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Absfrcrcf-In this paper, we propose a method to calculate the average 
blocking probability in all-optical networks using limited-rmge wavelength 
conversion. Previous works have shown that there is a remarkable im- 
provement in blocking probability while using limited-range wavelength 
conversion [2], [3] but these analytical models were either for a path [2] 
or for a mesh-torus network [3]. Using a graph-theoretical approach, we 
extend Birman’s model [4] for no wavelength conversion and derive an an- 
alytical expression to compute the blocking probabilities in networks with 
limited-range wavelength conversion for fixed routing. The proposed ana- 
lytical model is a generalization of Birman’s model and is applicable to m y  
network topology. We consider the case where an incoming wavelength can 
be converted to d adjacent outgoing wavelengths on either side of the input 
wavelength, in addition to the input wavelength itself, where d is the de- 
gree of conversion. Using this model we demonstrate that the performance 
improvement obtained by full wavelength conversion over no wavelength 
conversion can almost he achieved by using limited wavelength conversion 
with the degree of conversion, d, being only 1 or 2. In a few example net- 
works we considered, for blocking probabilities up to a few percent, the 
carried traffic with limited conversion degree d = 2 was almost equal to 
the carried traffic for full wavelength conversion. 

The results obtained show that significant improvements in blocking 
performance can be obtained by providing limited-range wavelength con- 
version of small degree within the network. 

I .  INTRODUCTION 

All-optical networks have attracted a lot of interest in the 
networking community in the past few years. The reason for 
this is that a single fiber provides an enormous bandwidth 
(25 THz), low loss (0.2 dB/Km) and very low bit error rate 
(10-9-10-15). In all-optical networks the data remain in the 
optical domain throughout their path except at the ends. Such 
paths are termed as lightpaths. Lightpaths can be viewed as 
huge bandwidth pipes into which we can pump data at differ- 
ent bit rates using different modulation schemes and different 
protocols. Therefore all-optical networks provide significant 
advantages in terms of transparency, future-proofness and re- 
duced processing. The currently favoured technology to tap 
this huge bandwidth of optical fiber is wavelength division mul- 
tiplexing (WDM). In WDM networks, the optical spectrum is 
divided into many different channels and each channel cor- 
responds to a different wavelength which can operate at the 
peak electronic speed. Optical networks can be classified in 
two broad categories according to their architecture: (1) Broad- 
cast and select networks, and (2) Wavelength routed networks. 
Broadcast and select networks, though simpler in terms of ar- 

This research was supported by a grant from the Department of Science and 
Technology, Government of India. 

chitecture and management, do not allow wavelength reuse. 
Using wavelength routed WDM networks, we can reuse the 
wavelength provided no two lightpaths sharing a link are as- 
signed the same wavelength. Therefore, WDM wavelength 
routed networks are scalable and better suited for WAN appli- 
cations. 

To maximize the number of connections in WDM wave- 
length routed networks, a number of wavelength routing and 
assignment algorithms have been proposed and analyzed. In all 
these studies, it is clearly seen that full wavelength conversion 
does better than no wavelength conversion [ 11, [4], [ 101 and this 
gain in advantage using full wavelength conversion depends on 
a host of network parameters such as topology and connectiv- 
ity [6] and other factors such as the number of wavelengths per 
fiber, number of fibers per link and routing and wavelength as- 
signment algorithms. 

In networks using full wavelength conversion a call is ac- 
cepted if on all the links on its route there is at least one free 
wavelength. With no wavelength conversion a call is accepted 
on a route if there exists at least one wavelength which is si- 
multaneously free on all the links of that route. This constraint 
is known as the wavelength continuity constraint. This means 
a call can be blocked even if there are free wavelengths (but 
not the same one) on all the links. Therefore, having full wave- 
length conversion is advantageous in that it decreases the block- 
ing probability. However, implementing all-optical full wave- 
length conversion is quite difficult due to technological limita- 
tions. So, it is interesting to investigate whether we can do as 
well as full wavelength conversion in terms of blocking perfor- 
mance by using limited-range wavelength conversion, if not by 
using no wavelength conversion. 

