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Blind Adaptive Reduced-Rank Detection for
DS-CDMA Signals in Multipath Channels

Yu Song,Member, IEEE,and Sumit Roy,Member, IEEE

Abstract—Blind adaptive multiuser detection for direct se-
quence code division multiple access (DS-CDMA) signals over
static and time-varying intersymbol interference (ISI) limited
channels is considered. Blind adaptive detectors must be ro-
bustified for ISI channels, when there is significant mismatch
between the received signature vector and the transmitted code
(assumed known at the receiver). A new low-complexity detector
is presented that improves on some recently proposed methods
without explicit estimation of the ISI channel. The key innovation
is a reduced-rank detector architecture combined with an efficient
subspace tracker that yields direct accurate estimation of the de-
sired user’s received signature. Several representative simulation
examples of detector output signal-to-noise-and-interference ratio
(SINR) for fading channels are provided in support of our claims
of improved efficacy of the method.

Index Terms—Blind adaptive filtering, code division multiple
access (CDMA), multipath channels, multiuser detection.

I. INTRODUCTION

L INEAR multiuser detectors have shown considerable po-
tential as pragmatic (lower-complexity) reliable detectors

for direct sequence code division multiple access (DS-CDMA)
signals in additive white Gaussian noise (AWGN) channels.
Currently, considerable current effort is aimed at advancing
the design of such multiuser detectors to combat intersymbol
interference (ISI) and fading. Receivers for multipath fading
channels should be adaptive and preferably blind (i.e., do not
require any training sequences in startup) [1]. Of note in this
regard is the blind least mean square (LMS) implementation
of Honig et al. [2] based on the constrained minimum output
energy (CMOE) criterion which yields the minimum mean
squared error (MMSE) detector except for a trivial scaling. A
recursive least squares (RLS) version of the MMSE detector
was presented in [3].

For high-rate CDMA systems, the channel delay spread can
be a significant fraction of the symbol period, implying that
the resulting ISI is no longer negligible, which is contrary
to the assumptions in some recent works [4], [5]. This leads
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to a significant mismatch between the transmitted spreading
code (knowledge of which is usually assumed at the receiver)
and the actual received signature (which is the convolution
of the unknown channel and the spreading code). A natural
approach to detector design in such cases is to equip the
receiver with a channel estimator as an intermediate step,
whose output is used to reconstruct the received signature
as was done by a batch processing type estimation scheme
in [6]. Expectedly, (statistical) errors in channel estimation
degrade the (average) output signal-to-interference-and-noise
ratio (SINR)—a common measure of detector performance.
Further, the motivation to avoid the additional complexity
of channel estimation has led to investigations of adaptive
detection by constraining the detector with shifted versions
of the transmitted spreading code of the desired user. The
constrained minimum variance (CMV) method in [7] entirely
bypasses channel estimation and has a low complexity of
2 flops/update, where is the length of the observed
signal vector. However, the method’s poor performance in
many circumstances is caused by utilization of only part of
the desired signal energy, which is particularly serious in
fading channels. Improvements were proposed [8]–[10] at the
expense of increased complexity. The methods in [9] and [10]
improve the CMV detector by estimating auxiliary vectors
other than the channel, while the detector in [8] uses equal
gain combination of outputs of versions of the CMV detector
(where is the desired user’s channel length measured in chip
durations). For long channels, the increase in complexity in the
absence of accurate channel estimation leads to generically
suboptimal performance.

Another pertinent structure was presented in [4] and [6]
which exploits the subspace structure induced by linear CDMA
modulation (and subsequent linear filtering by channel etc.
followed by oversampling) which is extracted via a singular
value decomposition (SVD), followed by closed-form compu-
tation of the detector coefficients. For data-adaptive subspace
tracking, [4] employs the projection approximation subspace
tracking deflation (PASTd) algorithm [11], which uses iterative
deflation to extract an (approximately) orthonormal basis for
the signal subspace starting with the largest (signal) eigen-
values/eigenvectors. This leads to accumulation of roundoff
estimation errors that result in poor estimates of the small
signal eigenvalues and corresponding eigenvectors. Since the
closed-form detector of [4] requires inversion of the signal
eigenvalues, the effect of estimation errors for small signal
eigenvalues is exacerbated, leading to degraded output SINR.
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The batch subspace approach in [12] estimates the detector
directly, but is based on minimal eigenvector extraction, which
is (especially in an adaptive setting) less desirable than the
maximal eigenvector tracking adopted in this paper.

