that have the same
source–destination (SD) pair. These patterns might include
alternate routes between the same SD pairs. For calls belonging
to these patterns, it is not necessary to have the connection
manager contact the RouteObject each time a setup request
is received. Instead, when the connection manager receives a
route for a specific SD pair from the RouteObject, it will cache
the route (or alternate routes) with a time stamp. Statistics of
route selection for alternate routes may also be included. By
defining a variable time out period for route invalidation of
s, let us say, the connection manager can reuse the “cached”
route if it is less than s old. If not, a new route will be
requested. If the expected call throughput is 100 calls/s, and
the probability of an SD pair appearing in a call request is
0.01, then by setting s, there will be one update per
10 s per SD pair, instead of updates in 10
s per SD pair, an improvement by a factor of ten. Updates are
performed on demand. Therefore, if a route “times out,” there
is no extra update.

QOS mapping information or policy, in practice, is rel-
atively static and is unlikely to change at all during the
lifetime of the connection manager. If this is the case, the
QOSMapper can be created in the same address space as the
connection manager, and accessing the QOSMapper from the
ConnectionManager becomes a local invocation rather than
a remote invocation. In the implementation, the “collocated”
feature in Orbix is used to place the QOSMapper in the same
address space as the ConnectionManager. In this way, there is
almost no change to the rest of the code.

Caching of bandwidth and buffer resource is similar in
nature to VP resource allocation, and caching of existing con-
nection states for faster connection modifications and teardown
is straightforward.

2) Aggregate Access to the SwitchServer Object:In a dis-
tributed object environment where the vast majority of object
interactions are in the request-reply form with small arguments
(<1 kB), the overhead incurred in processing these small
messages can be substantial relative to the message size.
In order to increase the throughput of the system, multiple
requests are combined into a single remote invocation, as
opposed to making multiple individual invocations, one per
request. As a result, in a single invocation, the argument is
a list of commands, each command corresponding to a single
request. The number of requests (sum of add and delete) stored
in the message buffer before they are sent out is a control
parameter. We will refer to this parameter as the message
threshold () parameter. This approach has the advantage that,
by delaying the delivery of requests, the total number of remote
invocations performed by the connection manager decreases
for a fixed load. This is especially useful for invocations to
the SwitchServers. Obviously, by delaying the delivery of

CHAN AND LAZAR: DESIGNING A CORBA-BASED HIGH PERFORMANCE SIGNALING SYSTEM 1541

messages, the expected call setup time increases for low loads.
For higher loads, the gain in reducing the number of remote
invocations can outweigh the delay introduced by waiting.
The message threshold parameter is used as a control for
changing the system behavior for low load, where low latency
can be obtained, or for high load, where latency is traded off
for throughput. This tradeoff is studied in greater detail in
Section IV-B.

In order for the aggregation scheme to work as expected,
interaction with the transport layer has to be taken into account.
In our implementation, the socket option is
set so that the Nagle algorithm [8] is disabled. The Nagle
algorithm is a congestion control scheme (enabled by default
for telnet or login sessions), which prevents TCP from sending
less than a full-size segment when an ACK is expected for the
connection.

3) Hiding Latency Through Parallelization:Due to the in-
herent delay incurred in accessing remote objects, a substantial
number of processor time could be spent waiting or idling. In
order to increase processor utilization, inter- and intrarequest
parallelizing is used. Interrequest parallelization allows mul-
tiple connection request to be processed at the same time,
and intrarequest parallelization allows a single connection to
communicate with multiple switches at the same time. Both
parallelization can be achieved by employing asynchronous
object invocations, implemented as oneway calls in CORBA.
Since oneway calls in CORBA do not guarantee delivery,
a recovery protocol is needed in the connection manager to
handle message loss.

Parallelization in various forms has also been studied in the
context of ATM connection control in [16] and [18].