In limited-range wavelength conversion, an input wavelength 
can be converted to a limited range of outgoing wavelengths. 
Another form of limited wavelength conversion is to put a limit 
on the number of full wavelength converters provided to each 
node or to put a limit on the number of nodes that are provided 
full wavelength converters. In [7] Subramaniam et al. showed 
that the blocking performance remains almost the same if only 
a few nodes (as opposed to all) are equipped with full wave- 
length converters. They called this sparse wavelength conver- 
sion. Yates et al. [2] were the first to present results regarding 
limited-range wavelength conversion. They developed a simple 
analytical model for two-hop and multiple-hop paths and used 



simulations to analyze the performance of unidirectional ring 
and mesh-torus topologies. In [3] Sharma and Varvarigos pre- 
sented an analytical model to compute blocking probabilities 
for mesh-torus networks with limited-range wavelength con- 
version and showed that limited wavelength conversion of de- 
gree 2 or 3 can give performance comparable to full wavelength 
conversion. But the analysis presented in [2], [3] was restricted 
to some specific network topologies. 

In this paper, we develop an analytical model for computing 
blocking probabilities using limited-range wavelength conver- 
sion in all-optical networks. The model developed can be used 
for fixed routing and is applicable to any network topology. In 
this model we assume that a limited wavelength converter with 
conversion degree, d, can convert any incoming wavelength to 
d adjacent wavelengths on either side, in  addition to the input 
wavelength itself. Essentially, i t  means that any input wave- 
length can be switched to (2d + 1) outgoing wavelengths. Us- 
ing this model we quantify the benefit obtained using limited- 
range wavelength conversion vis-a-vis no and full wavelength 
conversion. We are particularly interested to know whether we 
can achieve performance close to that of full wavelength con- 
version using limited-range wavelength conversion. 

The rest of the paper is organized as follows. In section 11, we 
present the analytical model for limited wavelength conversion. 
In section 111 we present the numerical results and in section IV 
we conclude. 

11. LIMITED-RANGE WAVELENGTH CONVERSION 

A. TrafJic Model 

There are many different models that have been used to de- 
scribe the traffic demands for lightpaths between pairs of nodes 
and their use leads to substantially different performance opti- 
mization criteria for the network. Depending on the temporal 
nature of the demand for lightpaths, we can classify the light- 
path requests into two categories: ofline and online. In the 
ofline case, we are given the entire set of lightpaths that are 
to be routed in advance. In the online case, the demands for 
lightpaths arise one at a time and each lightpath must be pro- 
vided on demand without waiting for future lightpath demands 
to become known. Another important question is whether the 
network can block some lightpaths (the blocking model), or 
whether it must support all requested lightpaths (the nonblock- 
ing model) [ 1 I]. 

In our case, we consider the online blocking model. The 
lightpaths are set up and taken down on demand. These are 
analogous to setting up and taking down circuits in circuit- 
switched networks. 

B. Assumptions 

The following assumptions are used in our analytical model. 
1. External calls arrive at each node according to an indepen- 
dent stationary Poisson process with rate A. 
2. Call holding time is exponentially distributed with unit 
mean. 
3. Calls that cannot be routed in the network are blocked and 
lost. 

4. The capacity of the links, denoted by C, is the same for all 
the links in the network. Each call requires a full wavelength 
on each link of its path. 
5. Wavelengths are assigned uniformly randomly from the set 
of free wavelengths on the associated path. 
6 .  Simplex connections are considered. 
7. Existing lightpaths/calls cannot be reassigned different 
wavelengths to accommodate the new lightpathkall request. 

C. Analytical Model for Limited-Range Conversion 

We assume that for any given input wavelength, i t  is pos- 
sible to translate it to a limited range of output wavelengths. 
More precisely, i t  is assumed that a wavelength can be con- 
verted to d adjacent wavelengths on either side of the input 
wavelength, in addition to the input wavelength itself, where d 
is the degree of conversion. Hence, any wavelength can be con- 
verted to (2d + 1) wavelengths. For example, incoming wave- 
length X i  can be converted to any of the outgoing wavelengths 
X i - d ,  . . . , X i ,  . . . , &+d. We also assume that the conversions 
are circularly symmetric. 