To overcome the difficulties of these existing methods, we
[13] propose a blind adaptive detector with direct desired sig-
nal estimation (i.e., no intermediate channel estimation) based
on the fast subspace tracking (FST) method [14]. Observing
that the desired signal lies in the intersection of the received
signal subspace and the range of the code matrix of the
desired user, we develop an efficient recursive estimator of the
desired signal vector using the simple power method [15, Sec.
8.2]. Along with FST-based subspace tracking, we implement
a reduced-rank detector that shows significant performance
improvement over methods without desired signal (or channel)
estimation while reducing complexity as compared to a full-
rank detector. Although the detector design is presented for
chip-synchronous CDMA for convenience, extensions to the
chip-asynchronous case were reported in [16].

Finally, [17] considers a training/decision-directed receiver
that iteratively updates a full-order receiver (i.e., does not
exploit the subspace structure for dimensionality reduction and
hence involves no subspace tracking). Further, [17] primarily
emphasizes short channel lengths and fast fading, whereas the
natural advantages of our detector are best highlighted for
slow fading and long channel as is appropriate for high data-
rate scenarios. Nevertheless, simulation experience with fast
fading with our detector corroborates the general conclusion
in [17] and [1] that adaptive detector design for severe
(fast) frequency-selective fading channels still remains a major
challenge.

The rest of the paper is organized as follows. In Section II,
an equivalent synchronous signal model for DS-CDMA sys-
tems is outlined. Section III develops a method for identifying
the desired signal vector based on batch subspace estimation.
The adaptive detector is derived in Section IV, and its per-
formance assessed by several typical simulation examples in
Section V. Section VI concludes the paper with final remarks.

II. SIGNAL AND SYSTEM MODEL

In a -user chip-synchronous DS-CDMA system, the trans-
mitted baseband signal of theth user is

(1)

where is the bit interval, is the transmission delay
(assumed to be integer multiples of chip duration ,
is the transmitted bit energy, and 1, 1 is the

th information bit of the th user. The energy normalized
transmitted waveform (i.e., ) is given by

(2)

where 1, 1 is the spreading sequence of
the th user, and is the chip waveform (assumed to be

rectangular of duration , where is the spreading
factor).

The signal traverses through a channel represented
by a linear time-invariant filter, the impulse response of which
(plus the transmission delay) is denoted by . The received
signal in the presence of AWGN is input to a chip
matched filter front-end followed by a synchronized chip-rate
(1/ ) sampler, leading to the discrete time signal

(3)

where is the sampled AWGN with variance . We
assume different symbols of the same user, as well as symbols
of different users, are uncorrelated. The spreading sequences
are repeated periodically in each symbol duration (i.e., length-

short codes are used). Since existing CDMA systems based
on the IS-95 standard use long spreading codes over many
symbols, this model and the subsequent method do not apply to
these systems. However, future CDMA systems based on short
codes have been proposed for next generation personal com-
munication services (PCS), since they ease implementation of
multiuser detection [1], [18].

For user , the received signature waveform is the
convolution of the spreading sequenceand the channel ,
or

(4)

where the channel length is assumed the same for all users
without loss of generality. Then, the channel length in bit

duration is , where is the smallest
integer greater than or equal to.

Define the following vectors

(5)

Partition into segments with length

...
(6)

The received bit vector is

...

(7)
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Consider an observation interval of bits. The received
signal vector is

...

...

(8)

where the signature matrix and symbol vector of userare
shown in (9) and (10) at the bottom of the page.

In the above example, and are the correspond-
ing noise vectors, and is the smoothing factor which is
relevant to the channel identifiability issue with the subspace
method described later.