4) Functional Design of the ConnectionManager:All the
design choices described in Sections II-C1–3 are integrated
into the design shown in Fig. 4. The connection manager state
machine is unaffected by the caching and aggregation schemes.
In most cases, except for one remote access to the Switch-
Server, most of the other calls are transformed from remote
to local calls. For remote invocations to the SwitchServer, the
requests are not delivered immediately. Instead, the messages
to be sent are put in a message aggregation module, with one
module per remote object. Therefore, aggregation is performed
per target object. Messages in these modules are sent when
either the number of messages reaches a particular threshold,
which can be dynamically changed, or when a time out occurs.
The message threshold parameter takes into account both add
and delete requests. Time outs are used as a safety mechanism
to ensure that messages do not remain in the queue for too long
without being processed. They are needed when the traffic load
is low to provide a bound for call processing latency. These
time outs can also be set dynamically.

III. M EASUREMENT SETUP

A. Experimental Configuration

Fig. 5 shows the experimental setup for all the mea-
surements. The network consists of two workstations, both
HP9000/700 series with 120 MB of RAM, connected to an

Fig. 4. Design of the ConnectionManager.

ATML Virata switch. A SwitchServer object runs on each
of them. A third HP workstation serves as the controller
for the ATML switch; the SwitchServer controlling the
switch runs on top of it. This workstation communicates
with the switch using the qGSMP protocol [11], a modified
version of the GSMP protocol [9] with QOS extensions. All
workstations communicate through a 10 Mbit/s ethernet LAN.
The code is written in C++, and the CORBA implementation
used is Orbix (version 1.3), from Iona Technologies. The
ConnectionManager, RouteObject, and QOSmapper reside on
the same machine, an Ultra2. The client application resides
on a SUN Sparc20.

The experimental setup tests the connection manager per-
formance in an ATM LAN environment only. Also, there is
a complete separation of the control and transport network.
The former is a 10 Mbit/s ethernet, and the latter is an
ATM switching platform. The reason that signaling does not
run on the ATM network is a matter of convenience and
equipment limitations. Use of dedicated ATM connection
for signaling could improve the performance results of our
measurements but the improvement will not be significant
because the bandwidth available on the LAN is sufficient
for our purpose. Finally, the measurement setup is based on
an actual video conference application. All software objects
used for the connection setup experiment are the same, except
for the video conference manager, which is substituted with
a call generator (CG). Note that objects are distributed over
five machines. The placement of objects to host are meant to
demonstrate the effect of distribution. Any other placement is
possible.

The order of executions during call setup requests is as de-
scribed in the previous section. The client initiates: 1) a request
to the connection manager; 2) followed by QOS mapping; 3)
route selection; and finally, 4)–6) resource reservation. At the
end of the execution, an end-to-end ATM connection is set
up from the source workstation to the destination workstation
through the ATM switch. In all measurements, the latency of

1542 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 17, NO. 9, SEPTEMBER 1999

Fig. 5. Execution of a connection setup request.

the call establishment is taken to be the period it takes to
complete a call of () by the call generator (or
client program) to the ConnectionManager.

Note that the performance measurement of interest is a com-
plete call operation. Although the actual measurement results
depend on the specific experimental environment, including
the time it takes to execute a single RPC call, the underlying
tradeoffs remain the same. An extensive measurement on the
cost of remote invocation can be found in [11], and a study
on the cause of performance bottleneck can be found in [3].

B. Baseline Measurement Results

The performance of a sequential implementation of the Con-
nectionManager is used as a reference point to be compared
with later. This ConnectionManager performs steps 1–6 of
Fig. 5, sequentially. All CORBA calls in this implementation
are synchronous, which are easier to implement than the
asynchronous implementation to be compared with later. All
measurements are performed by repeating the specific call
setup operations at least 1000 times.

The first measurement is call setup time, which is measured
by sending only one add or delete request to the connection
manager at any one time. The minimum call setup latency
measured is 20.0, the average is 23.4, and the maximum is 63.3
ms. The 5 and 95% quantile are 20.5 and 31.0 ms, respectively.