Let p,(zl, 22,. . . , ZN) denote the probability of having m 
choices for the outgoing wavelengths on a N-hop path given 
that zl, . . , 2~ wavelengths are free on links 1, . . . , N respec- 
tively. If j? = ( 2 1 ,  22,. . . , ZN), 

p,(j?) = Pr[XR = mlxl = 5 1  I .  ” ,  X N  = 2n] (1) 

where XR is a random variable denoting the number of choices 
for the outgoing wavelengths on route R = { 1 , 2 , .  . . , N }  and 
the random variables Xi denote the number of free wavelengths 
on link i. Let us first consider the case of a two-hop route R = 
{i, j } ,  for which 

p,(z, y)  = Pr[Xi, j  = mlXi = 2, X j  = y]. (2) 

This is the probability of having ‘m possible outgoing wave- 
lengths on a two link route given that 2 and y wavelengths are 
free on the first and the second link respectively. We can think 
of having a bipartite graph (X, Y ) ,  where the set of vertices X 
and Y represent the set of wavelengths available on the first and 
second link respectively; hence the cardinality of both the sets 
is equal to the capacity of the link C, i.e., 1x1 = IY 1 = C. Each 
vertex Uk E X has an edge incident with the “facing” vertex 
V k  E Y and d adjacent vertices on either side of V k  (see Fig. 1). 
Therefore, each vertex of X will have a degree of (2d+ 1). The 
(2d+ 1) vertices in set Y which are adjacent to a vertex in set X 
are called its neighbours. For example, the neighbours of ver- 
tex 2 E X are vertices 1 , 2  and 3 E Y as shown in the Fig. 1. 
The edges denote the possible conversion from one wavelength 
to another wavelength. For the last (resp. first) vertex, we will 
have edges to the immediately higher (resp. lower) d vertices 
and the first (resp. last) d vertices from the top (resp. bottom), 
i.e., the wavelength conversion is assumed to be circularly sym- 
metric. This is merely for the sake of analytical convenience, 
as it distributes the load uniformly among all the wavelengths 
on a link. Let Xi s X and Yj Y denote those vertices 
corresponding to which we have free wavelengths on link i and 
link j respectively. The cardinality of sets Xi and Yj are x 
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Fig. I .  Possible wavelength conversions at each node for d = 1. The conver- 

sions are circularly symmetric. 

and y, which is the number of free wavelengths on link i and j 
respectively. 

Let r(Xi) denote the neighbours of the vertices in  set Xi. 
Then we are interested in finding the probability of having m 
such neighbours of vertices in Xi which are incident with the 
vertices in Yj. Then 

pm(x ,  y) = Pr[lr(Xi) n Yjl = n z ]  

x pr(lr(Xi)l = lIIxi/ = z). ( 3 )  

The last equality in (3) has the summation running from 
min[C, (z + 2d)] to inin[C, (2d + l)z]. This is because the 
minimum cardinality (neighbours) of r(Xi)  will be (z + 2d) 
or C, depending on whichever is smaller, and the maximum 
cardinality (neighbours) can be either C or (2d + l)z, depend- 
ing on whichever is smaller, as the number of neighbours can't 
be more than C (the capacity of the link). 

When there is only one wavelength (vertex) free belonging 
to the set Xi, i.e., /Xi[ = 1, then the number of neighbours 
of that vertex will be exactly (2d + 1) and in this case the 
lower and upper limits of summation coincide. In the case 
when one has exactly z wavelengths (vertices) free in the set 
Xi, i.e., [Xi[ = z, and if all the z wavelengths are adjacent 
then we have only min[(x + 2 4 ,  C] distinct neighbours. This 
one extreme case constitutes the lower limit. Had all these z 
free wavelengths (vertices) been sufficiently apart from one an- 
other so that each contributes (2d + 1) distinct neighbours then 

we will have (2d + l)z distinct neighbours provided (2d + 1). 
is less than C; otherwise this number will be C.  This other ex- 
treme case constitutes the upper limit of the summation. For all 
other cases the number of neighbours lies between these two 
limits. 