Assuming user 1 is the desired user, we have the equivalent
synchronous model [1]

(11)

The desired symbol is , while the interfering
symbols , consist of ( 1)(
1) multiuser interference (MUI) and ISI symbols
for a total interfering dimension of ( ) .
Letting the transmitted code matrix for the desired user be

...
...

...
...

(12)

we note that the desired signal vector is the th column
of matrix , i.e.,

(13)

and that the remaining columns of represent the
interference vectors.

III. SUBSPACE-BASED DESIRED SIGNAL ESTIMATION

In this section, we deal with the estimation of the desired
signal . Since is the convolution of the spreading code
and the channel, it can be reconstructed from the channel

estimate [4], [6]. The methods in [4] and [6] both estimate the
desired user’s channel by seeking the minimal eigenvector of a
certain symmetric positive definite matrix and reconstruct the
desired signal vector. There are fundamental limitations on the
relative accuracy with which the eigenvalues of a matrix can
be computed by iterative means, with small eigenvalues being
more difficult to compute than larger ones [19]. Our method
requires direct recursive estimation of as the maximal
eigenvector of a certain matrix. It bypasses channel estimation
and converges faster than the minimal eigenvector extraction
methods.

Construct the data matrix

(14)

where

(15)

Taking the SVD of (time index omitted)

(16)

We assume that is of full row rank

(17)

which can be achieved with sufficiently large . The signal
and noise subspace are ran() and ran( ), respectively.

Remarks: It is common in subspace CDMA receiver litera-
ture (e.g., [4]–[6]) to assume that the signature matrixis of
full column rank . However, this is unnecessary. In practice,

is usually nearly rank deficient due to the likely fact that
some channel coefficients are nearly zero and that channel
lengths may vary significantly depending on the multipath
conditions. For a rank deficient, we still have ran( )
ran( ); the only difference is that the number of columns in

[i.e., rank( )] is smaller than . The following subspace
method can still be applied without exact knowledge of the
true signal subspace dimension, since overestimating the signal
subspace dimension still allows (generically) the extraction
with partial knowledge of the noise subspace (due to inflation
of the signal subspace). A similar case has been addressed in
the original paper on subspace based blind identification [20].
This capability alleviates the need for exact knowledge of the
rank of the signal subspace. For simplicity of presentation, we
will proceed with full rank assumption for in the remainder
of the paper.

...
...

. . .
(9)

(10)
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Fig. 1. Blind adaptive detector schematic.

The noise subspace dimension is and the total
dimension is . Due to orthogonality of the signal and
noise subspace, and ran() ran( ), we have

(18)

By defining as the orthonormalized version of (i.e., as
obtained from a Gram–Schmidt procedure)

(19)

(20)

are the orthogonal projection matrices onto ran() and
null( ), respectively. From (13), we have

(21)

There are ( ) equations in (18) and
equations in (21), while the number of unknowns in

is . Imposing constraints (18) and (21) simultaneously,
a unique solution for exists if

dim ran ran (22)

A necessary condition for (22) to hold is that the number of
linear equations equals or exceeds the number of unknowns
less one, i.e.,

(23)

For , condition (23) can always be satisfied by in-
creasing the smoothing factor. Extensive simulations show
that (22) is generally satisfied when (23) is used with an
overestimate of the dimension of .

Since in practice we only have estimates of the subspace,
(18) and (21) can be solved in the least-squares sense

s.t. (24)

The solution is the minimal eigenvector of the matrix
By considering (20) and recalling

(25)

(24) can be easily transformed into a maximization problem

s.t. (26)

whose solution is the maximal eigenvector of matrix

(27)

IV. SUBSPACETRACKING AND REDUCED RANK DETECTOR

The adaptive detector schematic is shown in Fig. 1, which
highlights the (feedforward) iterative computations involved.
In time-varying scenarios, the full SVD in (16) is compu-
tationally too expensive [ ] for continuous update and is
also unnecessary, since only an orthonormal basis of the signal
subspace (and not the entire subspace structure) is required for
the desired signal estimation. Thus, effective subspace tracking
methods with lower complexity can be adopted—while there
exist many methods with different complexity/performance
tradeoffs, we concentrate on those with minimal complexity

. Within this category, we find that the FST method
proposed by Rabideau [14] is particularly suited for our
detector architecture. It is based on spherically averaged URV
decomposition of the exponentially weighted data matrix (
in [14] corresponds to in our notation)

(28)

where diag( 1), , and the
matrix is an orthonormal basis of the signal subspace.