The performance of a multithreaded version of the Con-
nectionManager is also measured. In this version, a separate
thread is used to process each call request using a “thread pool”
model. Measurements show that the multithreaded version,
evaluated under the same experimental setup, is slightly less
efficient than the sequential implementation. This is due to
the overhead incurred in the locking of shared states and the
context switching between different threads. The minimum
latency for is 22.5, average latency is 24.9, and the maximum
latency is 213 ms. The 5 and 95% quantile are 23.1 and 35.1
ms, respectively.

Early published connection establishment latency for point-
to-point call establishment for one hop using UNI signaling

[1] has the following performance: minimum latency is 48.99,
average latency 53.20, and maximum latency is 67.60 ms.
Later improvements bring the latency for call setup latency
for a similar LAN environment down to the range between
10–50 ms, depending on the switching software and hardware
platform [10]. Since signaling runs on ATM VC’s network
and the call generator accesses the ATM adaptation layer
directly, the execution overhead is expected to be lower
then for a signaling system operating on top of CORBA.
The result shows that a straightforward implementation of
our connection setup model on an Orbix platform provides
comparable performance.

The throughput-delay characteristics are also investigated.
The call generator uses asynchronous calls, generating calls
to the connection manager using a Poisson model. Successful
call setups are released with a very small holding time of 0.5 s.
A small holding time is used so that the total number of active
VC’s remains small even for a very high traffic load. [There is
a need to keep the number of active connections small (<500)
due to a limitation in the switch control software used. The
usable VCI range is between 0–1023, and only VPI zero can
be used.] Successful call setups are immediately torn down.
The throughput is measured in terms of call setup per second.
However, since both call setup and release are performed,
the number of call operations (add and delete) is twice the
throughput measured.

The results are shown in Fig. 6. Results show that when us-
ing only synchronous calls within the connection management
system, the performance of both the sequential and threaded
ConnectionManager saturates at a call arrival rate of about 25
calls/s.

IV. PERFORMANCE MEASUREMENT

OF A XBIND CONNECTION MANAGER

In this section, we present the performance results of an
xbind connection manager. The experimental environment
used is the same as that described in Section III-B. Each point
is the average of at least 10 000 calls.

CHAN AND LAZAR: DESIGNING A CORBA-BASED HIGH PERFORMANCE SIGNALING SYSTEM 1543

Fig. 6. Throughput-delay curve of all three ConnectionManagers.

Fig. 7. Impact of threshold parameter(T) on throughput-delay characteristics of the xbind connection manager.

Fig. 6 compares the throughput-delay characteristics of all
connection managers described so far, namely: sequential
implementation, threaded implementation, and the xbind im-
plementation. In the xbind implementation of the Connec-
tionManager, routes cached time out after 5 s, the message
threshold is set to one (messages are sent immediately with
no aggregation), and the number of VCI cached is made so
large (>200) that all arriving calls execute steps 4–6 of Fig. 2
locally. Finally, messages that remain in the queue for more
than 1 s will be flushed. By setting the message threshold to
one, the performance gain observed is due only to caching
and parallelism, not message aggregation. We will study the
impact of message aggregation in Section IV-B.

The performance curve of the xbind implementation shown
in Fig. 6 has three regions of operation. In the low load
region (<10 calls/s), the latency is better than in the sequential
implementation. The effect of caching and parallel connection
setup for reduction of call setup latency is demonstrated
here. In the second region with load between 10–25 calls/s,
the performance of the xbind ConnectionManager is sim-
ilar to that of the sequential implementation. This is due

to the fact that a single synchronous call is slightly more
efficient than two asynchronous calls. Therefore, as the load
increases, the inefficiency of asynchronous calls begin to
offset the utility of caching and parallelism. Finally, in the
high load region, the xbind ConnectionManager is able to
support a higher throughput with increased latency because
it is able to exploit greater parallelism with asynchronous
interaction. This is not possible with the sequential imple-
mentation.

From Fig. 6, it is clear that the xbind implementation
outperforms the other implementations by a very significant
margin. The smallest average latency is 11.0 ms for a load of
one call/s, and the system can support up to 60 calls/s with
average call setup latency of about 40 ms. As a comparison, the
maximum call generation rate studied in [10] is 50 calls/s. The
performance of xbind ConnectionManager can be significantly
improved with the use of message aggregation. The result is
shown in Fig. 7, where the message threshold parameter
is varied from one to 15.