Now, for the case when 'm = 0, we have 

c-1 
min[C,(2d+l)z] ( ) 

pr (ir(x,)l = $xi1 = .). (4) 

Note that in  general p m ( z ,  y) # p,(y, x) but interestingly, it 
can be shown that p~(z, y)  = po(y ,z ) ' .  When d = 0, our 
model reduces to Birman's model [4] for no wavelength con- 
version. In this case, p m ( z ,  y)  = p,(y,z), by symmetry. We 
can rearrange the links such that the links of the path have free 
wavelengths in increasing order and then we can use (3) to com- 
Putepm(x,Y). 

Pr [Ir(xi)l = lJIxil = x] 

The probability term, Pr(.) in (3) and (4) is given by 

= Pr [lr(xi)[ 5 lIIxil = z] 

- Pr [pyxi)[ 5 1 - lllXil= x]. ( 5 )  

First note that Pr Ir(Xi)l 5 lllXi1 = x] = 1 if 1 = C or 
1 = (2d + 1)" since the number of neighbours cannot exceed 
either number. Also Pr Ir(Xi)l 5 lIlXi1 = z] = 0 if 1 < 
z + 2d 5 C since there are at least z + 2d neighbours, in this 
case. Hence, for the remainder of the discussion, we assume 
z + 2d 5 1 < min[C, (2d + l)z]. 

Consider the probability that Ir(Xi)l 5 1, given that the 
vertices r(Xi)  lie in some contiguous range of 1 vertices (and 
(Xi1 = 2). In this range some of the vertices may not be neigh- 
bours of Xi. Therefore, the total number of neighbours is at 
most 1. Clearly there are cases when we have no more than 1 
neighbours but they do not lie in some contiguous range of 1 
vertices. This yields the inequality 

[ 
[ 

Pr [lr(xi)l L 1IIXil = z] L 

Pr [Ir(xi)l 5 I ,  1 contiguous 1 1  I X ~ J  = x . 

We have, 

pr[lr(Xi)l 5 1 ,  1 contiguous] = Pr[uF=lr(xi) c l k ]  (6) 

where each lk is a set of contiguous vertices of size 1 and k 
varies from 1 to C as we can position 1 contiguous vertices 
in C ways because the conversion is assumed to be circularly 
symmetric. 

l p ~ ( z , y )  is the probability that r ( X , )  n y3 = #. We will prove that 
whenever r ( X i )  n y3 = #, r(Yj) n X i  = #. We prove this by contra- 
diction. Suppose r(Yj) n X ,  # #. Then there exists a vertex ui € X; s t .  
ui E r(y3) n X i .  Since ui E r(Yj), there exists a vertex uj E y3 s.t. 
I ' ( w j )  = U ; .  Therefore, r(ui) = uj which contradicts r (Xi)  n Yj = #. 
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Fig. 2. This figure is for limited conversion with degree d = 1. If all the neigh- 

bours must lie within a contiguous range of 1 vertices, we cannot choose the 
first and last d vertices from the set X. Here we cannot choose the first and 
the Ith vertices shown by the hollow circles. For example if we choose the 
Zth vertex its neighbours falls outside the range 1 as shown in the figure 
above. 