In addition

(29)

where is an upper triangular matrix that contains the
signal eigenstructure information and is the averaged noise
power. The simplest one in the FST class is the refinement
only FST (RO-FST), which consists of the following three
steps and is summarized in Table I:

1) noise averaging;
2) QR decomposition updating (where is obtained by

reducing the noise subspace to a single column)

(30)

3) refinement (signal and noise subspace separation).

Extensive simulations in [14] show that RO-FST achieves
faster tracking than many other subspace tracking methods by
concentrating on separation of the signal and noise subspace,
instead of obtaining accurate estimates of the singular values
by diagonalizing . Orthonormality of is preserved by
the Givens rotations used in the update, while noise averaging
allows low complexity of flops/update.

While the signal subspace is recursively updated via RO-
FST, a simple power iteration method [15, Section 8.2] can
be used to adaptively solve (26)

(31)

(32)
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TABLE I
RO-FST

The computational complexity of (27), (31), and (32) is
. Note that is fixed, and only the signal subspace

matrix needs to be updated for updating . The
convergence rate of the power method is determined by the
ratio of the two largest eigenvalues of . This method
requires no user-defined parameter (such as step size), and
converges faster than methods seeking minimal eigenvectors.
The gradient-based minimal eigenvector tracking method of
[21] employed in [4] is known to suffer from slow convergence
and difficulty in choosing the appropriate step size. Note that
the Newton-based method in [21] is equivalent to updating

and then estimating the maximal eigenvector by
applying the power method to .

Since the optimal linear MMSE detector coefficient vector
is known to lie in the signal subspace [6], a reduced-rank-
adaptive detector constrained to the signal subspace can benefit
from faster convergence in situations where the smallest signal
eigenvalue is significantly greater than the noise eigenvalues,
as shown in [22]. Rank reduction also means reduced detector
complexity and is natural in this context since the signal
subspace is already extracted. The exponentially windowed
sample estimate of the autocorrelation matrix of the observa-
tion vector is obtained as

(33)

where ) is the effective window
length. Considering (28) and that the linear MMSE detector
satisfies [1]

(34)

the reduced-rank detector coefficient is obtained by
solving

(35)

The complexity of solving the previous equation is ,
since is orthogonal and is triangular [15]. Thus
the overall complexity of the detector in Fig. 1 is

.

V. SIMULATION AND DISCUSSION

We present simulation results for near–far limited scenarios
in different channel settings. There are four interfering users,
each with MUI dB above the desired user (0 dB). Ran-
dom binary ( 1) spreading codes are generated with spreading
factor and kept fixed over all simulation runs. AWGN
is added to the received signal so that the average bit signal-to-
noise ratio (SNR) for the desired user is 22 dB (corresponding
to chip SNR of 10 dB). The frequency-selective Rayleigh
fading channels are simulated with Hoeher’s method [23],
where the discrete channel is modeled as a tapped delay line
with time-varying coefficients. Omitting the user index, the
channel coefficients at time are given by

(36)

whose time-averaged norm is

(37)

where is the number of transmitted symbols,is the total
number of paths, is the symbol period, and the initial phase
of the th path is assumed independent between paths and
uniformly distributed in [0, 2 ]. The th tap coefficient at
time is taken as

(38)

so that the fading channel has average norm of unity.
The Doppler frequency is generated according to

(39)

where is a random number uniformly distributed in [0, 2].
In the simulations, is used, and the combined impulse
response of the transmit and receiver filtersis taken to be
a raised cosine pulse with rolloff factor 0.5. The power delay
profile was assumed to be negative exponential