The tradeoff characteristics of the system between latency
and throughput is clear from the figure. For small, the system

1544 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 17, NO. 9, SEPTEMBER 1999

Fig. 8. Modeling the processing on the ConnectionManager as a M/G/1queue.

(a)

(b)

Fig. 9. Comparison of measured and estimated VCI cache usage distribution (� = call arrival rate,� = call holding time,T = message threshold
parameter). (a) Low load (� = 10, � = 0:2, T = 5). (b) Medium load (� = 50, � = 0:2, T = 5).

operates in the low latency mode (<50 ms), but cannot support
throughput of more than 100 calls/s. In order to support higher
throughput, must be increased. For larger, throughput of
up to 170 calls/s (600 000 calls/h) is possible, but the average
latency has also increased to 85 ms. As a reference point, the
4ESS, a large digital toll switch, has a design objective of
supporting 500 000 busy-hour call attempts (BHCA) [15].

A. Dimensioning the Switching Identifier Cache Size

In this section, we discuss how the size of the VPI/VCI
cache should be determined for a given call arrival rate. Recall
that caching for the switching identifier (a VPI/VCI pair) is
performed per output (or input) port per switch. As a result,
we will focus the discussion on a single port only. The same
methodology can be applied to all output ports.

When a call request arrives and there is a VPI/VCI available
in the VPI/VCI cache, the channels on the SwitchServer can
be committed in a single phase. This will be referred to as
a cache hit. Otherwise, there is a cache miss, and an extra
remote invocation is executed to fetch a new VPI/VCI from
the SwitchServer. In this section, we identify the size of
the VPI/VCI cache required to satisfy the requirement that
with probability , there is a VPI/VCI locally available for
immediate use.

The system is modeled in the following way. Assume
that there is an infinite number of VPI/VCI available in the
VPI/VCI cache, and initially let the variable be zero.
When a request arrives, one VPI/VCI is removed from the
VPI/VCI cache, and is increased by one. Processing
continues, and eventually, a commit channel request is sent

CHAN AND LAZAR: DESIGNING A CORBA-BASED HIGH PERFORMANCE SIGNALING SYSTEM 1545

(c)

(d)

Fig. 9. (Continued.)Comparison of measured and estimated VCI cache usage distribution (� = call arrival rate,� = call holding time,T = message
threshold parameter). (c) High load (� = 100, � = 0:2, T = 5). (d) High load (� = 100, � = 0:2, T = 15).

to the SwitchServer. When the acknowledgment returns from
the SwitchServer, the channel has been committed, andis
decreased by one. The variable can therefore be interpreted
as the number of requests currently being processed, and each
of these requests requires a single VPI/VCI.

In the implementation, the number of VPI/VCI pairs is not
infinite and has to be replaced. The request for a replacement
VPI/VCI is piggybacked onto the commit channel request, and
a new VPI/VCI is returned to the cache when the commit
channel acknowledgment returns. With such a scheme, the
significance of is obvious. is also the number of
VPI/VCI’s needed to sustain the processing of call setups
requested in a single phase. As a result, it is possible to
estimate the size of the VPI/VCI cache needed so that a certain
percentage of the total request can be processed in a single
phase, if the distribution of , called , is known.

In order to have an estimate of the distribution of, we
model the system in the following way. The call arrival process
is modeled as a Poisson process, and the call processing
process time is modeled with a general distribution with
average processing rate of. In addition, we assume that there
are an infinite number of servers. Each request is served by a
server, and the servers have independent and identical service
time distribution. In other words, the system is modeled as a
M/G/ queue (Fig. 8).