Let us denote the event r ( X i )  c lk by zk (given that (Xi1 = 
2). Then the R. H. S. of (6) is given by 

Pr[u:=:,,r(Xi) g l k ]  = Pr[Z1 or 2 2  or . . .  or z,] 
(7) 

C because we can choose 1 contiguous vertices in (, ) ways. Now 
consider one such contiguous set of 1 vertices in the set Yj ,  

say set Lj. As per our assumption the 2 vertices in set X are 
contained in the “facing” vertices of the vertices in set Lj. We 
denote this set of “facing” vertices as set XI which has cardi- 
nality 1. We want to choose :c vertices in Xl such that their 
neighbours are in set Lj. If any vertex is in the first d vertices 
or the last d vertices of the set Xl, some neighbours must fall 
outside the range of set Lj as shown in Fig. 2. Therefore 2 ver- 
tices can be chosen only from (1 - 2d)  vertices of set Xl. The 
total number of ways in which set Xi, such that [Xi[ = 2, can 
be formed is ( z ) .  Therefore, the probability that r(Xi)l C_ l k ,  

when lk is a set of contiguous vertices of size 1 ,  is given by 

Therefore, from (6), (7) and (8), we get 

We have already mentioned that P r [ l r (Xi ) l  5 1 is lower 
bounded by the L. H. S .  of (9) given that lXil = 2.  Thus 
this does not yield a bound on P r [ l r (Xi ) l  5 1. We as- 
sume the following approximation holds for 3: + 2d < 1 < 

We will see from numerical results later that this yields a good 
approximation to the blocking probabilities, at least for small 
values of the conversion degree d. 

For the general case of an N-hop route, N 2 3, let x j  be the 
number of the idle wavelengths on the j t h  hop. We condition on 
the set of disjointevents {X, = k lk  = m,zl ,z2 , . . . z~-1}  , 
where R = { 1, . . . , N - l}. Recall that XR is a random vari- 
able denoting the number of possible outgoing wavelengths on 
route R. We thus obtain the recursive relation (assume the first 
( N  - 1) links to be the first link and the last link to be the second 
link): 

Z N - 1  

P m ( z l , . . . , x N )  = Pk(Xl , . . . , xN- l )Pm(k ,zN)  (10) 
k = m  

where p m ( k ,  X N )  is given by (3). 

D. Fixed Wavelength Routing 

We consider a network with an arbitrary topology with J 
links and C wavelengths on each link. A route R is a sub- 
set of links { 1 , .  . . , J } .  Calls arrive for route R as a Poisson 
stream with rate CZR. An incoming call on route R is set up 
if it finds a free wavelength on all the links from the possi- 
ble choices of outgoing wavelengths with the given degree of 
limited wavelength conversion. If such a combination of wave- 
lengths is not possible on the links constituting the path, then 
the call is blocked and lost. If the call is accepted it simulta- 
neously holds the wavelength/wavelengths on all the links on 
route R for the duration of the call. The holding times of all 
the calls are assumed to be exponentially distributed with unit 
mean. 

Let Xj be the random variable denoting the number of idle 
wavelengths on link j i n  equilibrium. Let X = (XI  ,. . . , XJ) 
and let 

qj(w) = P r [ x j  = w]; w = 0 , .  . . 1  c 

be the idle capacity distribution. Throughout the following ap- 
proximations are made: 
1. The random variables XI, X2, . . . , XJ are mutually inde- 
pendent. Then 

J 

4(w)  = J-J Qj( W j ) ,  
j=1 

wherew = ( w ~ , w ~ ; . . ; w J ) .  
2. When there are w idle wavelengths on link j ,  the time until 
the next call is set up on link j is exponentially distributed with 
parameter a j ( w ) .  This parameter is the call set up rate on link 
j when w wavelengths are free on link j .  
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From the approximation (2), i t  follows that the number of idle 
wavelengths on link j can be viewed as a birth-and-death pro- 
cess and therefore we have 

w = l , ' . . , C ,  

where 

The call set up rate on link j when there are w idle wavelengths 
on link j ,  aj(w), is obtained by combining the contributions 
from the request streams to routes of which link j is a member. 

aj(w) = 0, if w = 0, 

= u , R P ~ [ x R  > O I X ~  = WI, (13) 
R:jER 

'111 = 1,. . ' , c. 
If the route consists of a single link then the probability term 
Pr( .) under the summation sign in (13) will be equal to 1. If 
the route consists of two links, let R = { i , j } .  The term Pr(.) 
can be further simplified by conditioning it on the set of disjoint 
events {Xi = 111 = 0,. . . , C } .  