(40)

where is in microseconds.
Since PASTd performs correlation domain and RO-FST

does data domain processing, for equivalent processing win-
dow length we set the forgetting factors (PASTd)
(RO-FST). We take the averaged output SINR at theth
iteration as the performance measure

SINR (41)
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Fig. 2. Performance of desired signal estimators by RO-FST and PASTd, with power-method time-invariant ISI channels, synchronous users;N = 16,
L = 6, m = 1, SNR = 22 dB, �1 = 0:997, and �2 = 0:994.

Fig. 3. Performance of the proposed reduced-rank detector and the CMV detector in time-invariant ISI channels, synchronous users;N = 16, L = 6,
m = 1, SNR = 22 dB, �1 = 0:997, and � = 2 �10�4:

All results shown are based on averages over
Monte Carlo runs. For time-invariant channels, the maximal
achievable output SINR of the MMSE detector is also shown,
which is calculated from [24]

SINR
E

var

(42)

In time-varying examples, we keep the multipath fading chan-
nel fixed for each user and perform 100 Monte Carlo runs

with different signals and noise. The time-varying SNR (due
to fading channel) is plotted for comparison.

Customary initialization is used for all adaptive algorithms.
For PASTd, the initial eigenvalues are set to one, and for RO-
FST, . The initial eigenvectors are chosen to be
vectors (the th element is one and all others are zero) for
both RO-FST and PASTd. The initial desired signal estimate
is .

Example 1 (Time-Invariant ISI Channels, Synchronous
Users): The data rate is set to 1 Mbit/s, and the channels
are time invariant (maximum Doppler frequency )
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Fig. 4. Performance of the D-RAKE detector and the subspace MMSE detector [4] in time-invariant ISI channels, synchronous users;N = 16, L = 6,
m = 1, SNR = 22 dB, �2 = 0:994, and � = 2 �10�4:

Fig. 5. Performance of the reduced-rank detector in time-invariant AWGN channels, asynchronous users;N = L = 16, m = 2, SNR = 22 dB,
and �1 = 0:997.

with length of . The smoothing factor is ,
while the forgetting factors are and .
Fig. 2 depicts the desired signal estimation error by the power
method (31) and (32), with subspace tracking by PASTd and
RO-FST, respectively. The desired signal estimation error is
defined as the distance between the subspaces spanned by the
true and estimated desired signal vectors given by

(43)

RO-FST significantly outperforms PASTd by this measure.
The convergence of PASTd is very slow without special
initialization, as observed in [4]. Also, orthonormality of the
subspace estimate of PASTd is not guaranteed, unlike RO-FST.

The output SINR performance of four detectors is shown
in Figs. 3 and 4 for comparison. The step size in the CMV
detector [7] and the decorrelating RAKE (D-RAKE) detector
[10] is . In the D-RAKE receiver, we use PASTd
to estimate the combining vector (the maximal eigenvector
of the autocorrelation matrix of the CMV outputs). The
CMV detector without channel estimation can lead to low
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Fig. 6. Performance of the reduced-rank detector in slow-fading channels,fd;maxT = 10
�4,L= 6,N = 16,m= 1, average SNR= 22 dB, and�1 = 0:99.

Fig. 7. Performance of the reduced-rank detector in medium-fading channels,fd;maxT =10
�3, L = 2, N = 16, m = 1, average SNR= 22

dB, and �1 = :099.

steady state output SINR, since it extracts only part of the
desired signal energy [that contributed by(0)]. The D-
RAKE detector tries to overcome this difficulty by combining
outputs of multiple versions of the CMV detector, and it is
expected to outperform the latter in the steady state. The
combining vector is obtained from the outputs of CMV
detectors, which makes the D-RAKE detector converge slower
than the CMV detectors, and the steady-state output SINR
limited by the (possibly remarkable) difference between the
estimated combining vector and the true channel (optimal

combining vector). The subspace MMSE detector by direct
inversion of eigenvalues in [4] has the worst performance.
Our detector considerably outperforms these detectors due to
the improved estimators embodied in the architecture.