Modeling the system as a M/G/ queue allows the distri-
bution of to be computed in a very easy way. In fact, is
a Poisson process with mean [20]. The value of is the
average latency for a VPI/VCI to be replaced or for a call to be
setup. It depends on the message threshold parameter, Connec-
tionManager processing time, communication delay between
ConnectionManager and SwitchServer, and the processing
time on the SwitchServer. This is intuitively correct as a larger
threshold or a larger processing and communication delay will
require more VPI/VCI’s to be cached for a fixed hit frequency.

can be estimated in two ways, either directly, as the
product of the estimated arrival rate and average latency for a
VPI/VCI to be replaced, or as the average value of, since
the distribution is Poisson. Using this model, we compared the
measured distribution of with the estimated distribution
(using the average value of measured). This is shown
in Fig. 9. The measured distribution is for a total of 100 000
call setups. Note that the region of interest is the region where

is large, therefore where . For
these regions, the estimated distributions match the measured
distributions rather well.

By modeling the system as a M/G/ queue, the question
of how to dimension the VPI/VCI cache for each output port
can now be answered. An example using two of the plots in
Fig. 9 is given in Table I. For each cache size, the estimated

1546 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 17, NO. 9, SEPTEMBER 1999

TABLE I
DIFFERENCE BETWEEN ESTIMATED AND MEASURED CACHE HIT FREQUENCY

and measured cache hit frequencies are shown for comparison.
For the medium load case, by keeping ten VPI/VCI’s in the
connection manager, there is almost no cache miss. For the
high load case, 20 VPI/VCI’s are sufficient to attain a cache
hit ratio of more than 0.99.

As a measure of the overhead incurred by the caching
scheme, we use the ratio of to the average number of
active calls. For the medium load case, the average number
of calls going through the output port is calls.
The ratio of VPI/VCI cache size to average call occupancy is
therefore . For the high load case, the ratio is
also 0.04 (20/500). This is a rather small price to pay for a
large improvement in throughput-delay characteristics of the
call processing system. Another measure of overhead is the
storage requirement. This overhead can be estimated in the
following way. Let there be 128 nodes in the network, with
32 ports per node. Assume that 32 VPI/VCI’s are cached for
each port. (This is more than enough to support 100 calls/s with
a message threshold of 15, as indicated in Table I.) The total
number of VPI/VCI’s cached is therefore K
VPI/VCI pairs. Let the storage for each VPI/VCI pair be 32 B
(we include the overhead to support searching and indexing).
The total storage needed is therefore onlyK MB,
a small requirement given the size of the network and arrival
rate considered.

B. Selecting a Message Threshold Parameter ()

Selecting the optimal values of is difficult in general
because the behavior of the system depends on many factors,
and these factors can change dynamically. In this section, we
use a simple approach for selecting an appropriateso that
the system can be tuned to support higher throughput given
the expected call setup latency.

The problem is simplified by taking into account only one
variable, the offered load. Other important variables, like
remote invocation latency, are assumed to have minimum
variation (excluding local overhead). This simplification is rea-
sonable in an environment where either the ConnentionMan-
agers are the main performance bottlenecks, or the network
is partitioned into domains, with one ConnectionManager per
domain.

The approach used is based on two observations made from
looking at Fig. 7. First, besides the extreme values of(one
and 15 in this case), the throughput-latency characteristics of

the system changes gradually with increasing or decreasing
value of . Second, the range of useful values is not large.
To see why this is the case, consider the following example.

Let be the number of SwitchServers on a path (the number
of hops), and let be the total number of remote invocations.
From Fig. 10, we see that . Fig. 10(a)
shows a block diagram of one ConnectionManager setting up
a connection over three SwitchServers, and Fig. 10(b) shows a
plot of how , the total number of remote invocations changes
with increasing value of call arrival rate,, for various values
of using the equation . Increasing the
message threshold parameterdecreases , but the reduction
rate decreases with increasing. For , the reduction
in is rather insignificant. The asymptotic reduction, and
therefore the smallest possible achieved when , is
shown for comparison purposes. The incremental decrease in

becomes negligible when becomes much larger than
one. In this case, the gain in reduction in remote invocation is
likely to be outweigh by increase in latency.