C 
= ~ r [ ~ i  = I I X ~  = w] P ~ [ x R  > O I X ~  = w ,  xi = 11, 

Pr[Xi = 1](1 - Pr[XR = O(Xj = w ,  xa = 11, 

1=1 
c 

= 
1=1 

c 

1=1 

where po(w,l) is given by (4). The second equality above is 
obtained by using the assumption that the random variables Xi 
are independent. Similarly, for a three hop route R = { i , j ,  I C }  
we obtain: 

1=1 n=l 
(15) 

where po(1, w ,  n)  is obtained from ( I O )  and (3). 

E. Computation of Blocking Probability 

The blocking probability for calls to route R is 

LR = Pr[XR = 01, 
= qi(O), if R = {i}, 

= 1 qi(l)qj(w)po(l,w), if R = { i , j } ,  
C C  

1=0 w=o 

c ' c c '  

E Algorithm for Computation of Blocking Probability 

The algorithm below uses a fixed-point method to compute 
the approximate blocking probabilities for the traffic on all the 
routes and the (average) blocking probability of the network. 
1. Initialization. For all the routes R let LR = 0. For j = 
1 , .  . . , J ,  let c y j ( 0 )  = 0, and let aj(m) be chosen arbitrarily, 
m = 1,..',C. 
2. Determine q j ( . )  from ( 1  1) and (12). 
3. Obtain new values of a j ( . ) , j  = 1,. . . , J ,  using (13). (Note 
that (14) must be used in (1  3) for 2-hop paths, (15) in (1 3 )  for 
$hop paths, and suitable generalizations for paths with more 
hops.) 
4,. Calculate LR, for all routes R, using (16). If maxR ILR - 
LR(  < e (where e is sujtably small positive quantity), then ter- 
minate. Otherwise let L R  = LR,  and go to step 2. 
5. The (average) blocking probability of the network is then 
given by 

R 

r=1 
a T L r  

PbnetwoTk  = 7 ' 
c a, 

T = l  

111. NUMERICAL RESULTS 

We present simulation and analytical results for an exam- 
ple network with 6 nodes and 7 links (Fig. 3), a 6 node ring 
network (Fig. 4) and the NSFNET backbone (Fig. 5) for three 
different cases: no wavelength conversion, limited wavelength 
conversion with degree d = 1,2 (and 3 for the NSFNET), and 
full wavelength conversion. For first two networks we consider 
connections between all possible node pairs, so that the num- 
ber of possible routes is 15. For the NSFNET. we have taken 
71 routes. (These are the routes for which the shortest hop 
path is unique.) The offered traffic on each route is assumed 
to be equal (uniform traffic) and we plot the (average) blocking 
probability (over all routes) versus the total offered load to the 
network. We observe that in all the networks limited conver- 
sion provides a considerable fraction of the improvement that 
full wavelength conversion provides over no wavelength con- 
version. 

In simulations, for the no wavelength conversion case, we 
first find the wavelengths which are free on all the links of the 
path. We then choose a wavelength out of these free wave- 
lengths uniformly randomly and assign it to the new call. If no 
such wavelength is available then the new call is blocked. 

For full wavelength conversion, we choose a wavelength out 
of the free wavelengths on the first hop uniformly randomly and 
do the same on the subsequent hops of the path. If there is no 
wavelength free on some link of the path then the new call is 
blocked. 

For limited wavelength conversion, we choose a wavelength 
out of the free wavelengths on the first hop uniformly randomly 
and at each subsequent hop look for the possible outgoing 
wavelengths with the given degree of wavelength conversion. 
If more than one such wavelength is available then once again 
we choose a wavelength uniformly randomly on this hop. This 
is repeated on subsequent hops. If at some hop (other than the 
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first), there is no wavelength free which is in the possible sub- 
set of outgoing wavelengths then we fall back to the previous 
hop and choose a wavelength out of the free wavelengths minus 
the earlier chosen free wavelength/wavelengths uniformly ran- 
domly. If we exhaust all the free wavelengths on the first hop 
and still cannot find any possible outgoing wavelength on some 
hop then we block the call. 