Example 2 (Time-Invariant AWGN Channels, Asynchronous
Users): In this example, all users (including the desired) have
unknown, independent, and uniformly distributed delays and
phase shifts. For simplicity, we assume all users are chip
synchronized, i.e., the delays are integer multiples of the
chip duration. The equivalent channel length is then
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Fig. 8. Performance of the CMV detector in medium-fading channels,fd;maxT = 10
�3,L= 2,N = 16,m= 1, average SNR= 22 dB, and�= 2� 10

�4:

Fig. 9. Performance of the D-RAKE detector in medium-fading channels,fd;maxT = 10
�3, L = 2, N = 16, m = 1, average SNR= 22 dB,

and� = 2 � 10
�4:

, and the smoothing factor is chosen as .
The output SINR illustrated in Fig. 5 confirms the proposed
detector’s robustness to user asynchronism, i.e., it is able to
implicitly obtain an effective timing estimate for the desired
user. To apply the CMV detector [7] in this case, a separate
timing estimator must be added to ensure it extracts energy
contributed by the nonzero channel coefficient.

Example 3 (Frequency-Selective Slow-Fading Channels):
As in Example 1, the data rate is taken as 1 Mbit/s. The
maximum Doppler frequency is set to 100 HZ (for a mobile
speed of 120 km/h and carrier frequency of 900 MHZ). The

channel length is Fig. 6 shows that while the channel
variations lead to increased fluctuations in detector output
SINR, it almost always remains above 0 dB under the slow-
fading conditions assumed in the experiment.

Example 4 (Frequency-Selective Medium-Fading Chan-
nels): Performance of the proposed detector in channels with
medium-fading rate ( ) is shown in Figs. 7 (

) and 10 ( ). For independently fading taps, the
detector is able to provide output SINR above 0 dB; however,
performance is unacceptable for taps, indicating that
the subspace tracking/desired signal estimation degrades very
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Fig. 10. Performance of the reduced-rank detector in medium-fading channels,fd;maxT = 10
�3, L = 6, N = 16, m = 1, average SNR= 22

dB, and �1 = 0:99.

Fig. 11. Performance of the reduced-rank detector in fast-fading channels,fd;maxT = 10
�2,L= 2,N = 16,m= 1, average SNR= 22 dB, and�1 = 0:99.

significantly as the number of fading taps increases. The
simulation results for CMV and D-RAKE receivers with

in Figs. 8 and 9 show they are clearly inferior to our
proposed detector. Note that the D-RAKE detector does not
show much improvement over the CMV detector, since it
relies on the accuracy of CMV detector output.

Example 5 (Frequency-Selective Fast-Fading Channels):
For a maximum fading rate of considered
in our simulation, the output SINR exhibits more excursions
below 0 dB for taps (Fig. 11) as compared to

. The result is similar to an example in [17]. In the

time-varying examples, the detector output SINR tend to
follow the time-varying SNR due to fading, with significant
fluctuations attributable to the blind algorithm (as opposed to
decision directed) used in our case.

VI. CONCLUSION

A new blind adaptive detector for DS-CDMA signals in
frequency-selective multipath fading channels is introduced
that overcomes some key shortcomings of detectors proposed
in the recent literature. The reduced-rank nature of the detector
in conjunction with the efficient RO-FST subspace tracker
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leads to only a modest increase in complexity. The detector can
accommodate asynchronous channels without any additional
timing acquisition mechanism and is able to achieve fast
and accurate estimation of the desired user’s signature. The
detector performance as measured by output SINR reaches
acceptable levels typically within a few hundred data symbols.
It outperforms some recently proposed blind adaptive multi-
user detectors in both convergence speed and steady state
SINR especially in slow-fading long channels, and thus is a
good candidate for high rate DS-CDMA systems. However,
the proposed detector design must be further robustified in
fast-fading conditions for adequate performance, probably in
combination with effective channel-coding approaches.
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