Based on these observations, our approach is to use a
static threshold scheme for changing the parameter, based
on the observed traffic load. Since the changes in terms of
throughput and latency is gradual, it is not necessary to tune

precisely. Instead, the operation of the connection manager
can, in general, be classified into a number of regions. For
the system implemented, three regions are sufficient. A low
traffic load region (0–50 call/s), a medium traffic load region
(50–100 call setup/s), and a high traffic load region (100 call
setup/s). A threshold of one is used for the low traffic case,
which provides low latency call setup, but only up to 50 calls/s.
A threshold of four (or five) is used for the medium load case.
For arrival rates of greater than 100 calls/s, a threshold of
ten is used. By estimating the call arrival rate, the connection
manager can dynamically change its threshold parameter so
as to obtain a good tradeoff between latency and throughput.
A reproduction of Fig. 7 with only three threshold parameters
is shown in Fig. 11.

V. CONCLUSION

In this paper, we described a call processing system for ATM
switching system that runs on a CORBA-based distributed
processing environment. The system has low latency and
high throughput, demonstrating that good performance can be
achieved using a general purpose distributed processing plat-

CHAN AND LAZAR: DESIGNING A CORBA-BASED HIGH PERFORMANCE SIGNALING SYSTEM 1547

(a)

(b)

Fig. 10. Remote invocation load on the ConnectionManager.

Fig. 11. Throughput-delay characteristics of xbind connection manager withT = 1; 4; 10:

form for network signaling. We have demonstrated how differ-
ent techniques can be used to improve signaling performance.
The performance figure presented is specific to the experimen-
tal setup used. We observed that use of faster machines (or

RPC mechanisms) will invariably improve the performance.
By using Sun Ultra2 instead of the older HP9000/700, the
minimum latency improves to about 8 ms, and the highest
throughput supported increases to about 190 calls/s.

1548 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 17, NO. 9, SEPTEMBER 1999

The components of the connection manager consist of a con-
nection manager state machine, a message aggregation queue,
a route cache module, a name (VPI/VCI) cache module, and a
bandwidth cache module. The latency and throughput of call
processing is improved by caching and message aggregation
schemes that reduce the number of remote accesses. Parallel
processing of a single call request is also used to enhance
the performance of call processing. The behavior of the
throughput-delay characteristics of the call processing system
was studied with respect to two control parameters, namely:
1) message aggregation threshold and 2) size of switching
identifier cache. These control parameter values can be tuned
to achieve the desired tradeoff among resource utilization, call
setup latency, and call throughput.

ACKNOWLEDGMENT

The authors would like to thank members of the COMET
group, in particular C. T. Adam, J.-F. Huard, and K.-S. Lim,
for their suggestions and valuable discussions.

REFERENCES

[1] A. Battou, “Connection establishment latency: Measured results,”ATM
Forum Document, ATM-Forum/96-1472, Oct. 1996.

[2] M. C. Chan, J. K. Huard, A. A. Lazar, and K.-S. Lim, “On realizing a
broadband kernel for multimedia networks,” inProc. 3rd COST 237 Int.
Workshop Multimedia Telecommunications and Applications, Barcelona,
Spain, 1996, pp. 65–74.

[3] A. Gokhale and D. Schmidt, “Techniques for optimizing CORBA
middleware for distributed embedded systems,” inProc. INFOCOM’99,
New York, NY, pp. 513–521.

[4] J. Huard and A. A. Lazar, “On QOS mapping in multimedia networks,”
in Proc. 21st IEEE Ann. Int. Computer Software and Application Conf.
(COMPSAC’97),Washington, DC, pp. 312–317.

[5] A. A. Lazar, K. Lim, and F. Marconcini, “Realizing a foundation for
programmability of ATM networks with the binding architecture,”IEEE
J. Select. Areas Commun., vol. 14, pp. 1214–1227, Sept. 1996.

[6] K. van der Merwe and I. Leslie, “Switchlets and dynamic virtual
ATM networks,” in Proc. IFIP/IEEE Int. Symp. Integrated Network
Management (IM’97),San Diego, CA, pp. 355–368.

[7] K. Murakami, R. Buskens, R. Ramjee, Y. Lin, and T. La Porta,
“Design, implementation, and evaluation of highly available distributed
call processing systems,” inProc. FTCS’98, pp. 118–127

[8] J. Nagle, “Congestion control in IP/TCP internetworks,” in Network
Working Group RFC 896, Jan. 1984.