For full wavelength conversion and no wavelength conver- 
sion, we have used the reduced load approximation given in [9] 
and Birman’s method [4] respectively to calculate the blocking 
probability analytically. 

For the 6 node example network (Fig. 3), we plot the graphs 
for 16 wavelengths showing the performance of full, no and 
limited wavelength conversion. From Fig. 6, we see that the 
performance obtained by limited wavelength conversion with 
degree d = 1 is close to the performance of full conversion 
and with degree d = 2 i t  almost matches the full wavelength 
conversion performance. 

In Fig. 7, we show that our analysis results for limited wave- 
length conversion with degree d = 1 are in good agreement 
with the results of simulations. For blocking probabilities of 
the order of and above, the percentage difference is well 
within 5%. 

In Fig. 8, we plot the curves for 16 wavelengths for a ring net- 
work. Again the limited wavelength conversion performance is 
very close to that of full wavelength conversion. In fact, for the 
6 node ring network, with conversion degree d = 2, we can 
virtually achieve the same performance as that of full conver- 
sion as shown in  Fig. 8. In Fig. 9 we compare the results of 
our analysis and simulations f o r d  = 2 and see that they match 
quite well. 

In Fig. 10, we plot the curves for 12 wavelengths for the 
NEFNET backbone network of Fig. 5. Again the limited wave- 
length conversion performance is very close to that of full 
wavelength conversion. We also note from Fig. 1 1  that our 
analysis is quite accurate f o r d  = 3. 

We have presented three examples to show the benefits of 
limited-range wavelength conversion, and in  all these exam- 
ples, limited conversion provides a marked improvement in the 
blocking performance of the network as compared to no wave- 
length conversion. Furthermore the performance obtained by 
limited conversion with small values of the conversion degree, 
such as d = 1 or d = 2, is very close to the blocking perfor- 
mance of the network with full wavelength conversion. 

The computational requirements of the wavelength routing 
model with limited wavelength conversion presented in previ- 
ous section are significant: exponential in terms of the number 
of hops. The complexity of calculating the blocking probabil- 
ity LR is of the order of O ( C H ) ,  where H denotes the number 
of hops of route R. The technique of truncated distribution 
[8] could be applied here as well, and will alleviate the prob- 
lem somewhat for moderate and heavy traffic. It may also be 
possible to develop a parallel implementation of the fixed point 
equations proposed in this paper for limited wavelength con- 
version, along the lines of the approach presented in  [ 121 for 
circuit-switched (i.e., full wavelength conversion) networks. 

IV. CONCLUSIONS 

In this paper, we have proposed a method to calculate the 
average blocking probability in optical networks using limited- 
range wavelength conversion. The proposed analytical model 
in this paper is applicable to any topology. Using this model we 
have demonstrated that the performance improvement obtained 
by full wavelength conversion over no wavelength conversion 
can be achieved by using limited wavelength conversion with 
the degree of conversion, d, being only 1 or 2. 

We have also seen that our analytical model for limited wave- 
length conversion is quite accurate for small but non-zero val- 
ues of the conversion degree d. For d = 0 our model reduces 
to that of Birman [4] for the case of no wavelength conversion 
and the analytical values are not as accurate in this case. We 
conjecture that this is because correlations between the use of 
wavelengths on the links are quite significant in the case when 
d = 0 while our model assumes link independence. For higher 
values of d, the correlations probably decrease. We are explor- 
ing how correlations in wavelength usage on different links can 
be taken into account to improve the accuracy of our analytical 
method. 

Finally, we have only considered routes with up to 3-hops 
and confined ourselves to fixed routing. We need to take longer 
routes than this to further explore the benefits of limited-range 
wavelength conversion. The model presented in this paper, es- 
pecially that used for computing the pm( . ) ,  can also be used for 
alternate routing with limited-range wavelength conversion by 
extending the method presented in [ 5 ] .  We are exploring this 
further. 

REFERENCES 
R. Ramaswarni and K.  N. Sivarajan. Routing and Wavelength Assign- 
ment in All-Optical Networks. IEEE/ACM Trcinsactions on Networking., 
3(5):489-500, October 1995. 
J .  Yates, J .  Lacey, D. Everitt, and M. Summerfield. Limited-range wave- 
length translation in all-optical networks. IEEE INFOCOM, 954-961, 
1996. 
V. Sharma and E. A. Varvarigos. Limited wavelength translation in all- 
optical WDM mesh networks lEEE INFOCOM, 893-901, 1998. 
A. Birman. Computing approximate blocking probabilities for a class of 
all-optical networks. IEEE JSAC/JLT Specicil Issue 011 Opticcil Networkr., 
14(5): 852-857, June 1996. 
H .  Harai, M. Masayuki, and H .  Miyahara. Performance of alternate rout- 
ing methods in all-optical switching networks IEEE INFOCOM, 1997. 
R.  A.  Barry and P. A. Hurnblet. Model of blocking probability in all opti- 
cal networks with and without Wavelength changers. IEEE INFOCOM., 
402-412, April 1995. 
S. Subramaniam, M. Azizoglu and A. K. Somani. All-optical networks 
with sparse wavelength conversion. IEEELACM Tremsuctions on Net- 
working., 4(4):544-557, Aug. 1996. 
S.  P. Chung, A.  Kashper and K. W. Ross. Computing approximate 
blocking probabilities for large loss network with state-dependent rout- 
ing. IEEE/ACM Trcinsctctions on Nefworking., l ( 1 ) :  105-1 15, Feb. 1993. 
S. P. Chung and K. W. Ross. Reduced load approxiinations for multirate 
loss networks. IEEE Trcinscicriorrs on Communiccitions., 4 I(8): 1222- 
1231, Aug. 1993. 
M. Kovacevic and A. Acainpora. Benefits of wavelength translation in 
all-optical clear-channel networks. IEEE Journcil of Selected Areus in 
C~m”niccitions., 14(5): 868-880, June 1996. 
R. Ramaswami and K. N. Sivarajan. Optical Networks: A Practical Per- 
spective, Morgcin Kwfmemn Pub1isher.r. San Francisco, 1998. 
A. G. Greenberg and R.  Srikant. Computational techniques for accurate 
performance evaluation of multirate, multihop communication networks. 
IEEE/ACM Trcinsaction on Nerworkina. S(2): 266-277. April 1997. 

334 



Fig. 3. An example network with 6 nodes and 7 links. 
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Fig. 6. The average blocking probability in the example network with 6 nodes 
and 7 links versus the total offered load, for C = 16 wavelengths per link. 
The plot shows the analytically calculated values and simulation values for 
no, full and limited wavelength conversion with conversion degree d = 1 
a n d d = 2 .  

Fig. 4. Six node ring network. 

Fig. 5. NSFNET backbone consisting of 14 nodes and 21 links. 
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Fig. 7. Comparison of the results obtained through analysis and simulation for 
limited wavelength conversion with degree d = 1 for the example network 
with 6 node and 7 links. 
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Fig. 8. The average blocking probability in the 6 node ring network versus the 
total offered load, for C = 16 wavelengths per link. The plot shows the 
analytically calculated values and simulation values for no, full and limited 
wavelength conversion with conversion degree d = 1 and d = 2. 
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Fig. 10. The average blocking probability in the NSFNET network versus the 
total offered load, for C = 16 wavelengths per link. The plot shows the 
analytically calculated values and simulation values for no, full and limited 
wavelength conversion with conversion degree d = 1 and d = 2. 
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Fig. 9. Comparison of the results obtained through analysis and simulation 
for limited wavelength conversion with degree d = 2 for the 6 node ring 
network. 

Fig. I 1 .  Comparison of the results obtained through analysis and simulation 
for limited wavelength conversion with degree d = 3 for the NSFNET. 
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