[9] P. Newman, R. Hinden, E. Hoffman, F. C. Liaw, T. Lyon, and G.
Minshall, “General switch management protocol specification—Version
1,” Palo Alto, CA, Mar. 1996.

[10] D. Niehaus, A. Battou, A. McFarland, B. Decina, H. Dardy, V. Sirkay,
and B. Edwards, “Performance benchmarking of signaling in ATM
networks,” IEEE Commun. Mag., vol. 35, pp. 134–143, Aug. 1997.

[11] H. Oliver, S. Brandt, A. Thomas, and N. Charton, “Network control as
a distributed object application,”Distributed Systems Engineering, vol.
5, pp. 19–28, Mar. 1998.

[12] S. Ohta and K. Sato, “Dynamic bandwidth control of the virtual path
in an asynchronous transfer mode network,”IEEE Trans. Commun.
Technol.,vol. 40, no. 7, pp. 1239–1247.

[13] A. Orda, G. Pacifici, and D. E. Pendarakis, “An adaptive virtual path
allocation policy for broadband networks,” inProc. INFOCOM’96, San
Francisco, CA, pp. 1285–1293.

[14] N. G. Aneroussis and A. A. Lazar, “Virtual path control for ATM
networks with call level quality of service guarantees,”IEEE/ACM
Trans. Networking, vol. 6, pp. 222–236, Apr. 1998.

[15] M. Schwartz,Telecommunication Networks: Protocols, Modeling and
Analysis. Reading, MA: Addison-Wesley, 1987.

[16] I. T. Ming-Chit, W. Wang, and A. A. Lazar, “A comparative study
of connection setup on a connection management platform,” inProc.
First IEEE Conf. Open Architectures and Network Programming, San
Francisco, CA, 1998, pp. 14–24.

[17] TINA-C, Service Architecture Version 2.0, Document
TB_MDC.012_2.0_94, Mar. 1995.

[18] M. Veeraraghavan, G. L. Choudhury, and M. Kshirsagar, “Implemen-
tation and analysis of PCC (parallel connection control),” inProc.
INFOCOM’97, Kobe, Japan, 1997, pp. 833–842.

[19] M. Veeraraghavan, T. F. La Porta, and W. S. Lai, “An alternative
approach to call/congestion control in broadband switching systems,”
IEEE Commun. Mag., vol. 33, pp. 90–97, Nov. 1995.

[20] R. W. Wolff, Stochastic Modeling and the Theory of Queues.Engle-
wood Cliffs, NJ: Prentice-Hall, 1989.

Mun Choon Chan (M’97) received the B.S. degree
from Purdue University, West Lafayette, IN, in 1990
and the M.S. and Ph.D. degrees from Columbia
University, NY, in 1993 and 1997, respectively, all
in electrical engineering.

From 1991 to 1997, he was a member of the
COMET Research Group, working on ATM con-
trol and management. Since 1997, he has been
a Member of the Technical Staff at Bell Labo-
ratories, Lucent Technologies, Holmdel, NJ. His
current interests include wireless data networking

and network management.
He is a member of the ACM, and he serves on the Technical Program

Committee of IEEE INFOCOM’2000.

Aurel A. Lazar (S’77–M’80–SM–90–F’93) has
been a Professor of Electrical Engineering at
Columbia University, New York, NY, since
1988. His current theoretical research interests
are on networking games and pricing. His
experimental work, which focuses on building
open programmable networks, has led to the
establishment of the IEEE Standards working
group on Programming Interfaces for Network.
He was instrumental in establishing the OPENSIG
international working group with the goal of

exploring network programmability and next generation signaling technology.
Currently on leave from Columbia University, he is Chairman and CEO of
Xbind, Inc., a high technology startup company in New York, NY.

Dr. Lazar was the Program Chair of the Fall and Spring OPENSIG’96
workshops and of the First IEEE Conference on Open Architectures and
Network Programming.

